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Abstract

Quantum-mechanical coordinates are undetermined; therefore, they cannot be subject to

relativist transformations. Quantized free fields are undetermined; therefore, they cannot be

subject to relativist transformations. Quantum-mechanical interaction cannot be subject to

relativist transformations. The description of scattering experiments in terms of relativist

quantized free fields leads to inconsistencies. The renormalization techniques are improper

and do not work for the whole series of perturbations. Dirac equation has not a classical limit.

Quantum Electrodynamics and Quantum Field Theory are constructed on the irreducible

incrongruency between Quantum Mechanics and Relativity.

1 Introduction

These Notes include an attempt of a critical analysis of Quantum Electrodynamics and Quantum
Field Theory. Details concerning notation, calculation and derivation of particular mathematical
relations can be found in Landau and Lifshitz (Berestetskii, Lifshitz, Pitaevskii) Quantum Elec-

trodynamics, Jauch and Rohrlich Photons and Electrons, Weinberg Quantum Theory of Fields,
Dyson Advanced Quantum Mechanics. We deal here only with questions of principle. Although
there is a consensus that, in spite of their computational success, Quantum Electrodynamics and
Quantum Field Theory exhibit serious difficulties at the conceptual level, there is little preoccupa-
tion of tracing back the origin of these dificulties. We attempt here to show that these difficulties
originate in the profound incongruency between Quantum Mechanics and Relativity. Quantum
Mechanics assumes instantaneous positions, which may be completely undetermined, while the
Theory of Relativity assumes determined positions which can be related by signals propagating
with veocities lower than, or equal with, the speed of light in vacuum. The Theory of Relativity
deals with a space-time dynamics, while Quantum Mechanics envisages only a time evolution, for
a global set of positions. These difficulties do not appear in the original Dirac’s theory of radiation
(Fermi), which is consistently quantum-mechanical and not relativist, while they are exhibited by
the current descriptions of these theories, because the results of the quantum-fields interaction are
interpreted in terms of relativist free fields. This leads to a meaningless effect of the interaction.

Quantum Mechanics deals with small amounts of mechanical action, which means small amounts
of energy (energy quanta) in reasonably long times and small amounts of momenta (momentum
quanta) over reasonably long distances. On the other hand, the Theory of Relativity deals with
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high velocities, which imply high motion energies and momenta. Therefore, a Quantum Electro-
dynamics, or a Quantum Field Theory, would make sense only during very short durations of time
and over very short distances. Such theories would explore the internal structure of the small
particles, as in high-energy scattering experiments. Indeed, these theories were developed by the
advent of the particle accelerators.

But, is there an internal structure of the small, elementary particles? The high-energy scattering
experiments revealed many elementary particles, such that the two theories became a theory of
elementary particles and their interactions. The theory of the elementary particles is based on
internal symmetries and local gauge symmetries, the latter associated with differential operators,
reminiscent of quantum-mechanical operators, all relativist invariant. To what extent the Quan-
tum Mechanics and the Theory of Relativity are present, survive and keep their meaning, in the
theory of elementary particles?

Quantum Mechanics views the time and position coordinates as partially, or totally, undetermined,
according to the uncertainty relations, while the Theory of Relativity consider the time-space
coordinates exactly determined, and subject to Lorentz transformations. It seems that a union
of these two theories would be impossible in space and time, or, if still is, to what a price? The
quantization in Quantum Electrodynamics and Field Theories pertains to fields, which exhibit
quanta which may be created or destroyed; then, the relativist transformations do not apply to
such undetermined quantum-mechanical objects. Both Relativity and Quantum Mechanics have
a positive content and limitations. Moreover, the time-space structure is irrelevant in scattering
experiments, what matters in these experiments is what happens during the short time and over the
small distances of the interaction. However, the coordinates are there and, even not relevant, we
must deal with them. These Notes attempt to analyze and answer to some extent such questions.

Quantum Electrodynamics has begun with Einstein’s notion of photon. It was realized that the
photon is a quantum of electromagnetic field, it is each field component which is quantized, while
the relativist nature of the field vector is not affected. However, when quantized the fields are
not determined, such that they cannot be subject to relativist transformations. At this level, it
seems that Quantum Mechanics and Relativity are not compatible with one another. The photon
is also represented by a plane wave, which is a solution of the Maxwell equations for radiation,
and the plane waves have a well-determined frequency and a well-determined wavevector, which
makes the time and the position perfectly (completely) undetermined. This is contrary to the
spirit of the Theory of Relativity, which requires well-determined coordinates. Moreover, the
quanta of energy and momentum of the photon are obtained from the plane wave by applying the
well-known quantum-mechanical operators, as if the plane wave would be a wavefunction, though
there is no Schrodinger equation for the photon. This uncertainty in time-energy and momentum-
position, which is specific to Quantum Mechanics, and which appears naturally in field equations,
contradicts the Theory of Relativity. The escape from this conflictual situation is the realization
that in Relativity there exist unphysical coordinates, namely those placed on space-like surfaces
(outside the light cone). Therefore, the fields live on such space-like surfaces, where the first
quantization (i.e. Quantum Mechanics in space and time) may act, but without any meaning,
other than a formal one. Therefore, the fields are relativist, their quantization exists in their
space, where the coordinates are the fields, while the time and the position, which would generate
a conflictual situation between Relativity and Quantum Mechanics, are relegated to the status of
undetermined, unphysical, unmeasurable parameters, having only a formal role. The quantization
of the electromagnetic radiation implies only the time, while a Lorentz transformation requires
coordinates too. This is a basically conflictual situation in an attempt to reconcile the two theories.

There exists a fundamental difference in the way Quantum Mechanics and Relativity view the plane
wave and, consequently, all functions made of plane waves. In Relativity the plane wave is viewed
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as an oscillating function with well determined values at any point. Quantum Mechanics views the
plane wave as defined only at those points where the plane wave have the same values, i.e. at those
points where the phases differ by an integral multiple of 2π. Consequently, Quantum Mechanics
attributes an uncertainty to the phase of the plane wave and a corresponding uncertainty in
coordinates, frequency and wavevector (energy and momentum). The solution offered by the
space-like surface to this conflictual situation raises serious difficulties, because it restricts the
space ∆x and the time ∆t to ∆x ≥ c∆t; we cannot go inside the region c∆t during the time ∆t;
and, of course, ∆x ≥ c~/∆E. This means that even with a large amount of energy we cannot
probe as small a region of space as we would like, e.g. the structure of an elementary particle; we
can only probe larger regions of space, which, nonetheless, are unphysical. Essentially the same
objections have been raised by Landau and Peierls to Quantum Electrodynamics and Quantum
Field Theory. Moreover, for plane waves ∆x −→ ∞, so we can have information about scattering
processes which occur in small space-time regions only from asymptotic incoming and outgoing
plane waves, whose scattering time is infinite.

Quantum Electrodynamics continued with the electron. Since its non-relativist motion is quan-
tized, it is natural to extend the (first) quantization to the relativist electron; we get thereby the
Klein-Gordon equation. Here it appears immediately a difficulty, related to the rest energy. It
is necessary to view this energy as a motion energy, in order to have a consistent extension of
the (first) quantization. Such an assumption has far-reaching implications; it amounts to view
the electron as an energy and momentum quantum (like the photon), which can be created or
destroyed. Therefore, it obeys anticommutation rules and, moreover, since the charge is con-
served, there should exist positrons (antiparticles). The existence of the spin requires matrices,
which must be at least 4× 4 matrices; these account both for spin and antiparticles and bring an
important simplification to the quadratic Klein-Gordon equation, which becomes equivalent with
the linear Dirac equation.

This whole scheme of second quantization, which views fundamental particles like photon and
electron as quanta, i.e. assign a quantum-mechanical nature to their very existence and not to
their motion, as in the original quantum-mechanical scheme, leads to profound difficulties with
their interaction. We emphasize that the second quantization is possible only by assuming that
the time-position coordinates are unphysical space-like parameters which are integrated out as
for global (delocalized) particles. But such an integration does not warrant meaningful results;
we may only accept such a procedure as long as it may look a reasonable one; unfortunately, in
the interaction problem it shows its artificial character, because we integrate the interaction in-
discriminately over space- and time-like coordinates. In Quantum Electrodynamics and Quantum
Field Theory the very existence of the particles is quantized (second quantization), while the fields
are defined in relativist unphysical regions (as required by the first quantization and allowed by
Relativity). In addition, quantized fields cannot be subject to relativist transformations, since
they are undetermined.

If there exist such inconsistencies at the fundamental level of the relativist quantum-mechanical
dynamics, how can be understood the success of Quantum Electrodynamics and Quantum Field
Theory? The answer resides in the fact that these theories make little use of either relativist or
quantum-mechanical dynamics. Their results are based on the symmetries required by the Lorentz
group and the internal symmetry groups and the ensuing conservation laws. The whole physics
of elementary particles is a classification of particles (quanta) according to symmetry principles,
including the unitary symmetries. However, the understanding of these theories in the relativist
and quantum-mechanical framework necessitates clarification. The computational success of these
theories is circumstantial.

