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Abstract

It is shown that a quantal ensemble may su�er transitions when varying parameters which,

in the adiabatic limit, give the Berry phase. Similarly, non-inertial motion may cause, in cer-

tain cases, quantal transitions for a quantal ensemble governed by Schrodinger's equation. For

(non-uniform) translations or rotations of (interacting) ensembles of particles such transitions

do not occur. The relevance of the gauge transformations is discussed in this context. The

non-inertial quantal transitions may appear for particles in an external �eld, like electrons

in the �eld of the nuclei in atoms and molecules. In the latter case, the non-inertial quan-

tal transitions cause an additional width of the electronic spectral terms, beside the natural

one produced by the motion of the nuclei. Such quantal transitions can lead to a thermal

equilibrium, whose temperature is estimated and shown to be similar with the temperature

associated with the Unruh e�ect. Similar results hold for quantal �elds. The coupling of

(non-relativistic) quantal ensembles to gravitational waves is presented, and shown to cause

quantal transitions in certain cases.

Berry phase. Let us assume that the hamiltonian H, its eigenfunctions ϕk and the energy eigen-
values Ek depend on a parameter denoted generically by R. We write explicitly this dependence
in the eigenvalue equation

H(R)ϕk(R) = Ek(R)ϕk(R) . (1)

In particular we are interested in a time dependenceR(t) of the parameterR, and write Schrodinger's
equation as

i~∂ψ(t)/∂t = H(R)ψ(t) . (2)

In the adiabatic limit Ṙ → 0 the original eigenstate ϕn(R) is preserved during the temporal
evolution, and a solution of equation (2) reads1

ψn(t) = exp[−(i/~)

∫ t

0

En(R(t′))dt′]eiγn(t)ϕn(R(t)) , (3)

where γn(t) is given by
γ̇n(t) = i (ϕn, ∂ϕn/∂R) Ṙ . (4)

For a circuit C described by parameter R it is Berry's geometric phase γn(C).2

1The adiabatic limit should be taken both in the energy phase factor and phase γ.
2M. V. Berry, Proc. R. Soc. Lond. A392 45 (1984).
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Transitions by change of parameters. This result implies that, in general, for non-vanishing
Ṙ, the quantal ensemble may exhibit transitions between its various states. Indeed, the general
solution of equation (2) can be written as

ψ(t) =
∑

k

ak(t) exp[−(i/~)

∫ t

0

Ek(R(t′))dt′]ϕk(R(t)) , (5)

where the coe�cients ak(t) obey the equation

ȧn = i
∑

k

akγnk(t)Ṙ exp[(i/~)

∫ t

0

[En(R(t′))− Ek(R(t′))]dt′] , (6)

and
γnk(t) = i (ϕn, ∂ϕk/∂R) . (7)

This γnk(t) is obviously a generalization of the Berry phase; the latter corresponds to

γn(t) =

∫ t

0

dR(t′)γnn(t′) , (8)

where the integration is performed along the path described by parameter R in its motion from
R(t = 0) to R(t). The γnk(t) are the matrix elements of the operator −P/~, γnk = −Pnk/~, where
P may be viewed formally as the momentum associated with parameter R. Then, equation (6)
gives the transition amplitudes caused by a perturbation H1 = VP, where V = Ṙ is the velocity
of the parameter R.

Equation (6) is solved in the �rst order of the perturbation theory, with the initial conditions
an(0) = 1, ak(0) = 0, for k 6= n. We get the transition amplitudes

akn(t) = i

∫ t

0

dR(t′)γkn(t′) exp[(i/~)

∫ t′

0

[Ek(R(t′′))− En(R(t′′))]dt′′] , (9)

where an additional label k has been given to the coe�cient an in order to indicate the transition
from state n to state k. At the same time

ann(t) = 1 + i

∫ t

0

dR(t′)γnn(t′) = 1 + iγn(t) . (10)

From (9) and (10) one can see that in the adiabatic limit Ṙ → 0 the Berry phase ann(T ) = eiγn(T )

is recovered for a circuit C, where γ(T ) = γn(C), T being the period during which the parameter
R describes the circuit C.

In the �rst-order of the perturbation theory the R-dependence of the matrix elements γkn and
energy eigenvalues in the exponential factor in (9) may be neglected. The transition amplitudes
can then be written as

akn(t) = −(i/~)

∫ t

0

dt′ ·V(t′)Pkn exp(iωknt
′) , (11)

where ωkn(t) = (Ek − En)/~.

