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Abstract

The quark-gluon plasma formed in atomic nuclei by high-energy nuclear collisions is ana-
lyzed through its various stages of development. The threshold energy for igniting the nuclear
quark-gluon plasma is derived, the subsequent expansion and cooling of the plasma are de-
scribed, and the condensation mechanism of the quarks into hadrons is presented. It is shown
that the hadronization process is a phase transition of the first kind, dominated by hadrons
with the simplest structure. The transition temperature is derived, and the phase transition is
characterized. A few introductory notes are given, concerning the excitation of heavy atomic
nuclei, and Appendixes are included, of relevance on these matters.

The Generic Nucleus. The nucleon in the atomic nuclei has a radius a = 1.5x107%m (= 1.5fm)
and an average binding energy ¢ ~ 8MeV (denoted usually by —¢, see Appendix 1). On the
other hand, it has a rest energy £, = Mc? ~ 1GeV. It follows that the nucleon extends over
the Compton wavelength A\ = hic/E, ~ 1071%n = 0.1fm, and, consequently, it may move over
distance a with energy of the order ¢ ~ 8MeVl/. It has a momentum p ~ f/a and a velocity
v~¢e/p=ca/h~2x10"m/s, such that v?/c* ~ 1073, which indicates that the nucleon moves
non-relativistically (as expected from the ratio of the two characteristic energies ¢ and Fy).

The Atomic Nucleus is Cold. The nucleons may be brought into statistical equilibrium in time
T.q = h/e, providing energy ¢ is shared among a large number of energy levels (see Appendix 2).
This is not the case for the atomic nucleus with mean-field nucleons, the "shell-model" included.
Indeed, the momentum of free fermions is given by p = hin/R, where R = aN'/3 is the radius of the
nucleus, and the Fermi momentum is pp ~ hnp/R = hnp/aN'/?, hence the Fermi number ny ~
N3 ~ 6 for N ~ 200. The energy levels are given by ¢, = (h2/M R?*)n? = (h?/Ma*)n?/N?3, and
for n = ny we get the Fermi energy ep ~ h?/Ma?* (~ 15MeV).! We see that only a few energy
levels are occupied (ng ~ 6), as a consequence of the spatial degeneracy. The energy separation is
de ~ (/M R*)n, and dep ~ (h?/Ma?®)/N'/3 ~ /6, which is comparable with the Fermi energy.
Consequently, we cannot have a statistical equilibrium. The free nucleons in a square potential
well are purely a quantal ensemble, unable to sustain thermalization.

A self-consistent potential well of a mean field does not change the situation. The nucleons may
accommodate to each other through mutually correlated motions over the entire volume of the
nucleus, such as to produce a mean field acting as an external potential. It is usually a central-force
field, like an oscillator potential, and it explains satisfactorily the nuclear shells and magic numbers.

! Actually, this value of the Fermi energy is changed to somewhat extent by specific numerical factors, see
Appendix 1.
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The energy separation is then reduced to somewhat extent (1 — 2MeV'), but the degeneracy is
still present, as indicated by the ~ 7 nuclear shells. The equilibrium is still unattainable. Even if,
ideally, we distribute all the nucleons uniformly over an energy of the order €, and get an energy
separation de ~ er/N , this separation is still insufficient for a consistent statistical equilibrium,
in the sense that we would have then large fluctuations (~ 7% for N ~ 200).

The atomic nucleus is too small to have a statistics of quasi-independent particles. It is cold, and
there is no nuclear temperature, as long as such a gas-like ground-state is maintained. In order to
get a thermodynamics, the atomic nucleus must change its ground-state.?

The Nuclear Solid. In an excited nucleus the short-range strong interaction between the nu-
cleons spoils any mean field, and the motion passes from a quantal, global one, over the entire
nucleus, to a local movement, involving distinctly each nucleon. This is a liquid state, and one
may think that the atomic nucleus under excitations is a nuclear liquid. However, the nuclear ex-
citation energies are comparatively high (for instance, the lower threshold is precisely the binding
energy per nucleon ¢ ~ 8MeV), and they would lead to the vaporization of the nuclear liquid.
Consequently, for stability, the nucleus adopts a rigid, solid state, similar with an amorphous,
finite-size solid. The thermodynamics of such a state is stable, it is attainable, and the nuclear
solid can sustain high excitation energies and "hot" temperatures.?