The Theory of Relativity is a classical theory (i.e., a non-quantum-mechanical one); it views
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functions well-defined in space and time, at exact time-positions coordinates, which are related
by Lorentz tranformations (space and time reversal included). The meaning of this theoretical
framework consists in the existence of experiments which show the existence of such objects by
measurement; this is the "reality content" of this theory (Einstein), as for any physical theory.
Quantum Mechanics views functions defined in space and time at coordinates which are uncer-
tain, undetermined, according to its uncertainty principle. Again, the meaning of this quantum-
mechanical theoretical framework is the existence of experiments which produce such objects by
measurement. Therefore, a union between Relativity and Quantum Mechanics is impossible, in
the sense that the first class of relativist experiments is different from the second class of quantum-
mechanical experiments. Indeed, this is the case, and this was the original formulation of radiation
theory.

Since a free classical field, which exhibits well-determined coordinates and is relativist, can be
decomposed in a superposition of plane waves, we may extend its relativist character to these
plane waves; the plane waves may be used as free quantum-mechanical fields. This extension
is not harmful and is legitimate, as long as there is no experiment to determine the quantum-
mechanical character of these free fields. Indeed, this is the case, because any experiment which
would determine the quantum-mechanical character of these fields would imply a detection, i.e.

an interaction, which would transform the free fields into interacting fields. Now, suppose that we
make an experiment to detect the quantum-mechanical character of the fields, which would mean
to transform them into interacting fields; in other words, suppose that we make an experiment
where the free quantum-mechanical fields are set in interaction, i.e. they become interacting fields.
Since such an experiment is a quantum-mechanical one, it implies necessarily an extended space
(cavity) and an extended time interval, as in scattering experiments, such that the coordinates are
not determined anymore; in such an experiment the interacting fields behave as a global entity.
If we wish to determine momenta with high accuracy, the extension of the spatial cavity should
be large; if we wish to determine energies with high accuracy, the extension of the time interval
should be large. For such a global experimental set-up the (proper) Lorentz transformations are
not applicable anymore; any attempt to apply them would only displace the set-up as a whole
in space and time. Consequently, in such a quantum-mechanical experiment the preservation of
the relativist character of the original free fields, which are employed to construct the interacting
fields, cannot be checked. There is no relativist experiment to detect the relativist character of the
interacting fields, such that the requirement of checking their relativist character is meaningless.
It would be imposible to change locally the reference frame, such that the relativist invariance to
be in danger to be lost, though we cannot, in fact, prove its persistance, because any change of
the reference frame is global. As long as there is no experiment to prove or disprove a property,
any such property is not determined. In particular, the quantum-mechanical evolution equation
of the interaction needs not be relativist. However, the field interaction is interpreted in terms
of relativist free fields, which leads to meaningless results. There exist divergencies which can be
removed in every finite order of the perturbation theory by renormalization in such an approach,
but they cannot be removed from the whole perturbation series. The profound reason for this
difficulty resides in the incongruency betweem Quantum Mechanics and the Theory of Relativity.

In a summarizing sentence, if we view the fields as quantum-mechanical objects, then the coor-
dinates have no sense, only time is relevant and a time evolution (not for stationary states). We
cannot check the relativist character of such objects, because the Relativity applies to both time
and coordinates; in addition, the quantized fields are undetermined and cannot be subject to rela-
tivist transformations. In Quantum Electrodynamics and Quantum Field Theories we insist to do
both operations, though in fact we do only Quantum Mechanics; which explains to some extent
the success of the calculations; the difficulties related to convergence and divergencies originate
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in the insistence of working with relativist free fields in higher orders of the perturbation theory,
where the conflictual nature of the two approaches arises. The renormalization techniques are
only a limited way of redefining the lowest order of the perturbation theory. If we include the
whole perturbation series, there will not be anymore a finite order to become the lowest, and the
renormalization will become impossible.

In Quantum Electrodynamics and Quantum Field Theory we are interested in scattering experi-
ments. In quantum-mechanical Relativity do not exist bound states (at least as long as we work
with disentangled particles); there may exist only limited relativist corrections to bound states.
A scattering experiment should be described in terms of relativist and quantum-mechanical free
fields (incoming and outgoing fields), while the interaction is quantum-mechanical but not rela-
tivist. We can see that the relativist regime is preserved in interaction from the perturbation series
which is written with free fields. This basic contradiction undermines Quantum Electrodynamics
and Quantum Field Theory. It is worth noting that the quantum-mechanical character of the
fields is associated not only with the second quantization (i.e., the existence or the non-existence
of the particles), but also with the space-time motion of the quanta (first quantization). Indeed,
we get the photon energy ~ω by applying the operator i~∂/∂t to a plane wave and we derive the
field equation of the electron by using the operators i~∂/∂t and −i~grad. The relativist trans-
formations and unitary transformations may be related, which suggests compatibility, coexistence
and correspondence between Relativity and Quantum Mechanics, but this relation, simply, does
not apply to scattering experiments.

2 Photons

2.1 Electromagnetic field

The electromagnetic field in vacuum consists of two real vectors E and H, called electric field and
magnetic field, respectively, which obey Maxwell’s equations

divE = 4πρ , divH = 0 ,

curlE = −1
c
∂H
∂t

, curlH = 1
c
∂E
∂t

+ 4π
c
j .

(1)

in these equations ρ is the electrical charge density, j is the electrical current density and c is the
speed of light in vacuum. From the above equations we see easily that the charge and the current
satisfy the continuity equation

∂ρ

∂t
+ divj = 0 , (2)

which shows the conservation of the electrical charge. The two homogeneous Maxwell’s equations
(1) are immediately satisfied by using the scalar potential Φ and the vector potential A, through

E = −1

c

∂A

∂t
− gradΦ , H = curlA , (3)

while the other two, inhomogeneous, equations become

1
c2

∂2Φ
∂t2

−∆Φ = 4πρ+ 1
c
∂
∂t

(

1
c
∂Φ
∂t

+ divA
)

,

1
c2

∂2A
∂t2

−∆A = 4π
c
j− grad

(

1
c
∂Φ
∂t

+ divA
)

.

(4)
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We can see that the potentials satisfy wave equations (with sources), providing we impose the
condition

1

c

∂Φ

∂t
+ divA = 0 (5)

(subsidiary condition); indeed, the continuity equation (charge conservation) reduces the number
of solution (and source) parameters to three. Equation (5) is called the Lorenz gauge.

Maxwell’s equations have an important symmetry, called the gauge symmetry, related to the charge
conservation. Let us introduce the notations � = 1

c2
∂2

∂t2
−∆, L = 1

c
∂Φ
∂t

+ divA and C = ∂ρ

∂t
+ divj;

the equations for the potentials can be written as

�Φ = 4πρ+
1

c

∂L

∂t
, �A =

4π

c
j− gradL ; (6)

the Lorenz condition is L = 0 and the charge conservation is C = 0; we note that C = 0 from
equations (6) even if L 6= 0. The fields given by equations (3) and equations (6) for potentials are
invariant under the transformation

A = A
′

+ gradχ , Φ = Φ
′ − 1

c

∂χ

∂t
, (7)

where χ is an arbitrary function, but the Lorenz formation becomes

L = L
′ − �χ (8)

and the charge conservation is

C
′

= C +
1

4πc
� �χ =

1

4πc
� �χ = 0 ; (9)

it follows that the charge conservation requires �χ = 0 and the invariance of the Lorenz condition
(L = L

′

). The transformation given by equations (7) with the condition �χ = 0 is called the
gauge transformation.

If ρ = 0 (and divj = 0) then the Lorenz condition becomes divA = 0. This is called the Coulomb
gauge. Since �Φ = 0 in this case, we may use the gauge function χ = Φ, which leaves the
potentials (Φ

′

= 0, A
′

= A), the fields and the equations, including the condition divA = 0,
unchanged. In vacuum ρ = 0 implies j = 0; then, we are in the presence of electromagnetic
radiation.

From the two equations (1) in the second raw we get the law of energy conservation

1

8π

∂

∂t

(

E2 +H2
)

+
c

4π
div (E×H) = jE (10)

and the law of momentum conservation

ρEi +
1

c
(j×H)i +

1

4πc

∂

∂t
(E×H)i = ∂jσij , (11)

where

σij =
1

4π

[

EiEj +HiHj −
1

2
δij

(

E2 +H2
)

]

(12)

is the tensor of the electromagnetic stress. In equation (10)

E =
1

8π

(

E2 +H2
)

(13)



J. Theor. Phys. 7

is the energy density,

S =
c

4π
(E×H) (14)

is the energy flux density (energy flow, Poynting vector) and jE is the density of mechanical work
per unit time. In equation (11) ρE+ 1

c
j×H is the Lorentz force density and g = 1

4πc
(E×H) = S/c2

is the momentum density. We note that the spatial variation of the electromagnetic stress generates
the time change of both the electromagnetic momentum g and the momentum of the charges and
currents (Lorentz force). The density of the interaction energy of the electromagnetic field with
charges and currents can be obtained from jE.