First, we note that for a uniform change of parameters, i.e. for V = const, the transition
amplitudes are vanishing (akn(t) = 0, k 6= n). The diagonal amplitude ann(t) = 1− (i/~)VPnnt'
exp(−iVPnnt/~) given by (10) contains the correction VPnn to the energy of the state ϕn in the
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�rst-order of the perturbation theory. The gauge transformation ψ′n = exp(−iVPnnt/~)ψn leaves
Schrodinger's equation unchanged.

Let us assume that the velocity has a sudden variation from V = 0 for 0 < t < t0 to V = const
for t0 < t, such that ∂V/∂t = Vδ(t− t0). The transition amplitudes given by (11) become

akn(t) = −VPkne
iωknt/(Ek − En) + [VPkn/(Ek − En)]ei(Ek−En)t0/~ . (12)

The �rst term in the rhs of this equation corresponds to the change in the wavefunction under
the action of the constant perturbation VP for t > t0. The transition amplitude is given by the
second term in the rhs of equation (12), so the transition probability is wkn = [VPkn/(Ek−En)]2.

If the velocity is periodic in time with frequency ω, V(t) = Veiωt + c.c., the transition probability
per unit time is given by wkn = (2π/~)(VPkn)2δ(Ek −En ± ~ω), in the limit of the in�nite time.
The calculations are not restricted to the discrete spectrum, so we may also get the transition
in the continuum spectrum, with inclusion of the density of states. Therefore, such changes of
parameters can induce a disintegration (and a recombination) of the quantal ensemble. It is worth
noting that frequencies ω in the variation of the parameter R must be comparatively high, of the
order of the frequencies of the quantal ensemble, in order to produce quantal transitions.

A digression: a unitary transformation. The interaction H1 = VP can be introduced
explicitly in Schrodinger's equation (2),

i~∂ψ(t)/∂t−VPψ(t) = H(R)ψ(t) . (13)

A unitary transformation ψ = exp(−iS)ψ′, where S = (1/~)RP, removes this interaction from
the lhs of equation (13), but introduces a new interaction term in the hamiltonian, which becomes
H ′ = H+R(∂H/∂R)+.... One can show by direct calculation that the new interaction R(∂H/∂R)
gives the same transition amplitudes in the �rst order of the perturbation theory as the ones given
by equation (11), as expected. 3

Unruh temperature. Thermal equilibrium can be reached through such transitions as those
described above. Indeed, the master equation that governs the population of states Nk reads
∂Nn/∂t =

∑
k wnkNk −

∑
k wknNn. We may take an average transition probability w per unit

time in this equation, and an average number ν of states coupled by such transition probabilities,
such as wν ∼ 1/τ , where τ is a characteristic time of reaching the equilibrium. We seek an
equilibrium solution Nk ∼ exp(−βEk), where β = 1/T is the inverse of the temperature, and
assume a generic quantal ensemble with Ek ∼ n~ω, where ω is a characteristic frequency of the
transitions and n is an integer. It is easy to see that the temperature can then be estimated as
T ∼ ~ων. For a change δT in temperature we get δT ∼ ~ωδν ∼ ~ω(δw/w), where δw = δ(1/τ).
This result is particularly interesting, since ω ∼ a/V , where a is the average acceleration and V is
the average velocity associated with such an excitation process. We get therefore T ∼ (~a/V )ν,
a result which is similar to the Unruh temperature.4 If we assume that the frequencies of the
quantal ensemble are su�ciently dense, then, for a frequency ω = 1GHz, which is attainable on
the macroscopic scale, we get a temperature T ' 10−2K. 5

3In this calculation the relationship (ϕk, (∂H/∂R)ϕn) = (En −Ek) (ϕk, ∂ϕn/∂R) + (∂En/∂R)δkn is used. It is
an extension of the well-known Feynman's "theorem" (R.P. Feynman, Phys. Rev. 56 340 (1939)).