The Nuclear Quark-Gluon Plasma. Ignition Threshold Energy. According to the asymp-
totic freedom of the quantum chromodynamics, for energies £ per nucleon higher than the binding
energy Fj, quarks and gluons may be released in such nuclear collisions, and they may form a
quark-gluon plasma. In the initial stage, this quark-gluon plasma may be viewed as consisting of
radiation (gluons) and ultrarelativistic fermions (the quarks uud and wudd, corresponding to the
nucleon states, m, ~ 4MeV, my ~ 8MeV'). If the nuclear collision process is such that only a few
nucleons are destroyed, i.e. the total energy E;, given to the nucleus is slightly greater than the
binding energy of a few nucleons only, then the number of released quarks and gluons is small,
and they may be delocalized as wave packets over the entire volume of the nucleus. Consequently,
their density is low, and such a rarefied plasma may attain equilibrium in a very long time only,
of the order of 7., ~ h/(E — E}), where E = E;,/N is the average energy imparted to each
nucleon among those N destroyed nucleons. The characteristic scale energy of this ensemble of
a few quarks and gluons is comparable with the spacing of their quantal energy levels, which
indicates that equilibrium is not reached in fact for such an ensemble. It is a cold plasma, in non-
equlibrium, and the original nucleons may in fact be quickly recovered, as the large delocalization
may nullify in fact the asymptotic freedom. One may say that the quark-gluon plasma has not
yet been ignited in this case.

In order to be fully developed, the hadronization process requires a quark-gluon plasma as dense
as possible, and as hot as possible. It is desirable therefore, first, to unbind as many nucleons
in the nucleus as possible. It is also worth noting in this case that if, conceivably, the nuclear
collison process is such as to impart to each nucleon in the nucleus an energy slightly greater than
its binding energy, then, again, the equilibrium cannot be reached, and the original nucleons are
again quickly recovered. It is obvious, therefore, that there is a threshold energy e, (leaving
aside the nucleon binding energy) for igniting the quark-gluon plasma. It corresponds to the
characteristic scale energy of a degenerate ideal gas of ultrarelativistic identical fermions (Fermi
energy), with density n, ~ N/V ~ 1/a® where V is the volume of the nucleus and N is of the

2The mean field can still work for special excitations, like the radiative capture of slow neutrons, where the
neutron is gently accommodated. On the other hand, as it is well-known, one-particle nuclear models describe
satisfactorily the nuclear shells, magic numbers, and even the mass formula.

3The detailed, quantitative arguments for the nuclear solid are given in J. Theor. Phys. 125 (2006).
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order of the number of nucleons in nucleus. This threshold energy is then given by
Etnr ~ hcfa = 125MeV . (1)

It corresponds to an average energy (3/4)ey, per quark, or, since we may take 3 quarks released
per nucleon, to an average energy (9/4)cy per nucleon (beside the binding energy Fj,).* The
ensemble of quarks may then reach equilibrium in time 7., ~ h/ey, ~ 107?*s. However, the
spacing between their quantal levels is of the order of de, ~ hic/aN'/? = g4, /N3 and, again,
one can see that a lot of quantal fluctuations are expected (because N is small, of the order of
the number of nucleons in the nucleus). We assume that the nuclear quark-gluon plasma is fully
developed at the scale of the entire nucleus, and its energy per quark is far above the ignition
threshold energy given by equation (1) (in fact much far above, as it is shown below).

Hot and Dense Quark-Gluon Plasma. The energy of the quark-gluon plasma can be written
as
E,=E,+E,, (2)

where E denotes the energy of the quarks and FE, stands for the energy of the gluons. For low
temperatures, the energy of the quarks reads
3 3n? T2

Eq:ZNqEF—i_TNq;—i_.”’ (3)

where N, is the number of quarks, e = (672/2g,)"/3he - ni/® is their Fermi energy, g, denotes the
statistical weight of their multiplicities, and 7" stands for temperature. Equation (3) corresponds
to a degenerate gas of ultrarelativistic fermions with density n, = N,/V at temperature 7' < ep.
The Fermi energy e is comparable with the threshold energy &, for the threshold density
(N, ~ N). The energy of the gluons

E, = (1%g,/15)VT*/(he)? (4)

is that of a black-body radiation in volume V" at temperature 7', where g, stands for the statistical
weight of the gluons multiplicities. The number of gluons is also given by N, = 0.244¢,V (T'/hc)?.
It is easy to see that the quark-gluon plasma is dominated by the gluon energy, since the number
of gluons increases appreciably with increasing temperature.