2.2 Relativist notation

We use the contravariant position vector xµ = (ct, xi), i = 1, 2, 3 (x, y, z), µ = 0, 1, 2, 3,
and the covariant position vector xµ = (ct, −xi), with x0 = x0 = ct (metrics gµν = gµν =
(+,−,−,−)); similarly, the derivatives are denoted by ∂µ = ∂/∂xµ = ( ∂

c∂t
, −grad) and ∂µ =

∂/∂xµ = ( ∂
c∂t
, grad); similar notations are used for any vector or tensor. Also, we use the notation

Aµν =









0 a1 a2 a3
−a1 0 −b3 b2
−a2 b3 0 −b1
−a3 −b2 b1 0









= (a,b) (15)

and Aµν = (−a,b) for antisymmetrical tensors; we can see that a is a polar vector, while b can
be expressed as an axial vector.

The charge current is jµ = (cρ, j) and the equation of charge conservation reads ∂µj
µ = 0;

the electromagnetic potential is Aµ = (Φ, A) and the fields are given by Fµν = ∂µAν − ∂νAµ

(equations (3)), i.e. F µν = (−E,H) ; the homogeneous Maxwell equations follow from the identity
∂ρFµν+∂µFνρ+∂νFρµ = 0, while the inhomogeneous Maxwell equations read ∂νF

µν = −4π
c
jµ. The

energy-momentum tensor (computed like the derivation of the hamiltonian from the mechanical
action)

T µν =
1

4π

(

−F µρF ν
ρ +

1

4
gµνFρσF

ρσ

)

(16)

can be written as

T µν =









E Sx/c Sy/c Sz/c
Sx/c −σxx −σxy −σxz
Sy/c −σyx −σyy −σyz
Sz/c −σzx −σzy −σzz









; (17)

it satisfies the equation of motion ∂νT
ν
µ = −1

c
Fµνj

ν .

2.3 Photon

An electromagnetic field independent of charges and currents may be described by the Coulomb
gauge divA = 0. On changing the reference frame (by a Lorentz transformation) this condition
may change, but we can always make a gauge transformation to preserve it. We are in the presence
of an electromagnetic radiation. Maxwell’s equations and the wave equations for potentials are
invariant (covariant) under a Lorentz transformation. In addition, the wave equation for the po-
tential A is invariant under spatial and temporal inversions (and spatial rotations). The potential
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A and the electric field E are polar vectors, while the magnetic field and the potential change
sign under temporal inversion. The wave equation for the potential A of radiation is separable in
spatial and temporal coordinates; we can use Fourier decompositions, with wavevectors k and fre-
quency ω = ck (ω > 0). The Coulomb gauge indicates that the potential A is transverse, i.e. it is
perpendicular to the wavevector k; therefore it has two components, labeled by α = 1, 2; these are
called polarizations. Taking into account the symmetries, the most general form of decomposition
of the potential A is

A =
1√
V

∑

k

uk sinωt sinkr , (18)

where the coefficients uk are real and perpendicular to k and the summation is limited to half a
space; V denotes the volume occupied by radiation. Aditional phases can be included, accounting
for the origin of the space and the time. This is the original form of the potential used in Dirac’s
theory of radiation (Fermi). It is worth noting that equation (18) is not relativist invariant; it is
used in the theory of radiation for interacting fields. In quantum-mechanical motion the spatial
coordinates are not defined, and, also, for stationary states the time is not defined; therefore, the
relativist trnasformations and invariance do not apply.

Equation (18) can also be written as a superposition of plane waves e∓iωt±ikr extended over the
whole k-space, where u−k = −uk.

Let us give up the requirement of symmetries and write the more general field

A =
1√
V

∑

k

β
(

ake
−iωt+ikr + a∗

ke
iωt−ikr

)

, (19)

where the vectors ak, a
∗
k are perpendicular to k and β is a coefficient to be determined; the

summation is performed over the whole space. Since A is real, we must have a∗
−k = ak. It is

worth noting that this generalization involves complex coefficients ak, a
∗
k.

Equation (19) can be put in a more general form. The wave equation for the potential A has
plane waves Ak as elementary solutions in the infinite space (for other geometries the discussion
is similar). The radiation plane waves are identified by their wavevectors k. The Coulomb gauge
shows that the electromagnetic potential is perpendicular to the wavector k of the plane wave,
therefore the vector Ak has two components, denoted by α = 1, 2 and called polarizations;
or, there exist two transverse vectors (perpendicular to k) which describe the vector potential
Ak, called polarization vectors (the condition divA = 0, which becomes kAk = 0, is called
the transversality condition). Therefore, the electromagnetic plane waves are identified by their
wavectors k and their polarizations α (normal modes of the wave equation). We can write the
components Aµ of the potential for a plane wave as Aµ

kα ∼ eµkα, where we can always chose A0 = 0,
e0 = 0, eµ = (0, e), ekαk = 0 (ek = 0), ekαe

∗
kβ = δαβ and eµkαe

µ∗
kβ = −δαβ ; for simplicity we

omit sometimes the labels kα and write simply A ∼ e for the vector with four components. We
note that there are two polarization vectors e (each with components eµ) for each wavevector k,
labelled by the suffix α = 1, 2.

The wave equation for the potential A requires a time dependence of the form e±iωt, where ω =
ck = c | k |. We note that ω > 0 and the ± sign comes from the fact that the wave equation is a
second-order equation in the time variable t. We write A ∼ e−iωt+ikr, eiωt−ikr, where ωt−kr = kµx

µ

and kµ = (ω/c, −k). We note that the second exponential is the complex-conjugate of the former,
in agreement with the fact that A is a real vector. Therefore, we can write the potential as

A =
1√
V

∑

kα

β
(

ekαakαe
−ikx + e∗kαa

∗
kαe

ikx
)

, (20)
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where β is a coefficient to be determined, V is the volume of the radiation, akα are coefficients to be
determined and kx is a notation for kµx

µ. We note that the gauge transformation (equations (7))
is Aµ −→ Aµ−∂µχ and eµ −→ eµ+ ikµχ, such that the normalization condition ee∗ = −1 and the
transversality condition ek = 0 are preserved under a gauge transformation, since k2 = kµk

µ = 0.
Also, it is worth noting that ω = ck > 0 depends on k (it should be written ω(k) = ω(k)). Also,
we may absorb the factors e−iωt and eiωt in akα and a∗kα, respectively.

However, it is worth noting that A given by equation (20) is not a relativist vector (but its
Fourier components are), up to the factor β/

√
V (akα may be viewed as scalars). This may raise

doubts about the validity of the results, athough the final results, obtained by working with such
expressions, look like being relativist invariant. The wave equation satisfied by A for radiation and
the gauge invariance define this vector (and the fields) up to a scale factor, but, once accepted,
this circumstance requires to work with Fourier components of the field. The Fourier components
of the potential vector preserve their form under a Lorentz transformation (due to the phase kx).

Planck succeeded in deriving the thermodynamics of the radiation field (black body radiation, i.e.

radiation at statistical equilibrium at finite temperature) by analyzing, first, the field in terms
of wavevectors and polarizations (i.e. the Fourier components of equation (20)) and, second,
by assuming that each mode kα has an energy n · ~ω, where n = 0, 1, 2, ... is any positive
integer (viewed by Planck as a statistical variable); ~ ≃ 10−27erg · s was called quantum of
mechanical action. Since the electromagnetic radiation has a momentum given by the Poynting
vector and energy conservation (equations (10)-(14)), it follows immediately that there exists also
a momentum n · ~ω/c directed along the wavector k, i.e. a momentum n · ~k. Hence, Einstein
assumed that there exists a quantum of energy ~ω and of momentum ~k, which is absorbed
and emitted in atomic processes (in particular in the photoelectric effect), by the motion of the
electron. This quantum of energy and momentum was called photon. This was in conjunction
with the atomic energy levels assumed by Bohr, since it led to the idea that the interaction of
matter with the radiation proceeds by exchange of photons and transitions between atomic levels.
The existence of energy levels for matter is the essence of Quantum Mechanics; the interaction of
the photons with matter was described by Dirac’s theory of radiation.1

The existence of a quantum of energy ε = ~ω and a quantum of momentum p = ~k for photon
may lead to the idea that the photon would be a quantum-mechanical particle (wave), with the
wavefunction ψ ∼ e−ikx/

√
V , where the phase may be written as −ikx = i

~
(−εt+pr). This would

be in accordance with de Broglie’s duality particle-wave and with the uncertainty Heisenberg’s
relations ∆px∆x > ~/2, ∆ε∆t > ~/2; energy and momentum operators i~ ∂

∂t
and −i~grad would

then be used, respectively. It is worth noting that the wave e−ikx has a (minimal) phase uncertainty
π, which shows itself when using the microscope, a circumstance employed by Heisenberg in
deriving the uncertainty relations; this uncertainty implies ∆kx∆x > π, ∆ω∆t > π, which are
in agreement with Heisenberg’s uncertainty relations concerning p and ε. Unfortunately, there is
no hamiltonian for a Schrodinger equation in such a quantum-mechanical picture, although the
relation ω = ck may be viewed as being equivalent with ω2 = c2k2, or ε2 = c2p2, which may
lead to the wave equation ∂µ∂

µψ = 0 for such a wavefunction; and even a probability current
jµ = i

2
(ψ∗∂µψ − ψ∂µψ∗) = kµ = (ω/c, k) may be defined, which is conserved trivially.