4W. G. Unruh, Phys. Rev. D14 870 (1976).
5Such transitions produce a width of the spectral lines, associated with a change of temperature, until the

equilibrium is reached, which takes a time τ ∼ w−1 of the order of the inverse of the average transition probability
w. There exists, therefore, an uncertainty of temperature δT ∼ ~w. (The width of a spectral line is ∆En =∑
wnk |Ek − En|).
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Another digression: what we mean by measuring a quantal energy. If a quantal ene-
semble does not change energy with the environment, then it is in a state with a well-determined
energy, say En, with a certain probability (stationary state). We make the ensemble to interact
with a probe with all frequencies, and are able to identify all the emitted or absorbed energies.
Thus we determine the energy spectrum of the ensemble. Among the absorptions, some result
in destroying the ensemble, in the sense that its components become free. The lowest of these
absorptions determines the origin of the energy scale (the zero of energy), so we have an "abso-
lute" measurement of the spectrum. If the measurement repeats identically, then the ensemble
was indeed in a certain energy state, with probability one. If the emission and absorption in the
spectrum takes place with certain probabilities, then the original state was a superposition of sta-
tionary states (a state with "undetermined" energy). The intensity of the emission and absorption
processes is given by the degeneracy (density of states) and the strength of the interacting probe.

A few examples. We illustrate the above result by a particle of mass m moving in an in�-
nite square potential well in one dimension. The eigenfunctions are ϕn(x) =

√
2/a sin(πnx/a)

and the energy eigenvalues are given by En = π2~2n2/2ma2, where n = 1, 2, .... We take
the width a of this potential well as parameter R, and consider that the wall placed at dis-
tance a from the origin is subjected to an oscillatory motion of frequency ω as described by
a = a0 + ε cosωt, where ε/a0 � 1. Making use of equation (11) we get the transition probabilities
wkn = 2π~ [εωkn/a0(k

2 − n2)]
2
δ(Ek − En ± ~ω) per unit time, in the limit of the in�nite time.

We note that the diagonal matrix element γnn is vanishing in this case, γnn = 0.

Following Berry (loc. cit.), another example is provided by a spin S placed in a magnetic �eld
B. The hamiltonian reads H = −gµBS, where g is the gyromagnetic factor and µ is the Bohr
magneton. The energy eigenvalues are given by En = −gµBn, where n = −S, ...S. In or-
der to calculate the matrix elements entering equation (11) it is convenient to use the identity
(En − Ek) (ϕk, ∂ϕn/∂R) = (ϕk, (∂H/∂R)ϕn) for k 6= n. We write then BS = B(Sx sin θ cosφ +
Sy sin θ sinφ+ Sz cos θ), and take the angles θ and φ as parameters R. First, let us set φ = 0 and
let θ describe a circuit according to θ = ωt, where ω � gµB/~. Making use of equation (9) we get
transition probabilities wkn = (π~ω2/8) [S(S + 1)− n(n± 1)] δk,n±1δ(En − Ek ± ~ω), in the limit
of the in�nite time. Since ω � gµB/~ these transition probabilities are vanishing, in fact, as we
get by using equation (11). We may also set θ = const and let φ = ωt describe a conical circuit
of semiangle θ. The results are similar, the amplitudes being now proportional to sin θ. As it is
well-known (Berry, loc. cit.), the Berry phase is given by γn = −nΩ(C), where Ω(C) is the solid
angle subtended by the circuit C along which the parameter R moves. 6

Another example is provided by the electronic terms of the molecules, which depend parametrically
on the nuclear coordinates R. The interaction H1 = VP can easily be estimated as H1 ∼
(m/M)Eel, where Eel is a characteristic electronic term of the molecule and m/M is the ratio of
the electron mass m to the nuclear mass M . It is of the same order of magnitude as the accuracy
of the adiabatic decoupling of the electronic motion from the nuclear motion, so that it gives a
natural width of the electronic terms in molecules. 7

6For a circuit C, the integral in equation (8) can be transformed into a surface integral, such that γn(C) =
i
∫
dS ·

∑′
k (ϕn, (∂H/∂R)ϕk)× (ϕk, (∂H/∂R)ϕn) /(Ek −En)2, where k = n does not contribute to the summation

because (ϕn, ∂ϕn/∂R) is imaginary (Berry, loc. cit.).
7We could, in principle, obtain the exact molecular (or atomic) energy levels, by separating, for instance, the