As long as the number of quarks is fixed, even for very high excitation energies (when the quarks
may form a classical gas of ultrarelativistic fermions) the quark-gluon plasma is dominated by
gluons, and the hadronization process is not expected to have a rich output. Actually, the strong
interactions in the hot quark-gluon plasma lead to the production of a large number of quarks,
of various species, antiquarks included, like, for instance, by pair production. These quarks are
in equlibrium with the gluons, so they have a vanishing chemical potential, their number is not
fixed, and for sufficiently high energies they may be viewed as an ultrareletivistic gas of fermions.
The energy of such a quark gas is given by

Eq = (Tng,/240)VT"/(he)® (5)

and one can see that, up to some immaterial numerical factors, it is the same as the energy of the
gluons given by (4). Similarly, the number of these quarks is given by N, = (1.8¢,/27%)V (T'/hc)?,
which is equal to the number of gluons, except for some immaterial numerical factors. Therefore,

“The energy of a degenerate gas of N ultrarelativistic fermions is E = (3/4)Nep. If we take n, = 1/r3 =
3N/V = 3/a®, then the threshold energy is €5, ~ he/r = V/3hc/a ~ 180MeV.
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leaving aside such numerical factors, the energy of the hot and dense quark-gluon plasma can be
represented as
E, ~VT*/(hc)* . (6)

According to (6), for the nuclear volume V' = Na?, we get the temperature 7' = [10°E,(MeV)/N]'/4,
and for E,/V ~ 10°GeV/fm? the temperature is T ~ 1GeV. The number of ultrarelativistic
quarks in the quark-gluon plasma (or the number of gluons) is given by N, = N[T'(MeV')/100]?,
and for T' ~ 1GeV we get N, ~ 103N, where N is the number of nucleons in nucleus.

We can see that for such temperatures (1GeV) it is unlikely to have massive quarks in the quark-
gluon plasma (temperature should be of the order of their rest energy mc? at least). Beside u and
d quarks, only the s quark is expected (m; ~ 150MeV), which may also be viewed as being in
the ultrarelativistic limit. In general, if massive quarks are present in this process (m. ~ 1.5GeV/,
my ~ 4.7GeV, m; ~ 176GeV), their number and their energy are much lower than the values
given here, so the process may be viewed as being dominated by gluons and ultrarelativistic quarks
in equilibrium.®

This hot and dense ultrarelativistic quark-gluon plasma, extended over the whole volume of the
nucleus, reaches equlibrium very quickly (in time ~ h/T ~ 1072s), expands, get cool, and
hadronizes. The thermalization condition 7' > d¢, is much better fulfilled now.

Hadronization. Classical statistics. The quark-gluon plasma expands with light velocity. Its
radius increases from the radius Ry, which may be taken as the radius Ry = aN'/3 of the original
nucleus,® to R = Ry + ct for time ¢, so we can write

R = Ry(1 +ct/aN'?) . (7)

Making use of equation (6), with V' = R? (and V, = R3), we get that plasma temperature decreases
according to
T =To(1 +ct/aN'?) =34 (8)

where T, = E»/ *(hie/Ry)®/* is the original plasma temperature. Similarly, the number of quarks
(or gluons) increases in time during this expansion according to

N, = Nyo(1 + ct/aN'3)3* (9)

where N,o = (RoTy/hc)® = N(Tya/hc)? is their initial number. The expansion of the quark-gluon
plasma is a non-equilibrium, irreversible, process, with increase of entropy.” However, the plasma

5Usually, the chemical potential j for relativistic particles of mass m includes the rest energy mc?, u = pg+mc?,
and it is this potential that vanishes at equlibrium with gluons. The relativistic energy \/m2ct* + c2p? in the
exponent of the statistical distributions makes the corresponding number and energy of particles much smaller
in comparison with the ultrarelativistic limit (which formally corresponds to m — 0). For instance, in the limit
T < mc?, these quantities are exponentially small (~ e=™¢"/T),