Such a quantum-mechanical picture is inappropriate. First, we note that the photon has only
one energy level, so it is not amenable to be described in standard quantum-mechanical terms,
which require several energy levels. For photon there is no energy to be quantized (which reflects
the non-existence of a classical hamiltonian). This would mean that Quantum Mechanics is not
possible for photon, or it is trivial (empty of any content).

1M. Apostol, Quantum Mechanics, Cambridge International Science Publishing, Cambrdge (2018).
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As shown above, in describing the photons we need plane waves, according to the relativist theory
of radiation. Although there is no space-time wavefunction for photons, and a space-time quantum-
mechanical description is not possible for them, we can see that there exists an uncertainty in
the phase of the plane waves of the electromagnetic field, which shows that the plane waves
are more general than a quantum-mechanical wavefunction. This uncertainty in the phase of
the electromagnetic field has a profound significance, because it shows that we cannot measure
exactly the coordinates xµ for a plane wave (with well-defined, exact kµ), which is a basic tenet of
Relativity. Therefore, the Theory of Relativity is not valid for quantum-mechanical plane waves;
consequently it is not valid for the photon, at least in its standard formulation. In working with
plane waves of electromagnetic field we must admit that the coordinates xµ are only unphysical
parameters. Of course, the final, measurable results should not depend on x.

In classical Physics we have always amounts of mechanical action much larger than ~, such that
we may omit ~ and asign the particles well-defined coordinates xµ. Most of the classical waves
are associated with a material medium, which basically, at each point, has a quantum-mechanical
motion which implies large amounts of action, such that we may neglect again ~ in the uncertainty
relations, such that we may have well-defined coordinates for these waves. But the electromagnetic
field is an exception. It is not associated with a material body (ether), such that, even if we have
a classical electromagnetic field, which implies a large amount of mechanical action, this motion
is not associated with material particles. Both for quantum particles or quantum waves, with,
more or less, a fixed momentum, or wavevector, we cannot define coordinates xµ, such that,
in their relativistic regime, we need to view the coordinates as unphysical parameters. This is
also true for quantum electromagnetic plane waves. Since the Relativity requires to view the
coordinates as unphysical parameters in all these cases, it follows that we cannot do a space-time
quantum-mechanical description. In particular, we cannot give a meaning to the operators i~∂µ

in these cases, because xµ are meaningless. We can see that the so-called union of the Quantum
Mechanics with the Theory of Relativity is in fact impossible in space and time. Also, a quantum-
mechanical description in any other terms than space-time is equally well impossible in the context
of Relativity, because the Quantum Mechanics requires any set of canonical conjugate variables
to be measurable with inaccuracy, while the Relativity may require these variables to be exactly
measurable and obey the Lorentz transformations.

It follows that for photons viewed as particles-waves in space and time, neither Quantum Me-
chanics, nor the (standard) Theory of Relativity is possible. Then, in what sense there exists the
photon and how does it interact with matter?

2.4 Quantization of radiation

We turn now to equation (19), which gives the electric and magnetic fields

E = 1√
V

∑

k
iβω

c

(

ake
−ikr − a∗

ke
ikr

)

,

H = 1√
V

∑

k iβ
(

k× ake
−ikr − k× a∗

ke
ikr

)

,
(21)

where the time dependence is included in the coefficients ak, a
∗
k. We get

∫

drE2 =
∑

k
β2ω2

c2

(

−aka−k + aka
∗
k − a∗

ka
∗
−k + a∗

kak

)

,

∫

drH2 =
∑

k
β2ω2

c2

(

aka−k + aka
∗
k + a∗

ka
∗
−k + a∗

kak

)

(22)
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and, from equation (13), the total energy

W = 1
8π

∫

dr (E2 +H2) =
∑

k
β2ω2

4πc2
(aka

∗
k + a∗

kak) . (23)

In a simlar way we can compute the momentum

G = 1
4πc

∫

dr (E×H) =

=
∑

k
β2ω

4πc2
k[(aka−k,−a−kak) + aka

∗
k+

+a∗
kak +

(

a∗
ka

∗
−k,−a∗

−ka
∗
k

)

] ,

(24)

where the terms in brackets show the ambiguities arising in calculating G. These ambiguities
arise from contributions like ak × (k

′ × ak′)δk,−k′, which may be written either as −kaka−k or
as k

′

a−k′ak′ . Such ambiguities occur because of the generalization given by equation (19), which
includes summation over the whole space with complex coefficients (i.e., from the departure of
equation (19) from the classical equation (18)). We agree to keep the order of the coefficients in
equation (24) and write the result as

G =
∑

k
β2ω

4πc2
k{1

2
[ak, a−k, ]+

+aka
∗
k + a∗

kak +
1
2
[a∗

k, a
∗
−k]} ,

(25)

where [ak, a−k] = aka−k − a−kak. We note that this is a convention without any motivation.

2.5 Second quantization

In equation (23) the coefficients ak, a
∗
k do not depend on time. W can be viewed as a hamiltonian,

with ak, a
∗
k canonical variables. Their quantization requires to view them as operators, with the

commutators

[ak,α, a
+
k′α′] = δkk′δαα′ , [ak,α, ak′α′ ] = 0 , (26)

which lead to

W =
∑

k

β2ω2

2πc2
(

a+
k ak + 1

)

=
∑

kα

β2ω2

2πc2
(

a+kαakα + 1/2
)

(27)

and

G =
∑

k

β2ω

2πc2
k
(

a+
k ak + 1

)

=
∑

kα

β2ω

2πc2
k
(

a+kαakα + 1/2
)

. (28)

The eigenstates of W are defined by non-negative integers nkα ≥ 0, such that the action of the
occupation number nkα = a+kαakα is

nkα | nkα >= a+kαakα | nkα >= nkα | nkα > ; (29)

it follows immediately

akα | nkα >=
√
nkα | nkα − 1 > ,

a+kα | nkα >=
√
nkα + 1 | nkα + 1 >

(30)
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and the existence of a vacuum state | 0kα >, such that akα | 0kα >= 0. The coefficients β are
chosen such that equations (27) and (28) become

W =
∑

kα ~ω
(

a+kαakα + 1/2
)

,

G =
∑

kα ~k
(

a+kαakα + 1/2
)

(31)

(β = c
√

2π~/ω)); the field given by equation (19) becomes

A =
1√
V

∑

k

c

√

2π~

ω

(

ake
ikr + a+

k e
−ikr

)

; (32)

making use of the hamiltonian W given by equation (31), the operators ak, a
+
k may be seen in the

Heisenberg representation, with the time dependence e∓iωt. The potential A becomes an operator
in the space of the occupation numbers.

We note that making use of a transformation of the type

akα =
√

ω
2~
qkα + i

√

1
2~ω

pkα ,

qkα =
√

~

2ω
(akα + a+kα) , pkα = i

√

~ω
2
(a+kα − akα) ,

(33)

where [qkα, pk′α′] = i~δkk′δαα′ , the energy and the momentum become

W =
∑

kα

(

1
2
p2kα + 1

2
ω2q2kα + ~ω/2

)

,

G =
∑

kα
k
ω

(

1
2
p2kα + 1

2
ω2q2kα + ~ω/2

)

,
(34)

which show that the radiation can be expresesd as a sum of harmonic oscillators.

The quantization scheme described above is called the second quantization. It gives a sense to
the notion of photon, because we can see that the energy W is a sum of integral multiples of ~ω
and the momentum G is a sum of integral multiples of ~k, and both ~ω and ~k are energy and
momentum, respectively, according to the quantum-mechanical principles. However, we note that
the choice of the coefficient β above (which leads to ~ω and ~k) is arbitrary. The proper meaning
of these quantities derives from the fact that in interaction processes the field A is multiplied by
wavefunctions, which leads to factors of the form e

i

~
(∆E−~ω)t, e

i

~
(∆P−hk)r, where ∆E and ∆P are

the change of energy and the change of momentum of the particles interacting with radiation,
respectively; when integrated over time and coordinates these factors give the conservation of
energy ∆E − ~ω = 0 and momentum ∆P − ~k = 0. The first quantization with quantum-
mechanical operators i~ ∂

∂t
for energy and −i~grad for momentum may be used for photon, but

the coordinates t and r are meaningless, both quantum-mechanically and relativistically.