motion of the center of mass from the relative motion. However, such exact energy levels are only observable in
long times τ , much longer than the characteristic nuclear times wich are of the order τn ∼ (M/m)τel, where τel is
the characteristic time of the electronic motion. Such times would imply very low transition rates (w ∼ 1/τ) and
a weak energy coupling δε ∼ ~/τ , which is much smaller than (m/M)Eel. The actual time of observation is of
the order of the electronic time τel (according to the electromagnetic coupling strength), su�cient to resolve the
electronic terms, so the e�ect of the nucler motion is, indeed, a parametric dependence of the electronic motion
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A similar analysis regarding the transition probabilities can be done for the Aharonov-Bohm e�ect,
making use of the typical experimental set-up discussed by Berry (loc. cit.). It is easy to see that
the vector potential of the electromagnetic �eld does not give rise to transitions. However, the
Aharanov-Bohm e�ect implies also a change of coordinates (the quantal ensemble is moved around
a circuit). Consequently, it may be worth investigating the e�ect of the change of the coordinates
upon the quantal ensemble.

Translations. Let us consider a translation r = r′+R(t′), t = t′. In this case, the hamiltonian, its
eigenfunctions and energy eigenvalues do not depend on the parameter R. Schrodinger's equation
(2) becomes

i~∂ψ(t′, r′)/∂t′ = H(r′)ψ(t′, r′) + i~V∂ψ(t′, r′)/∂r′ , (14)

where V = Ṙ. We may view the last term in the rhs of equation (14) as an interaction H1 = −Vp,
where p = −i~∂/∂r′ is the momentum associated to coordinate r′. According to the perturbation
theory this term may produce transitions, whose amplitudes are given by

akn(t) = (i/~)

∫ t

0

dt1 ·V(t1)pkne
iωknt1 , (15)

and

ann(t) = 1 + i

∫ t

0

dt1 ·V(t1)pnn . (16)

For a free particle the transition amplitudes are vanishing, since pkn = 0 for k 6= n. Similarly,
for an ensemble of (in general interacting) particles momentum p is the total momentum, i.e.

the momentum of the center of mass of the ensemble, so there are no transitions in this case, as
expected. The coe�cient ann(t) corresponds to a gauge transformation exp[i

∫ t

0
dt1V(t1)pnn] of

the n-state, which, in general has not a determined energy (it is not a stationary state, in general).
For constant velocity V = const, the phase of this gauge transform is the �rst-order correction to
the energy of the n-state.8 On the other hand, it is easy to check that the gauge transformation
ψ′(t, r′) = exp[−(i/~)(MV 2t/2 + MVr)]ψ(t, r), where M is the mass of the ensemble, preserves
Schrodinger's equation, in accordance with Galileo's principle of relativity.9

The situation is di�erent for particles in an external �eld. There, in general, the o�-diagonal matrix
elements pkn of the momentum of the particles are non-vanishing, and there may exist transitions.
Suppose, for instance, that one or more particles in an ensemble of interacting particles acquire
a large mass, so that they may be viewed as being at rest during the motion of the rest of
particles. Their interaction with the rest of particles become now an external �eld for the latter,
whose motion depend parametrically on the positions of the former. The coordinates of the heavy
particles do not appear anymore in the momentum, so there may exist non-vanishing matrix
elements of this momentum between states of the moving particles. It follows that non-inertial
motion may give rise to quantal transitions for particles in an external �eld.

Another digression: quantization for non-inertial motion. Let E = mv2/2 = p2/2m be the
energy of a particle of mass m. The corresponding quantal motion is described by p → −i~∂/∂r

on the nuclear coordinates, in accordance with the adiabatic approximation, associated at the same time with a
natural width of the spectral (electronic) lines, due to the nuclear motion. (This remark illustrates once again that
"we are in theoretical physics, where the mathematical rigour is not only impossible, but it is nor desirable").

8It is worth noting the correction δ(p2
nn/2M) = Vpnn, whereM is the mass of the ensemble and δ(pnn/M) = V,

V � pnn/M .
9The unitary transformation ψ = exp(−iRp/~)ψ′ takes the Schrodinger equation i~∂ψ/∂t = Hψ into