6In the center-of-mass reference frame the plasma is at rest, so there is no Lorentz contraction anymore of the
volume in the colliding-beam direction (in contrast with the nucleon-meson plasma). Similarly, a hydrodynamic
regime loses its validity for high-energy radiation and ultrarelativistic quarks. At the same time, the adiabatic
expansion would imply a fixed number of particles, which may hold in the later stages of expansion, close to the
hadronization stage, as suggested below. In general, the picture of many-mesons "multiple" production in high-
energy proton-proton (or proton-nucleus, nucleus-nucleus) collision plasma (Fermi-Landau theory of "pronged-
stars" production) is different from the hadronization mechanism, at least in two respects: first, the mesons are
massive (in contrast with quarks and gluons), and this may render plausible a hydrodynamic picture, at least in
later stages of expansion, where interaction weakens; and this latter aspect is another great difference with respect
to hadronization, where interaction does come into play precisely in later stages of expansion.

"The entropy of the quark-gluon plasmais S ~ (4/3)E,/T ~ N,. Similarly, its pressure p is given by pV ~ E, /3.
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is in equilibrium at any instant of time, since, for instance, the inequality 7" > de, ~ hc/R is
satisfied for any ¢ > 0, according to (7) and (8).

According to the "asymptotic freedom", the process of hadronization begins with the quarks in
the outer shells of the plasma. Let N, < N, be the number of these quarks at some moment. It
is given by N, = N,(AR/R), where AR is the thickness of the outer shell of the plasma. Both

AR and R have the same time dependence, so we may take N, = N (ARy/Ry) = Nq/qug?’. We

denote by f < 1 the fraction 1/]\7(110/3 and write N, = fN,. These "surface" quarks are the first in
time that begin to feel the effect of interaction. Consequently, they are gradually decoupled from
the rest of the quark-gluon plasma, and can be viewed as a gas of ultrarelativistic fermions with a
fixed number of particles, moving uniformly in the plasma volume and in equlibrium with plasma
at temperature 7% Their Fermi energy is given by ep = hic/r’, where 1’ is given by N/r"® = R?,
whence ' = R/(fN,)'/? = he/T f1/3. We can see that e = Tf/3 and T/ep = 1/ f1/3 = 1/qu({9 >
1, 7.e. this ultrarelativistic gas may be viewed as obeying approximately the classical statistics. In
the limit of very hot and dense plasma this condition is much better fulfilled. The energy of such
a classical gas is given by E; = 3N;T = 3fVT*/(hc)?, and one can see that the time dependence
of the temperature as given by (8) is maintained (up to some minor numerical factors), according
to energy conservation V1 /(hc)® + E = E,.

A similar conclusion applies to the resulting hadrons, because the condition for classical statistics
for relativistic particles with mass m reads \/m2ct + (he/r)2 — mc* < T, where r is the mean

inter-particle distance, and, since \/m2c* + (he/r)? — mc? < he/r, one can see that it is satisfied
if the same condition is satisfied for a gas of ultrarelativistic particles with the same density.”

We note that, though very likely, the condition for the hadronizing gas of quarks (or the resulting
hadronic gas) to be in the classical limit is not essential for the mechanism of quark condensation
which is described below. In general, it is very likely that the hadronization of the quarks begins
with those placed at some moment in the outer shells of the plasma, and their number is a fraction
f of the total number of quarks at that moment. Fraction f may differ from the one given above,
and may even have a time dependence, as depending on the particularities of the "asymptotic
freedom" mechanism of interaction. Time (and space) evolution of this interaction may change
the time dependence given by equations (7)-(9) of the plasma expansion. All these particularities
do not affect essentially the condensation mechanism of quarks into hadrons given further herein.

Hadronization. Transition temperature and the hadronic yield. A classical gas of N rela-
tivistic particles enclosed in volume V is described by the usual distribution dN = [gV/(27h)®|e®/Te~/Tdp,
where ¢ = y/m2c* 4+ 2p?, p is the chemical potential and ¢ is the corresponding weight factor.