The second quantization implies the existence of an angular coordinate ϕ, such that | n >∼ einϕ,
n = −i ∂

∂ϕ
and

a =
√
n + 1e−iϕ , a+ = eiϕ

√
n+ 1 (35)

(where the suffix kα is left aside); we can see that the second quantization exists in an abstract
space of an angular coordinate ϕ and an ocupation number n. The infinite energy

∑

kα ~ω/2
(zero-point energy) is left aside, though in finite spatial regions its variation leads to the Casimir
force. Similarly, the zero-point momentum is left aside.
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We can write equation (32) as

A =
∑

kα

(

Akαakα +A∗
kαa

+
kα

)

, (36)

where

Akα = c

√

2π~

ωV
ekαe

−iωt+ikr (37)

can be viewed as the photon field. This expression is not a relativist invariant expression, though
the normalization condition (which includes dk/ω) is (up to a volume factor). Similarly, the
energy-momentum tensor given by equations (31) is relativist invariant. The operators akα can
be transformed by a unitary transformation, such that their commutation relations are preserved
under Lorentz transformations. The Schrodinger equation i~ȧ = [a,W ] for the a-operators reduces
to the trivial equality ~ωa = ~ωa. However, it is worth noting that as long as the quantized field
is represented by operators it has not well-defined values as required by Relativity.

It is worth noting the normalization

< 1kα | A∗
kαa

+
kαAkαakα | 1kα >= c2

2π~

ωV
v (38)

and the photon energy

< 1kα | A∗
kαa

+
kα

(

i~
∂

∂t

)

Akαakα | 1kα >= c2
2π~

ωV
· ~ω (39)

(and a similar expression for the photon momentum).

2.6 Time evolution

The time and the coordinates do not play any role in the quantization scheme described above;
they are integrated out. The photon is an energy and momentum quantum in the space of
the electromagnetic fields; radiation is delocalized. As long as we describe the states by means
of energy and momentum, the time and the position are not determined, they are unphysical
parameters, subject to Lorentz transformations. Indeed, space-like surfaces given by equation
nµxµ = cτ , n2 = 1 (time-like), where τ is a parameter, are unphysical, since n0cδt−nδr = 0 implies

a velocity v = cn
0

n
= c

√
1+|n|2
n

> 0 higher than c. We may imagine that the four-dimensional space-
time continuum is made of parallell space-like surfaces infinitesimally separated from one another.
On such surfaces the operators may commute, i.e. they may be viewed as quantum-mechanical
observables, but they are not relativist observables. The Quantum Mechanics remains separated
from Relativity, by such an assumption.

We may imagine that the quantum-mechanical states depend on the time-position parameters.
In order to preserve their scalar products the states should change by unitary (or anti-unitary)
transformations; the unitay transformations are represented by hermitian operators. The oper-
ators change according to O

′

= e−iFOeiF , where the hermitian F is called the generator of the
unitary operator U = eiF . If F depends on coordinates, these equations may be called evo-
lution equations. Noteworthy, they preserve the commutation (or anticommutation) relations.
The dependence on coordinates can be realized by Lorentz transformations. Let us assume an
infinitesimal translation δxµ; then

O
′

= O(xµ + δxµ) = O + ∂µOδxµ + ... =

= O − i
~
[P µ, O]δxµ + ... ,

(40)



14 J. Theor. Phys.

where F is written as F = P µδxµ/~. It follows

i~∂µO = [P µ, O] , (41)

whence i~ ∂
∂t

= H and −i~grad = P, i.e. the quantum-mechanical operators for the hamiltonian
(energy) and momentum. In particular, i~∂O

∂t
= [H,O] is the Heisenberg evolution equation. It is

preserved by the Lorentz transformations in the sense of equation (41) which is an identity. The
energy and momentum make sense, as long as the time and the position are space-like. P µ are
called the translation generators of the Lorentz group; the components of the angular momentum
(spin included) are the rotation generators.

We can now answer the question what is a photon? From equations (37) and (40) we write

A∗
kαa

+
kα | 0 >= c

√

2π~

ωV
e∗kαe

iωt−ikr | 1kα > , (42)

whence one can see that a photon is a plane-wave electromagnetic field with a specified frequency
ω, a specified wavevector k and a specified polarization α, which can be obtained from the wave-
function given by equation (42) by applying the quantum-mechanical operators i~ ∂

∂t
and −i~grad,

but where the time and the position have no meaning; the coordinates t and r are undetermined
parameters on a space-like surface, where both Quantum Mechanics and the Relativity are mean-
ingless. Both these theories are mutually "compatible" because they act in unphysical conditions.
In particular, the wavefunction given by equation (42) may provide a probability current, iden-
tically conserved, which is meaningless because the coordinates are not measurable, they are
undetermined parameters.

In addition, the photon is a purely quantum-mechanical "quantum" (particle), since, for instance,
the wavefunction given by equation (42) goes to zero for ~ −→ 0. The photons obey the Bose
statistics, i.e. their operators satisfy commutation relations. If the electromagnetic field is high,
then the occupation number is large and its variation by unity is irrelevant; then, the creation
and destruction operators (q-numbers) may be viewed as (large) c-numbers and we recover the
classical limit for ~ −→ 0. The frequency and the wavelength being preserved, the coordinates
remain undetermined parameters. Usually, such classical fields are superpositions with random
phases, which account for the time moments and places of their origin; the field is incoherent. If
the phases are equal (as with the laser fields), the field is coherent; in this case, it exhibits a much
higher energy.

The number of phonon modes with frequency between ω and ω +∆ω is of the order V ω2∆ω/c3;
it follows

V
ω2∆ω

c3
· ~ω · n ≃ V · E2 , (43)

where n is the number of photons and E is th electric field (or magnetic field). If we know the
electromagnetic field (energy) we can find out the number of photons; for monochromatic photons
with a fixed wavevector, ~ω · n ≃ V ·E2. If we measure a monochromatic radiation during a time
∆t, we produce a perturbation ∆ω which is at least of the order ∆ω ≃ 1/∆t; the most accurate
measurement gives n ≃ E2c3∆t/~ω3; for a classical field, E2∆t ≫ ~ω3/c3, or E2λ3 ≫ ~/∆t,
where λ is the radiation wavelength; we recognize here the uncertainty in energy E2λ3.
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3 Electrons

3.1 Electron quantum

From the classical theory we know the energy E of the relativist electron, given by

E2 = p2c2 +m2c4 , (44)

where p is momentum and m is the electron mass. The energy should be positive, E > 0, but the
Theory of Relativity requires a quadratic (homogeneous) form of energy-momentum. According
to Quantum Mechanics, we may assign a wavefunction ψ to this electron, whose structure will be
determined below, place its time-position coordinates on a space-like surface, and replace E and
p by i~ ∂

∂t
and −i~grad, respectively. We get the Klein-Gordon equation

∂2ψ

∂t2
− c2∆ψ +

m2c4

~2
ψ = 0 . (45)

This equation has an important particularity. In the classical limit ~ −→ 0 there should exist a very
large variation of the mechanical action, in comparison with ~, such that the corresponding energy
to be comparable with the rest energy mc2. The difficulty consists in the fact that the mechanical
action changes by motion, while mc2 is a rest energy. We can view the rest energy as arising from
motion, in which case the limit ~ −→ 0 may entail m −→ 0. Then, we should say that equation
(45) would not have a classical limit. Therefore, the electron is a quantum (like the photon),
and ψ should be viewed as a field. This is a basic construction in Quantum Electrodynamics
and Quantum Field Theory. According to equation (45), there exist two frequencies ±ω, ω =
√

c2k2 + ω2
0, where ω0 = mc2/~, and the electron field should look like

ψ =
1√
V

∑

k

(

βkcke
−iωt+ikr + γkb

+
k e

iωt−ikr
)

, (46)

where V denotes the volume, βk and γk are coefficients to be determined, ck and bk are also
coefficients to be specified, and ψ is, in general, complex.

Moreover, since there exist only two states for the electron - vacuum and one electron - it follows
that there exist only two states, | 0 > and | 1k >, and the coefficients ck and bk should be viewed
as operators in the space of the occupation numbers nk = 0, 1 (nk = c+k ck, b

+
k bk) which satisfy

the anticommutation relations

{ck, c+k′} = δkk′ , {ck, ck′} = 0 ,

{bk, b+k′}a = δkk′ , {bk, bk′} = 0
(47)

and {ck, bk′} = 0, {ck, b+k′} = 0, ck | 0 >= 0, bk | 0 >= 0; ck, bk are destruction (annihilation)
operators, while c+k ,b

+
k are creation operators. We can see that electrons obey the Fermi statistics

(are fermions) and Pauli’s exclusion principle is satisfied. The representaion c =

(

0 0
1 0

)

can be

used for fermion operators, with | 0 >=
(

0
1

)

and | 1 >=
(

1
0

)

.