i~∂ψ′/∂t = Hψ − Vpψ′ + R(∂H/∂r)ψ′ + .... Making use of (ϕk, (∂H/∂r)ϕn) = (En − Ek) (ϕk, ∂ϕn/∂r) one
can show by direct calculation that the additional interacting term in the hamiltonian has no relevance. Such a
unitary transformation is di�erent from the coordinate change.
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and E → i~∂/∂t. Let the coordinate r changes like r → r′ + R. Then, momentum changes like
p → p′+mV, where V = Ṙ. Energy reads E = E ′+Vp′+mV 2/2, where E ′ = p′2/2m. The new
momentum p′ di�ers from the former p by a c-number mV, so its quantization rests unchanged.
It follows that E ′ = p′2/2m is quantized as previously. This means that the energy spectrum is
not changed, as expected. However, the original state with energy E is not anymore identical to
any new state with energy E ′, except for inertial motion V = const, when their energies di�er by
an irrelevant constant. The new state has now an energy E ′ = E −Vp′−mV 2/2, which contains
precisely the interaction term H1 = −Vp′ as in equation (14), as expected. Even in the absence
of transitions (as for free particle), the new state has not a well-determined energy in general,
due to the non-inertial motion. This means that the quantal behaviour depends on the observer.
This is so, as with other physical theories, because quantal mechanics is essentially a theory which
describes measurable things, and, precisely, describes the results of such measurements.

Rotations. A similar result holds also for rotations. Let ri = αij(t
′)rj, t = t′ be a change of

coordinates (i, j = 1, 2, 3), where αij is a rotation matrix of angle φ and angular velocity φ̇ = Ω
about some axis, such as r′i = αji(t)rj, αjiαjk = δik. Making use of αliα̇lj = εijkΩk, where
εijk is the totally antisymmetric unit tensor, we get easily that an interaction H1 = Ωl appears
in hamiltonian, similar with the interaction given by (14), where l is the total (orbital) angular
momentum. The discussion is similar with the one given above for translations. For a free particle,
or an ensemble of interacting particles, the total angular momentum has not o�-diagonal matrix
elements. The coe�cient ann given by (16) may generate a gauge transformation, which may
re�ect the non-stationarity of the rotating state. For uniform rotations, i.e. for Ω = const, the
gauge transformation ψ′(t, r′) = exp[−(i/~)(mρ2Ω2/2−mρ2Ωφ/~)]ψ(t, r), where ρ is the distance
of particles to the axis of rotation, leaves Schrodinger's equation unchanged, in accordance with its
invariance under uniform rotations. In this gauge transformationmρ2 denotes the total momentum
of inertia I and the �rst term in the phase is the kinetic energy l2/2I.10

For particles in an external �eld the angular momentum may have non-vanishing o�-diagonal
matrix elements, so non-uniform (accelerated) rotations may induce quantal transitions.

Conclusion. The main conclusion of the results described herein is that non-inertial motion may
cause quantal transitions for quantal ensembles in external �elds. That means that an observer
who is set in non-inertial motion may record such quantal transitions. Such quantal transitions
are, in general, associated with non-uniform (accelerated) changes in parameters of the motion.
These non-inertial quantal transitions do not occur for ensembles of interacting particles, as they
are associated with the motion of the center of mass, or with the motion of the ensemble as a
whole.

The analysis can be extended to �elds. The �eld equations are solved for the eigenmodes of
frequency ω, let ϕω(r) be the solutions. The �elds are then quantized by writing them as a su-
perposition of eigenmodes aωe

iωtϕω(r), where aω are destruction or creation operators (according
to particles or antiparticles). Coordinate transformations generate interacting terms in the hamil-
tonian, which may lead to transitions, i.e. to creation and destruction of �eld quanta, according
to the time dependence of the coordinate transformations. For free, or interacting, �elds, as well
as for non-accelerated coordinate transformations, such transitions do not appear. It is essential
to have spatially non-uniform eigenmodes, as for �elds in "external �elds", for such transitions to
occur. More general coordinate transformations can be imagined, like the ones which are spatially
non-uniform, which may lead to transitions. Such local coordinate transformations are, essentially,
similar with a gravitational �eld.

10In general, a gauge transformation of the form H ′ = exp[−iχ(r)]H exp[iχ(r)], where χ(r) = −mVr/~, leads
to H ′ = H + mV 2/2 − Vp, which amounts to a rede�nition of the momentum (p → p − mV). Similarly,
χ(r) = mρ2Ωφ/~ gives H ′ = H +mρ2Ω2/2 + Ωl, which means a rede�nition of the angular momentum.
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The time dependence of the change of coordinates must be fast enough in order to match the
quanta of the �elds (the excitation spectrum), and so have transitions. The non-inertial quantal
transitions requires frequencies in the non-inertial motion of the observer comparable with the
quantal frequencies.