For an ultrarelativistic classical gas of quarks the chemical potential is given by

py = —TIn(g,T°/37*R*cn,) | (10)

where n, = N,/V is the density of quarks. We introduce a scale temperature 7, = hcn;/ ? (Fermi
temperature), and write approximately

pg ~ =37 In(T/T,) (11)

for "> T,. The energy is given by E, = 3N,T" and the thermodynamic potential 2, = —p,V =
—N,T, where p, is the pressure of the quark gas. The number of quarks IV, in (10) is in fact number

8Under the action of the attraction they do not rest on the surface, but move in the whole volume.
9Temperature \/m2ct + (he/r)2 —mc? < mc? is also a scale temperature for the Bose-Einstein condensation of
relativistic bosons.
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N, of "surface" quarks introduced above, and the Fermi temperature T, = T f'/%. Similarly, the
quark pressure p, is in fact a partial pressure in the quark-gluon plasma.

We label the hadron species by ;7 = 1,2,3,..., and characterize each species by its number of
quarks n; = 2,3, ..., its mass m; and momentum p;, the later two being related by energy ¢; =

,/m?c‘1 + c2p§. There may exist also a relationship between number of quarks n; and mass m;,

but we let m; to be an independent parameter, as, for instance, to account for resonances in
hadron spectra. Other quantal numbers may be introduced similarly, according to the desired
classification of the hadrons, and subjected to various conservation laws or selection rules. We
impose the conservation of the number of quarks

j—states

and the conservation of hadronic energy

E, = Z €Pj (13)

j—states

where p; is the probability of states. It follows then straightforwardly the hadron distribution

9iVh

AN, = —Ji7h
! (27rh)3m0

il Te=¢ilT dn dm;dp; (14)
where g; is the statistical weight of the multiplicity of the species j, mg is a scale of minimal
mass, [, is the chemical potential and V}, is the volume of the hadronic gas (it differs from the
original volume of the quarks, as a result of the hadronic condensation). Allowing for m; to extend
continuously to infinite, and replacing the summation over mass spectrum by integration (with
mo the mean mass inter-spacing) we get straightforwardly from (14)

iV 67 (m —

1) |
. Tt/ Tdn . 15
(2mh)3myg b ¢ " (15)

In order to estimate the summation over j we introduce the mean hadronic weight g, by

> geml T =gy e/t (16)
J n=s

and starts the summation with n = s > 2, as for the smallest composite hadrons. We get the

number of hadrons'®
9nVh, 67T(7T - 1)

N, ~ ) T4 . otns/T 17
"= (27h)3my P ‘ ’ (17)

and, according to (12), the number of quarks
sgnVn  6m(m — 1)T4 ons/T (18)

7 (27h)3myg . cd

We can see that N, = IV, /s, i.e. the hadronic condensate is dominated by the smallest composite
hadrons (corresponding to the smallest s, as, for instance s = 2), i.e. by hadrons with the simplest

10We note that the summation over n; does not necessarily follow the sequence of all natural integers, but must
obey the sequence corresponding to the defined (observed) hadron species.
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structure. The number of hadrons made of s+ 1, s+ 2, etc quarks is smaller by exponential factors
etn/T  e20n/T etc than this number.

Equation (17) or (18) determines the (large, negative) chemical potential of the hadronic gas. It
is approximately given by

pn =~ —(1/s)T In[3gy (7 — 1)T* J4r*RPmony] (19)

where n, = N;,/V}, is the density of hadrons. Similarly, the energy of the hadronic gas is given
byll
gth 247T(7T — 1)

: T . etns/T — AN, T . 20
(2wh)3mg b ‘ " (20)

Ehﬁ

It is easy to see that the thermodynamic potential 2, = —p,V}, is given by Q, = —N,, T = —E}, /4,
hence the equation of state p,V, = N,T, where p, is the pressure of the hadronic gas. For
equlibrium this pressure equals the one of the quark gas, given by p,V, = N,/T. It follows that
concentrations n, and n, must be equal at equlibrium, and, since N, = N, /s, it follows V}, =V /s,
as expected for condensation.

Experimentally, p,, T and mq are fit parameters for hadron distributions given by (14). By
measuring the latter we may characterize the hadronic output, as well as the original gas of
quarks that hadronizes. It is worth noting here that the mass spectrum is discrete, and it does
not extend to infinite, in contrast to the estimations made above. A similar note applies also to
the hadron structure defined by sets of integers n;. It follows that the energy and the chemical
potential above should be computed according to the empirical statistical ensemble analyzed. The
experimental temperature 7' determined from the hadronic output is the transition temperature.