Quantum Mechanics deals with motion; including the rest mass (rest frequency ω0) in quantum-
mechanical processes has far reaching implications. Indeed, in these conditions an electron may be
created from vacuum, by an energy mc2; since the electric charge must be conserved, it follows that
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an accompanying electron with positive charge may also be created, simultaneously. We are led
to the conclusion that electrons with positive charge should exists, i.e. positrons, or antielectrons
(antiparticles) and electron-positron pairs can be created from vacuum, and mutually destroyed.
The c-operators above are for electrons, while the b-operators are for positrons. Moreover, the c-
(b-) operators may be viewed as c-numbers ("amplitudes of existence"), corresponding to fractions
of electrons (positrons) in a macroscopic ensemble.

3.2 Electron spin

The electron has a 1/2-spin, according to experiment. This means that the field ψ introduced above
should have two components (at least), which should transform under a Lorentz transformation
as a spinor (an irreducible representation of the Lorentz group). This circumstance must be
accommodated in the theory of the electron; equations (44) and (45) must include matrices. We
can write equations (44) or (45) as

γµγνpµpν =

{

1

2
{γµ, γν}+ 1

2
[γµ, γν ]

}

pµpν = m2c2 , (48)

where γµ are some matrices; the antisymmetric commutator does not contribute, and we may
require

{γµ, γν} = 2gµν , (49)

where gµν is the metric tensor (with signature (+,−,−,−)); from equation (48) we recover the
relativistic equation (44)

gµνpµpν = pµp
µ = E2/c2 − p2 = m2c2 . (50)

The ten conditions given by equation (49) can be satisfied by at least 4 × 4 matrices. We may
choose Dirac’s matrices

γ0 =









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









, γ1 =









0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0









,

γ2 =









0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0









, γ3 =









0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0









;

(51)

with a shorthand notation

γ0 =

(

1 0
0 −1

)

, γ =

(

0 σ

−σ 0

)

, (52)

where σ are Pauli’s matrices. It follows that ψ is a bispinor.

The spin shows itself when an electromagnetic field is present, i.e. when pµ −→ pµ − e
c
Aµ in

equation (48), where e is the electron charge and Aµ are the components of the electromagnetic
potential. We have

1
2
[γµ, γν ](pµ − e

c
Aµ)(pν − e

c
Aν) =

= 1
4
[γµ, γν ][pµ − e

c
Aµ, pν − e

c
Aν ] =

= − ie~
4c
[γµ, γν ]Fµν ,

(53)
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where Fµν = ∂µAν − ∂νAµ is the electromagnetic field. We can check that

Fµν =









0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0









= (−E,H) (54)

in a matricial notation for tensors. Similarly,

1

1

2
[γµ, γν ] = σµν = (α, iΣ) , (55)

where

α =

(

0 σ

σ 0

)

, Σ =

(

σ 0
0 σ

)

. (56)

Finally, equation (48) gives

(

pµ −
e

c
Aµ

)(

pµ − e

c
Aµ

)

− ie~

2c
σµνFµν = m2c2 , (57)

or
(

pµ −
e

c
Aµ

)(

pµ − e

c
Aµ

)

− ie~

c
αE +

e~

c
ΣH = m2c2 , (58)

or
(

i~

c

∂

∂t
− e

c
Φ

)2

−
(

i~grad+
e

c
A
)2

− ie~

c
αE +

e~

c
ΣH = m2c2 , (59)

where the electromagnetic potential is Aµ = (Φ, A). The last two terms on the lhs represent the
interaction of the spin with the electromagnetic field.

3.3 Dirac equation

It is easy to see that the quadratic equation (48) above,

γµγνpµpνψ = m2c2ψ , (60)

is equivalent with the linear equation

γµpµψ = mcψ ; (61)

this is Dirac’s equation. It has not a quasi-classical limit (~ −→ 0), it is a quantum-mechanical
equation. The field ψ given by equation (46) must be a superposition of the eigenvectors of
equation (61), where pµ = i~∂µ = ( i~

c
∂
∂t
, i~grad). We look for solutions of the form

(

ϕ
χ

)

∼ e−iΩt+ikr , (62)

and find out that Ω = ±ω, where ω =
√

c2k2 + ω2
0, ω0 = mc2/~. For Ω = ω we get immediately

βk =
1√
2ω
uk , uk =

( √
ω + ω0w√

ω − ω0(nσ)w

)

, (63)
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where n = k/k and w is a unit spinor w∗w = 1. For Ω = −ω it is convenient to take −k instead
of k; we get

γk =
1√
2ω
vk , vk =

( √
ω − ω0(nσ)w

′

√
ω + ω0w

′

)

, (64)

where w
′∗w

′

= 1. The two bispinors uke
−iωt+ikr and vk′eiω

′t−ik′r are orthogonal to one another.
The electron field (equation (46)) becomes

ψ =
∑

k

1√
2ωV

(

ukcke
−iωt+ikr + vkb

+
k e

iωt−ikr
)

. (65)

We can see that there is a spin label σ = 1, 2 (or ±) beside k, which can be attached to the
bispinors and to the operators ck and bk;σ labels the eigenvectors of the operator nσ. It is worth
noting that, besides these two spin labels, there exist two others, which distinguish between ϕ and
χ; they reduce to one label in the non-relativistic limit ω ≃ ω0. This additional two-valued label
appears as a consequence of the negative frequencies, which are required by Relativity. The field
ψ is relativist invariant, as a bispinor (up to the factor 1/

√
V ), with a unitary transformation for

the second-quantization operators.

3.4 Energy, momentum, charge

Since
1√
2ωV

ukcke
−iωt+ikr | 1k;c >=

1√
2ωV

uke
−iωt+ikr | 0k;c > , (66)

we may view the formation

ψu =
1√
2ωV

uke
−iωt+ikr (67)

as the wavefunction of the electron; and, similarly,

ψ∗
v =

1√
2ωV

v∗ke
−iωt+ikr (68)

may be viewed as the wavefunction of the b-particles; we call them positrons (the suffix c, b of
the states means states corresponding to the c, b-operators). Obviously, their energy is ~ω and
their momentum is ~k; they can be obtained by applying the quantum-mechanical operators i~ ∂

∂t

and −i~grad, respectively. We note that u∗kuk = v∗kvk = 2ω and u∗kv−k = 0 (the orthogonality
with respect to the wavectors is obtained by integrating over space). Actually, an "electron"
(electron field) is a superposition of "pure" electrons and positrons, each including in its bispinor
contributions from the other. Therefore, we may view

W =

∫

drψ∗(i~
∂

∂t
)ψ , P =

∫

drψ∗(−i~grad)ψ (69)

as the energy and momentum of the electron field, respectively. We get

W =
∑

kσ ~ω
(

c+kσckσ − bkσb
+
kσ

)

,

P =
∑

kσ ~k
(

c+kσckσ − bkσb
+
kσ

)

,
(70)
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where the spin labels are introduced explicitly. Making use of the anticommutation relations, we
get

W =
∑

kσ ~ω
(

c+kσckσ + b+kσbkσ − 1
)

,

P =
∑

kσ ~k
(

c+kσckσ + b+kσbkσ − 1
)

;
(71)

W may be taken as the hamiltonian for the Heisenberg operators ckσ, bkσ ∼ e−iωt.

The formation
Q =

∫

drψ∗ψ =
∑

kσ

(

c+kσckσ + bkσb
+
kσ

)

=

=
∑

kσ

(

c+kσckσ − b+kσbkσ + 1
)

(72)

is a convenient representation for the electrical charge. We can see that the b-particles have an
opposite-sign charge than the c-particles. Conventionally, we call the c-particles electrons and the
b-particles positrons.

Beyond useful conventions, it remains that Relativity, combined with Quantum Mechanics, pre-
dicts the existence of the spin and the b-particles (positrons). The first quantization is limited
(there is no hamiltonian), but it is supplemented with the second quantization, which provides a
hamiltonian; it is not a space-time quantization. In addition, the space-time coordinates are, in
fact, relegated to the status of undetermined, unphysical parameters. Integrating over undeter-
mined space coordinates, in order to get the energy, momentum or charge, does not mean that
we get necessarily meaningful results (only because the parameters are not present anymore);
the results are acceptable, because they look reasonable. In any case, the electron field is global
(delocalized).