Indeed, the latter point is worth stressing in attempting to device an experiment whereby such
non-inertial quantal e�ects would be observable. Let us suppose a complex, statistical, quantal
ensemble, like condensed matter for instance, which may have quantal levels in the range of
macroscopically attainable frequencies, say, of order of GHz's. We set an observer to check the
spectral thermal equilibrium of the ensemble, and compare the results with those recorded by
the observer placed in an oscillatory motion with freqency, say, 1GHz. In the latter case the
observer will record an increase in the temperature of the ensembe in this spectral range, i.e. for
1GHz ∼ 10−2K. This is similar with Unruh black-body radiation of gravitational black holes.

We may also imagine a sudden jolt imposed upon a quantal ensemble, like, for instance, ions
traversing a limited portion of space where a high (static) electric �eld is present. In this case,
the non-inertial motion may have a richer spectrum, and quantal transitions may occur between
the ionic states, though their spectral content is rather low. Suppose, at the same time, that the
observer records spectral lines of this ionic gas, and compare them with those recorded in the
absence of the electric �eld. The former will exhibit an additional, small width, in comparison
with the latter, due to the non-inertial motion.

A last digression: waves. Suppose that we have a wave ψ(t, r), characterized by a phase
velocity v (not necessarily the light velocity, i.e. it may be associated with substance), which
obeys consequently the wave equation

∂2ψ/∂t2 − v2∂2ψ/∂r2 = 0 . (17)

The solution of this equation is a function of phase ωt−kr, where frequency ω and wavevector k are
related through ω2 = v2k2. We perfom a translation r = r′+R(t′), and t = t′. Obviously, the wave
equation is not invariant under this transform, nor even for a uniform translationV = Ṙ = const.11

A convenient change of the wave function ψ ensures such an invariance. The phase changes
into ωt′ − kr′ − kR, which may be viewed either as a (generalized) Doppler e�ect by changing
correpondingly the frequency, or as a corresponding change in the (instantaneous) phase velocity.
A similar situation holds for rotations.

Gravitational waves. Suppose that we have a �at space with metric ηµν = (+,−,−,−), where
we write Schrodinger's equation for an ensemble of interacting particles, or particles in an external
�eld. Suppose further that this ensemble moves in a weak gravitational �eld with a metric tensor
gµν = ηµν + hµν , where hµν is small with respect to unity. In general, it is equivalent with a
coordinate transform dxµ = aµ

νdx
′ν , such as dx′µ = bµνdx

ν , dxµ = bνµdx
′
ν , where b is the inverse of

the matrix a. The metric tensor becomes gµν = ηρσa
ρ
µa

σ
ν . We assume aµ

ν = δµ
ν + Aµ

ν , where A
µ
ν is

determined by hµν .

We perform such a coordinate transform in Schrodinger's equation, and look for transitions. If we
want transitions, the metric tensor must depend on time. In these conditions, we chose the metric
tensor corresponding to gravitational waves. As it is well-known, well-determined gravitational
waves, i.e. the ones with determined energy, propagate in one direction, say x1 = x. Then, the
metric tensor is determined by h1 = h23 = −2A2

3 and h2 = h22 = −h33 = −2A2
2 = 2A3

3, where we
assume the matrix Aµ

ν symmetrical.

11Galileo's invariance is preserved for V = Ṙ = const. The necessity for Einstein's invariance under Lorentz
transformations arises from the fact that Maxwell equations are not invariant under Galileo's transformations
(starting with the second-order contributions in v/c, where c is the velocity of light).
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In ordinary coordinates this coordinate transform reads t = t′, x = x′, y = (1−h2/2)y′− (h1/2)z′,
z = (1 + h2/2)z′ − (h1/2)y′. It corresponds to the presence of the gravitational wave. It gives an
interaction term

H1 = (ḣ1/2)(zpy − ypz) + (ḣ2/2)(ypy − zpz) + h2(p
2
y − p2

z)/2m+ h1pypz/m (18)

in the hamiltonian, where the primes have been omitted. This interaction term may generate
quantal transitions, It plays the role of the interaction between particles and gravitational waves.

A similar analysis can be extended to �elds, with similar conclusions. Herewith, the question of
quantization in the gravitational �eld may get an answer. It is meaningfull for free gravitational
�elds to be quantized only for small amounts of quantal action; this means gravitational waves,
which are quantized into gravitons. Quantal states of particles or �elds, gravitons included, moving
into a gravitational �eld may su�er quantal transitions by interacting with the gravitational �elds.
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