Indeed, according to the above description the hadronization process is a phase transition of the
first kind.'? The critical temperature is given by

Mg = HBh (21)

where i, is given by (11) and p, is given by (19), for the same pressure, i.e. the same density n, =
ny,. Under these circumstances, equation (19) can also be written as p, = —(1/s)T In(T*/T?T,,),
where T, = [4g,moc?/3sgn(m — 1)] ~ moc®. By (21), we get then the critical temperature of
hadronization

1. = Tq (Tq/Tm)l/(38_4) (22)

It is the temperature below which the hadron distributions given by (14) are observed.!®> The
latent heat () involved in the hadronization process is given by the jump in heat functions W, =
E,+p,V, = 4N,T and W), = 5N, T = 5N,T'/s at equilibrium, which leads to @ = (5/s—4)N,T. =
(5/s—4)E,/3.** One can see that it is negative, which means that the energy (and temperature) of
the quark-gluon plasma increases slightly in the hadronization process. The latent heat is released
in the hadronization process.

The critical temperature of hadronization 7, must be much higher than the characteristic quark
temperature T, in order to use the classical statistics. A similar condition T)} > Tq?’Tm holds also

1 The difference between the prefactor 4 in hadronic energy and the prefactor 3 in the energy of the quark gas
comes from the additional degree of freedom of the mass.

12For more details on the mechanism of matter condensation see J. Theor. Phys. 123 (2006).

I3For a discrete mass spectrum equation (22) gives the scale temperature Ty,.

141t corresponds to the extra degree of freedom due to the mass, originates in quark interaction, and accounts
for the remanent entropy of the hadronic gas.
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for the hadronic gas. Both conditions are satisfied providing T, >> T,,. Making use of T, = T, f/?
we get from (22) 7. = T,,/f*' > T,,.'> It is worth noting that the experimental hadronic
distributions are not continuous in mass spectrum, nor in the quark constituency, as it is assumed
in the estimations given herein. Accordingly, the parameters like 7}, or 7, that might be derived
from the analysis of the empirical distributions of hadrons, can be different from their expressions
given here. In addition, it must also be noted that the mechanism of hadronization described
above through the condensation of the quark gas is not restricted to classical statistics. Quantal
statistics can be used, if necessary, both for the hadronizing gas of quarks and for the resulting
hadrons, which change the expressions given above for the chemical potential and for the critical
temperature.

Functions y,(7") and u,(7T') as given by (11) and (19) for the same n, = ny, are such that p, < pp,
for T' > T. and p, > py for T' < 1., which means that the phase diagram favours the quarks
for T' > T, and hadrons for T" < T, as expected. The hadronization of the first N, "surface"
quarks can be viewed as the first stage in the hadronization process. After this stage is completed
the number of remaining quarks is diminished, as it is the radius of the remaining plasma. The
temperature of the remaining plasma is increased to some extent, as due to the released latent
heat, but it quickly reaches again the value of the critical temperature by expansion, and the
first-stage process of hadronization is repeated. However, it is very likely that at some moment in
its expansion the quark-gluon plasma ceases to sustain an equilibrium between quarks and gluons,
as a result of its cooling (in any case the rate of this equilibrum slows down on cooling the plasma).
Under this circumstance, the number of quarks in plasma becomes fixed, the temperature decreases
at a higher rate, and the cool and more rarefied plasma favours the condensation of heavier, more
complex hadrons. It may be said, therefore, that in the hadronization process there appear first
hadrons with a simpler structure (which are, very likely, lighter) at higher 7., and, gradually, more
complex hadrons (which, likely, are heavier) at various slightly lower values of temperature, such
that a temporal analysis of the hadronization might indicate a succession of "phase transitions",
or a cascade of hadronization processes, in the order indicated here. It is worth noting that this
order corresponds to the energy (mass)-time uncertainty relationship. However, such a temporal
series of hadronization occurs in a very rapid succession, which is beyond the observational means.