The bispinors uk, vk are associated with the internal state of the electron. The internal state
of the particles depends on the reference frame (the internal state is what we see as an internal
state from a reference frame). Under a Lorentz transformation the bispinor components become
a combination of themselves (they are an irreducible representation of the Lorentz group). The
bispinors are responsible of the spin and the contribution of the negative frequencies. The spin is an
internal angular momentum, associated with spatial rotations; the negative-frequency contribution
is associated with proper Lorentz transformations. However, as long as the bispinors are quantum-
mechanical, they are not determined and, consequently, they cannot be the object of relativist
transformations. This is a basic contradiction between Quantum Mechanics and Relativity. We
may use the electron field as a free field at most, which has well determined values, but we cannot
use it in interaction. Actually, the relativist requirements are not applicable to interaction, and a
consequent use of free fields in interaction leads to unphysical situations.

3.5 Interaction with radiation

If we multiply the Dirac equation (61) by γ0 on the left, we get

p0ψ = (αp+mcβ)ψ , (73)

or

i~
∂ψ

∂t
= (−i~αgrad+mcβ)ψ , (74)

where α is given by equation (56) and β is another notation for γ0. This equation may be
viewed as a Schrodinger equation; however, with ψ derived above, equation (74) is an identity.
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The hamiltonian of the field is W given by equations (69) and (71), which must be used for the
Heisenberg representation of the field operators ψ (ck, bk).

In the presence of the radiation field, Dirac’s equation (61) becomes

γµ
(

pµ −
e

c
Aµ

)

ψ = mcψ , (75)

or
p0ψ = (αp+mcβ)ψ +

e

c
γ0γµAµψ , (76)

where Aµ is the potential of the electromagnetic field (and e is the electron charge); the last term
in equation (76) is the energy of interaction of the electron with the radiation. In the spirit of W
we get the interaction hamiltonian

V =
e

c

∫

drψ∗γ0γµψAµ . (77)

We define the current jµ = ψ∗γ0γµψ and introduce the notation ψ = ψ∗γ0, where γ0 acts on the
left; then

V =
e

c

∫

drjµAµ ; (78)

we note that jµ is conserved (∂µj
µ = 0, from Dirac’s equation); also, ukuk = 2ω0, vkvk = −2ω0,

ukv−k = −2ckσ, vku−k = 2ckσ. Making use of the Dirac equation (and kµk
µ = ω2/c2 − k2 =

m2c2/~2) we get

jµu = ψuj
µψu =

1

V
(1, v/c) (79)

and jµv = jµu , where ψu,v are given by equations (67) and (68) and v = ∂E/∂p is the velocity. We
can see that cjµmay be viewed as a probability current, which, however, is conserved identically.

4 Interaction

4.1 Interaction of electrons with radiation

In the space of the occupation numbers we define the hamiltonian of the photons

Hp =
∑

qα

~ωa+qαaqα , (80)

the hamiltonian of the electrons

He =
∑

kβ

~Ω
(

c+kβckβ + b+kβbkβ
)

, (81)

the interaction hamiltonian

V =
e

c

∫

drψγµψAµ , (82)

the photon field

Aµ =
∑

qα

c

√

2π~

ωV

(

eµqαaqαe
−iωt+iqr + e∗µqαa

+
qαe

iωt−iqr
)

, (83)
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the electron field

ψ =
∑

kβ

1√
2ΩV

(

ukβckβe
−iΩt+ikr + vkβb

+
kβe

iΩt−ikr
)

(84)

and the current jµ = ψγµψ. In the formulae written above ω = cq, Ω =
√

c2k2 + ω2
0, ω0 = mc2/~,

α = 1, 2 is the polarization label, β = 1, 2 is the spin label and the other notations are the usual
ones. We introduce additional notations

γµeµqα = γqα , γµe∗µqα = γ′qα (85)

and k± = k ± q, Ω± =
√

c2k±2 + ω2
0. We view all the second-quantization operators in the

Heisenberg picture (representation) with the free hamiltonians Hp,e; this is called the interaction
picture. We introduce also the notations

Uβαβ′(k,q;k′) = ukβγqαuk′β′ ,

Vβαβ′(k,q;k′) = vkβγqαvk′β′ ,

Wβαβ′(k,q;k′) = ukβγqαvk′β′ ,

Sβαβ′(k,q;k′) = vkβγqαuk′β′

(86)

and the same notations with prime for γqα replaced by γ′qα. The interaction has eight terms, given
below:

V1 = e
√

π~
2ωΩΩ−V

Uβαβ′(k,q;k−)c+kβck−β′aqα ,

V2 = e
√

π~
2ωΩΩ−V

Wβαβ′(k,q;−k−)c+kβb
+
−k−β′aqα ,

V3 = e
√

π~
2ωΩΩ+V

U
′

βαβ′(k,q;k+)c+kβck+β′a+qα ,

V4 = e
√

π~
2ωΩΩ+V

W
′

βαβ′(k,q;−k+)c+kβb
+
−k+β′a

+
qα ,

V5 = e
√

π~
2ωΩΩ+V

Sβαβ′(k,q;−k+)bkβc−k+β′aqα ,

V6 = e
√

π~
2ωΩΩ+V

Vβαβ′(k,q;k+)bkβb
+
k+β′aqα ,

V7 = e
√

π~
2ωΩΩ−V

S
′

βαβ′(k,q;−k−)bkβc−k−β′a+qα ,

V8 = e
√

π~
2ωΩΩ−V

V
′

βαβ′(k,q;k−)bkβb
+
k−β′a+qα .

(87)

It is worth noting that we have to solve, in fact, the electron-photon coupled equations of motion

γµpµψ −mcψ = e
c
γµAµψ ,

1
c2
Äµ −∆Aµ = 4π

c
ψγµψ ,

(88)

which amount to non-linear equations.

4.2 Interaction effects

Let us imagine a state with electrons and photons without interaction; it is an eigenstate of the
free hamiltonian H0 = Hp +He. The interaction creates and destroys photons and electrons, such
that its effect is another state with free photons and electrons in various other individual states;
this final state is also an eigenstate of the free hamiltonian. During the interaction process the
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interacting particles are free particles; the interaction, the particles and their states are the same
thing. It follows that the electron-photon interaction is meaningless. This is the sense of nullifying
(zeroing) the electron charge by Landau’s pole. This circumstance arises from the description of
the quantum-mechanical interaction in terms of (relativist) free fields.

In such scattering experiments (decay including) we are interested in time effects. We assume that
at the initial moment of time t −→ −∞ the interaction is absent and we have an initial state of
free electrons and photons ψi (incoming wave). This state evolves gradually to the output state
ψo at the final moment of time t −→ +∞, when the interaction is again absent and the output
state ψo is a state of free electrons and photons (outgoing wave). This is a typical scattering
experiment. We endow the interaction V (t) with an exponential factor e−α|t|,

V (t) = e
i

~
H0tV e−

i

~
H0te−α|t| , (89)

where α −→ 0+; this is the adiabatic introduction (and removal) of the interaction. Then we ask
what is the probability of finding a final state ψf of free electrons and photons in the output state
ψo, which is a superposition of free states (particles); the amplitude of this probability is (ψf , ψo).
The interpretation of α = 1/T as the inverse of the (long) duration T of the interaction is essential
for getting formally meaningful results. We emphasize that the scattering problems, where the
presence of the adiabatic exponent α is necessary, is very different from the problem of stationary
solutions; its treatment is possible only within the framework of the interaction picture.

The state ψ evolves in time according to the equation

i~
∂ψ

∂t
= V (t)ψ ; (90)

its solution (with the initial condition ψi) is

ψ(t) = ψi −
i

~

∫ t

−∞
dt1V (t1)ψ(t1) ; (91)

the output state is given by

ψo = ψi −
i

~

∫ ∞

−∞
dt1V (t1)ψ(t1) ; (92)

or, by iteration,
ψo = ψi − i

~

∫∞
−∞ dt1V (t1)ψi+

+
(

− i
~

)2 ∫∞
−∞ dt1V (t1)

∫ t1

−∞ dt2V (t2)ψi + ... ;

(93)

we can see that ψo is given by a perturbation series. The transition amplitude (ψf , ψo) is the
matrix element Sfi of the scattering matrix S obtained from equation (93).

The perturbation series is a series in powers of e; the corresponding energy is e2/(~/mc), where
~/mc is electron’s Compton wavelength; we get

e2/(~/mc) =
e2

~c
mc2 , (94)

so that we may view α = e2

~c
= 1/137 as a measure of the stength of the electromagnetic interaction;

it is called the constant of fine structure. Similarly, the effect upon the photons is

e2

(c/ω)
=
e2

~c
~ω =

e2

~c
(~ω/mc2)mc2 . (95)

Since α≪ 1 we may limit ourselves to the second order of the perturbation theory.
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4.3 Ambiguities and infinities

Equation (90) is not relativist invariant. It would be if the effect of V (t) on ψ would be of
the form ψ ∼ e−iωt, which would make the scattering matrix a unitary matrix; but this would
mean an energy brought by interaction, which is unlikely as long as the interaction is withdrawn
adiabatically, after its adiabatical introduction. We are left with the only possibility ω = 0, which
would nullify again the interaction. This raises serious doubts about the validity of finite-order
calculations by using the perturbation series given by equation (93).