Let us include finally a numerical estimation, in order to get a feeling of relevant figures. Suppose
that N ~ 50, which makes the fraction f = 1/]\/(]1({3 = 1/10N'/3 ~ 0.03, and the critical tempera-
ture T, ~ 307,,. Then it is conceivable that the minimal mass parameter mgy may correspond to
the ligtest quark, say, mo ~ 4MeV, i.e. T, ~ 4MeV, so that T, ~ 120MeV for s = 2. Making use
of (8), this temperature is reached in time ¢ ~ 107225 (ct/aN'/? ~ 20), for an initial temperature
Ty ~ 1GeV, a lapse of time during which the quark-gluon plasma expands its radius by a factor
of 20. The energy of the condensed quarks E; = 3N;T = 3fE), is the fraction 3f ~ 10% of the
plasma energy, which represents the efficiency coefficient of hadronization in the first stage. The
corresponding latent heat amounts to (5/5s—4)E] /3 ~ —0.5E; (for s = 2), which indicates a rather
high remanent entropy, as expected for this gas of light hadrons. The number of hadronized quarks
in the first stage of hadronization is given by N, = fNy,(14ct/aN'/3)** ~ 0.03-10°N-10 ~ 300N,
and the corresponding number of hadrons is N, ~ N//s ~ 150N for s = 2.

Appendix 1. The virial, free nucleons, and mass formula

Let 0T /04 = 2T be twice the kinetic energy for a generic motion of coordinates ¢. Integrating

15Condition T, > T, implies f > f3(*~1  which is satisfied for f < 1. This condition is better fulfilled than
the condition for the classical behaviour of the quark gas because the classical statistics is favoured for massive
hadrons.
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by parts over motion time t we get

2T = qpi/t — qp = qpi/t + qOU /9q (23)

for averages, where U is the potential energy and p denotes the momenta. For a bound motion
the momenta are finite at time ¢ — oo, so we are left with 27" = qOU/0q, which integrated again
by parts over the motion volume enclosed by surface S, gives

2T+ U = (qU)s/q - (24)

This is the virial theorem for matter cohesion. The spatial average means averaging over number
of particles, or energy, since cohesion thorugh short-range forces exhibits the saturation phe-

nomenon. 16

If the surface is a virtual one in the bulk, the term (qU)g/q is negative. We denote it by —F; and
have the binding energy for the bulk

E,=T+U=-T—-E,<0. (25)
For a real surface the term (qU)g/q vanishes in (24) and we get the binding energy
E=T+U=-T=E,+E, <0 , (26)

on account of the same value of the kinetic energy in both cases. One can see that the binding
energy of a body is higher than the binding energy of the bulk by the surface term E; (indeed, in
order to break down a body we have to supply the fracture with its surface energy).

It is easy to see from (24) that the surface energy goes like number N2/3 of surface particles,
since (qU)s/q involves a summation over those particles only (or the integration over the surface),
while the bulk energy goes like N, so that we can write £, = u;N?/? and Ej, = —u, N, where the
coefficients ug and wu, are close in value to each other. Averaging over large N the surface energy
may be neglected with respect to the bulk energy. Indeed, (Es) / (E}) = 6/5Ncl/3 ~ 0.2 for a cutoff
N. = 200.

It is customary to view the nucleons as free fermions, embedded in a square potential well U =
—Neg, and write down N = gVp3/67%R?, or pr = (67%/9)'/3h/a, where V denotes the volume
of a sphere of radius R = aN'/?, pp is the Fermi momentum and g is a statistical weight (for
instance, g = 4, spin and isotopic spin included). Then we get the Fermi energy er = p%/2M
and the kinetic energy 7" = 3Nep/5. It is worth noting that in employing such formulae, the
thermodynamic limit N — oo is assumed, so that the surface energy is vanishing. According to
(25) we get the binding energy of the bulk £ = —Ney + 3Ner/5 = —3Nep /5. We are interested
in estimating the change ¢ in energy for a change 6N = 1 in number of particles at constant
concentration. It is easy to see that it is given by ¢ = —3er/5. We emphasize that ¢ differs from
the chemical potential y = . Using a = 1.5 - 107m we get ep = u = 46MeV (for g = 4), the
potential depth —gg = —6er/5 = 55.2MeV and ¢ = —3ep/5 = 27.6MeV. (The fermions have
also a pressure p = 2 /5a%, compensated by the pressure produced by the potential well g).