Since time t is an undetermined parameter we may write down equation (90) with a parameter τ
instead of t, corresponding to space-like surfaces. Then, the formal relativist invariance is not a
problem anymore (or it is already solved by such a procedure). The invariant perturbation theory
can be obtained in this manner, with the very convenient Feynman propagators and diagrams.
However, the parameter τ spoils any significance of time evolution.

Instead of equation (90) we can use (E − H0)ϕ = V ϕ (with relativist invariance ensured by a
unitary transformation) and its Lippmann-Schwinger solution

ϕo = ϕi +
V

E −H0 + i0+
ϕi + ..; (96)

this shows that the time evolution is in fact meaningless. However, equation (96) implies a
unitary operator, whose determinant is equal with unity, such that the energies E are given by
this unitarity condition. If the original state is degenerate, the interaction removes this degeneracy
and the output state is a superposition of states, each with its own temporal factor, a combination
which is not relativist invariant. This factor is neglected in the limit t −→ +∞ in the matrix
element which gives the transition amplitude. The computations can be restricted to processes
which conserve the energy, but this would nulify again the interaction, except, possibly, in finite
orders of the perturbation series. If the spectrum is continuous, the unitarity condition is an
identity and the full computation of the effects of the interaction gives zero.

If we extend the t-integration to infinity, as in equation (92), the result looks as being relativist
invariant, but in the integration process, which involves both the time t and the position r, we
include both space-lke points, which are legitimate, and time-like points, which are not. This
would invalidate the invariant scheme of perturbations in the interaction representation.

Actually, the evolution equation (90) is not relativist invariant. It should not be, since the
quantum-mechanical interaction is not subject to relativist trasformations, but the use of rel-
ativist free fields in the perturbation series associated with this equation leads to divergencies. It
is impossible to describe fully interactions effects in terms of free particles.

The scattering matrix is computed by using the perturbation series given by equation (93) in
finite orders. The Feynman diagrams provide a guide for computing such matrix elements. The
most difficult point in such calculations is related to the quantities defined by equation (86).
The basic processes investigated by such methods are Compton scattering (photons by electrons),
pair production (either by electron-photon, or by photons by photons (Breit-Wheeler process)),
electron-electron scattering (Moller process), electron-positron scattering (Bhabha process), in-
cluding bremsstrahlung, electron-positron annihilation, electron-positron bound state (positro-
nium), photon-photon scattering. The lowest order of the scattering matrix for most of these
processes is second order (except for pair production in electron-photon scattering and for photon-
photon scattering, the lowest order of the latter being four). In higher orders of the perturbation
series divergencies (infinities) appear.
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First, in calculating vacuum-vacuum S-matrix elements divergencies (for large momentum trans-
fer) appear as a consequence of vacuum fluctuations, i.e. the creation and the absorption of
particles which do not conserve energy in elementary acts of interaction; they are called virtual
particles. This is a direct indication that free particles are not suitable for describing interaction
effects. These divergencies, which are present already in the second order, look like infinite phase
factors, and may be left aside.

Equation (82) includes self-interaction, which, in computing the S-matrix elements, should be
avoided. Such contributions, which are present already in the second order, are infinite (for large
momentum transfer). There is not an unambiguous way of avoiding them; on the other hand,
these divergencies appear as an electron mass renormalization (electron self-energy), which leaves
behind a finite result. A similar situation appears for the self-interaction of the photon, which is
made finite by charge renormalization.

The profound reason for getting finite results from infinities, by renormalization, is the quantization
of the fields, the existence of the commutation and anticommutation relations.

The self-energy divergencies preserve formally the electrons and the photons. There is another type
of divergencies (also for large momentum transfer) which dress with interaction the elementary
interaction given by equation (82); they are called vertex-part divergencies. These divergencies
(which are present already in the second order), when summed up, imply a vanishing electron
charge (a null interaction), known as Landau’s pole.

All the divergencies discussed above are ultraviolet divergencies, associated with a large momentum
transfer. There exist also infrared divergencies, associated with a low momentum transfer, which
require an indefinite number of photons.

All the ultraviolet divergencies appear as a result of the asymptotic behaviour of the free-fields
Green functions (propagators), which go like 1/q (1/k) for electrons and 1/q2 for photons (where
q is the momentum of the virtual states); it is easy to see that the contribution of the type
∫

dq · q2(1/q2)(1/q) which appears in the lowest order is logarithmically divergent.

Extracting finite results by renormalization in finite orders of the perturbation series amounts to
treat approximately equation (90), which acquires an approximate solution of the form ψ ∼ e−iωt;
then, the relativist invariance is fulfilled, as a trivial identity; this is the sense of the fact that
covariance is a guiding principle of renormalization. Very likely, the perturbation series is divergent
(an asymptotic series). In any case, the occurrence of a finite ω from a nullifying interaction is
the effect of approximations which are beyond control; such results may appear for approximate
transition probabilities.

4.4 External field

An external eletromagnetic field with a potential Aµ can be introduced in Dirac equation by the
substitution Aµ −→ Aµ + aµ, where aµ is the radiation field of the electron. The (self-) energy of
the electron is modified by radiative corrections. In a static magnetic field the magnetic moment
of the electron is slightly modified (anomalous magnetic moment, Schwinger); in the Coulomb
field of the hydrogen atom the levels are slightly split (Lamb shift, Feynman). Both calculations
involve mass renormalization.

It is worth noting that, instead of computing directly the S-matrix from equations (90) and (93),
we can solve (by means of the perturbation theory) the coupled Dirac and wave equations (where
the second quantization operators do not appear; their effect is taken by energy and momentum
conservation). Then, the Green functions for these equations are needed (invariant functions,



J. Theor. Phys. 25

Schwinger method). However, such a method is suitable for stationary states, and special attention
should be paid to it for scattering problems.

4.5 Conclusion

It is usually claimed that the main problem of Quantum Electrodynamics and Quantum Field
Theory is the ocurrence of infinities. The origin of some of these infinities is the confusion between
charges and currents, on one hand, and fields, on the other hand. This ambiguity is present in
classical Maxwell equations and an infinite electron self-energy occurs also in classical theory.
Therefore, this ambiguity is inescapable, it cannot be circumvented. It appears also in working
with equations, not only in working with the perturbation series of the S-matrix. However, a
special type of infinities appear as a consequence of working with relativist free fields in interaction
problems.

Much more interesting is the possibility oferred by the quantization of extracting finite results
from infinities, by renormalization; there is not an equivalent classical procedure. The running
coupling constants associated with the renormalization techniques is only a modification of the
problem to make it compatible with a desired solution.

The free-fields scheme leads to at least two fundamental difficulties with Quantum Electrodynam-
ics and Quantum Field Theory, both originating in field quanta. A field quanta has a definite
frequency and wavevector, therefore it is described by a plane wave. We can have a quantum-
mechanical energy and momentum, a Schrodinger equation or a time evolution for Heisenberg
operators are identically satisfied, we can also define a probability amplitude, by estimating the
mutual content of the eigenfunctions. However, if we view the plane waves as wavefunctions, then
the time and the position are completely undetermined. It is assumed that such undetermined
parameters should be space-like, i.e. they should be meaningless in Relativity. The Relativity
remains an empty scheme in these circumstances. We may attempt to give up viewing the plane
waves as wavefunctions, and view them as classical functions. Then Relativity would make sense,
and we may attempt to relegate the quantization to the second quantization. Unfortunately, on
one hand, this is not possible, since the first quantization is still present; on the other hand, the
quantum-mechanical indeterminacy remains with the field operators, which, consequently, cannot
be subject to relativist transformations. This basic difficulty can be seen very clearly in the time
evolution of the states with interaction (equation (90)), which either is not relativist invariant, or
has unacceptable solutions.

We could give up the time evolution of the wavefunction and even the second quantization, and
work with field equations (the quantization would be ensured by energy and momentum conser-
vation). However, the interpretation of the results will re-open the problems described above.
The profound origin of these problems is the fundamental incompatibility between Quantum Me-
chanics and Relativity, when working with relativist free fields in quantum-mechanical interaction
problems. It may appear as curious that the purely quantum-mechanical spin arises from Rela-
tivity and the negative-frequency part of the electron vanishes either in the non-relativistic limit
c −→ ∞ or in the classical limit ~ −→ 0; however, this is valid for free fields. The reason is that
free fields cannot be subject to quantum-mechanical measurements.

Although the experiments do not reflect the conflictual nature of Quantum Mechanics and Rel-
ativity, the current approaches insist upon uniting these two theories, because we interpret the
results of the field interaction in terms of free fields.
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