In order to compare these results with the empirical mass formula we must average over number of
nucleons, which amounts to taking half of the above figures. We get therefore the (average) Fermi
energy (ep) = 23MeV, the depth of the potential well — (g0) = 27.6MeV and up ~ —ug = —q =
3(er) /b =13.8MeV, a figure which compares well with the experimental fits. It is worth noting

16M. Apostol, J. Theor. Phys. 132 (2006).
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that ¢ = —13.8 M eV differs from the empirical binding energy per particle ¢ = E/N ~ —8MeV on
account of additional energy contributions, especially the Coulomb repulsion, not included herein.

The Coulomb interaction for atomic nuclei can be written as E. ~ Z(Z — 1)e?/2R = Z(Z —
1)N~1/3¢2 /2a, where e is the electron charge (the factor 2 has been introduced in the denominator
in order to account for the average value of 1/R). Writing £, = u.Z(Z — 1)N~'/® we get the
coefficient u. = e€?/2a = 0.48MeV, which agrees with the empirical value.

The last contribution to the mass formula comes from the symmetry effect, which is a consequence
of the exclusion principle. It should increase the energy from a g = 4-degenerate energy level under
a transform which replaces a proton by a neutron, or conversely, a neutron by a proton. This
energy contribution, denoted FE,, should read FE, = u,(Z — N)?/A, where Z denotes the number
of protons, NV denotes now the number of neutrons and A = Z + N is the mass number. In
the limit A — oo this term should compensate the bulk contribution, so that we get a value
Upp ~ —up = 13.8MeV. Actually, this value should be somewhat larger, because E, can also be
written as E, = u,(A — 22)?/A = u,Ax*> < u, A, where x = 1 — 27/A. We average z> around
x = 1, over the range described by the tangent to z? for x = 1. We get (z?) = 7/12 and the
second value u,o ~ 23MeV. Finally, we get the mean value w, = (u,q + u,2)/2 = 18.4MeV, which
agrees well with the empirical value.

Appendix 2. Statistical equilibrium and thermalization

For a consistent description of the statistical equilibrium of an ensemble of particles a series of
inequalities of the type
Eeqg > T > def > ey > 0eq > 0€0ps (27)

should be satisfied, where €., is a mean (scale) energy, T is the temperature, dey = T'(0c/ oT)Y/? is
the thermal fluctuation energy, dc., is the uncertainty in the energy of the elementary excitations,
de, is the spacing between the quantal energy levels and, finally, de,s is the uncertainty in the
observed (measured) energy, all per particle. For a large number of particles such inequalities are
fulfilled, in general, but for small numbers of particles they may not be satisfied, which means
that the ensemble is not in equilibrium, since, for instance, €., may be comparable with de, in
this case. The meaning of such inequalities resides in the succession of time intervals

Teq < Ty < Tf < 7-life < Tq < Tobs (28)

required for measuring consistent mean values of various quantities, according to the generic
uncertainty relationship 7 ~ h/de. In (28) 7y, = h/eyy, is the time needed to establish the thermal
equilibrium, and 74 is the lifetime of the elementary excitations.

For fermions at zero temperature ., is of the order of the mean energy per particle, or Fermi
energy €p, the next two terms in (27) do not appear, while the rest of inequalities in (27) keep
their meaning. It is interesting to note that even in the absence of the thermal equilibrium we
may still have a statistical equilibrium. Indeed, the mean energy is €., = 3¢r/5, while its mean
square is €2 = 3¢% /7, which is comparable with e2,- It shows how effective the establishing of the
statistical equilbrium can be in this case, by exchanging energy during collisions. The fact that
the statistical equilbrium may be independent of temperature originates in describing ensembles
by probabilities, which is unavoidable when talking about such ensembles of particles in terms of
particles. For a degenerate gas of fermions the discussion is similar, and for high temepratures
the gas behaves classically. In both cases the meaning of (27) is defined.

For bosons at low temperature the scale energy e, is the temperature Ty ~ h%/mr? of the Bose-
Einstein condensation, where r is the mean inter-particle distance and m is the particle mass.
Above the condensation temperature the role of the ., is played by the chemical potential (its
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absolute value), which for high temperatures becomes again that of a classical gas. A similar
discussion holds also for other ensembles of particles (of an academic interest in this context might
be the Bose-Einstein condensation of relativistic particles, more exactly relativistic corrections to
the Bose-Einstein condensation), the black-body radiation included.
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