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Abstract

We analyze the e�ects of weak external forces and non-inertial motion upon the free

motion, both relativistic and non-relativistic. Such e�ects amount to the free motion in a

curved space, whose metric is established. Examples are given for translations and rotations.

The Hamilton-Jacobi equation is derived for motion in such a curved space, and the e�ects

of the curvature, i.e. of weak forces and non-inertial motion, upon the quantization are

analyzed, starting from a generalization of the Klein-Gordon equation in curved spaces. It

is shown that the quantization is actually destroyed, in general, by a non-inertial motion

in the presence of forces, in the sense that such a motion may produce quantal transitions.

Examples are given for a massive scalar �eld and for photons.

Newton's law. We start with Newton's law

m
dvα

dt
= fα , (1)

for a particle of mass m, with usual notations. I wish to show here that it is equivalent with the
motion of a free particle of mass m in a curved space, i.e. it is equivalent with

Dui/ds =
dui

ds
+ Γi

jku
juk = 0 , (2)

again with usual notations.1

1The geometry of the curved spaces originates probably with Gauss (~1830). It was given a sense by Riemann
(Uber die Hypothesen welche der Geometrie zugrunde liegen, 1854), Grassman (1862), Christo�el (1869), thereafter
Klein (Erlanger Programm, Programm zum Eintritt in die philosophische Fakultat in Erlangen, 1872), Ricci and
Levi-Civita (1901). It was Einstein (1905,~1916), Poincare (1905), Minkowski (1907), Sommerfeld (1910), (Kottler,
1912), Weyl (Raum, Zeit und Materie, 1918), Hilbert (1917) who made the connection with the physical theories.
It is based on point (local) coordinate transforms, cogredient (contravariant) and contragredient (covariant) tensors
and the distance element. It is an absolute calculus, as it does not depend on the point, i.e. the reference frame.
It may be divided into the motion of a particle, the motion of the �elds, the motion of the gravitational �eld,
and their applications, especially in cosmology and cosmogony. As the curved space is universal for gravitation,
so it is for the non-inertial motion, which we focus upon here. The body which creates the gravitation and the
corresponding curved space is here the moving observer for the non-inertial motion, beside forces. It could be very
well that the world and the motion are absolute, but they depend on subjectivity, though it could be an universal
subjectivity (inter-subjectivity). See W. Pauli, Theory of Relativity, Teubner, Leipzig, (1921).
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Obviously, the spatial coordinates of equation (1) are euclidean, and equation (1) is a non-
relativistic limit. It follows that the metric we should look for may read

ds2 = (1 + h)c2dt2 + 2cdtgαdx
α − dxαdxα , (3)

where functions h, gα � 1 are determined such that equation (2) goes into equation (1) in the
non-relativistic limit vα/c � 1, and for a correspondingly weak force fα. Such a metric, which
recovers Newton's law in the non-relativistic limit, is not unique. The metric given by equation
(3) can be written as

gij =


1 + h g1 g2 g3

g1 −1 0 0
g2 0 −1 0
g3 0 0 −1

 . (4)

We perform the calculations up to the �rst order in h, gα and vα/c. The distance given by (3)
becomes then ds = cdt(1 + h/2) and the velocities read

u0 = dx0/ds = 1− h/2 , uα = dxα/ds = vα/c . (5)

It is the Christo�el's symbols (a�ne connections)

Γi
jk =

1

2
gim(∂gmj/∂x

k + ∂gmk/∂x
j − ∂gjk/∂x

m) (6)

which require more calculations. First, the contravariant metric is g00 = 1 − h, g0α = gα0 =
gα, g

αβ = −δαβ, such that gimg
mj = gjmgmi = δj

i . By making use of (6) we get

Γ0
00 = (1/2c)∂h/∂t , Γ0

0α = Γ0
α0 = (1/2)∂h/∂xα ,

Γ0
αβ = Γ0

βα = (1/2)(∂gα/∂x
β + ∂gβ/∂x

α) ,

Γα
β0 = Γα

0β = (1/2)(∂gβ/∂x
α − ∂gα/∂x

β) ,

Γα
00 = (1/2)∂h/∂xα − (1/c)∂gα/∂t , Γα

βγ = 0 .

(7)

Now, the �rst equation in (2) has du0/ds = −(1/2c)∂h/∂t and Γ0
jku

juk = (1/2c)∂h/∂t in its rhs,
so it is satis�ed identically in this approximation. The remaining equations in (2) read

dvα

dt
= c2(

∂gα

c∂t
− 1

2
· ∂h
∂xα

) . (8)

By comparing this with Newton's equation (1) we get the functions h and gα as given by

∂gα

c∂t
− 1

2
· ∂h
∂xα

= fα/mc
2 . (9)

As it is well-known, for a static gravitational potential Φ, the force is given by fα = −m∂Φ/∂xα,
so that h = 2Φ/c2 and gα = const.2

Translations. Suppose that the force f is given by a static potential ϕ, such that f = −∂ϕ/∂r.
Then, h = 2ϕ/mc2 and g = const.

2With regard to equation (3), this was for the �rst time when Einstein "suspected the time" (1905).
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Let us perform a translation
r = r′ + R(t′) , t = t′ . (10)

Then, Newton's equation mdv/dt = f given by (1) becomes

m
dv′

dt′
= f ′ −mdV/dt′ , (11)

where f ′ is the force in the new coordinates and V = dR/dt′ is the translation velocity. The
inertial force −mdV/dt′ appearing in (11) is accounted by the g in the metric of the curved space.
Indeed, equation (9) gives

g = −V/c , (12)

up to a constant. The constant re�ects the principle of inertia. We may put it equal to zero. The
time-dependent g and V represent a non-inertial motion. Such a non-inertial motion is therefore
equivalent with a free motion in a curved space, and the metric of this space is universal, like the
gravitation, as it does not depend on the moving body. Of course, this statement is nothing else
but the principle of equivalence, or the general principle of relativity. It is however noteworthy
that the non-inertial curved space depends on the observer, through the velocity V, by virtue of
the reciprocity of the motion.

Coordinate transformations. The translation given by (10) corresponds to the local coordinate
transformation

dxα = dx′α + Vαdt
′ , dx0 = cdt = cdt′ = dx′0 . (13)

It takes the square distance
ds2 = (1 + h)c2dt2 − dxαdxα (14)

corresponding to g = 0 into

ds2 = (1 + h− V 2/c2)c2dt′2 − 2dt′Vαdx
′α − dx′αdx′α , (15)

which, within our approximation, corresponds to (3) with g = −V/c. We recover, therefore,
equation (12), as expected.

In general, if xi span a �at space with diagonal metric ηij given by η00 = 1 and the diagonal
ηαα = −1, α = 1, 2, 3, we can consider local coordinate transformation dxi = ai

jdx
′j, such as

dx′i = bijdx
j and dxi = bjidx

′
j, where a

i
kb

k
j = bika

k
j = δi

j. Then, the metric follows from ds2 =

ηijdx
idxj = ηija

i
ka

j
l dx

′kdx′l as gij = ηlma
l
ia

m
j and gij = ηlmbilb

j
m, where η

lm = ηlm. If we know the
metric (gij), the coordinate transformation (ai

j) is not uniquely deterrmined, in general. On the
contrary, if we know the coordinate transformation (ai

j) we can have the metric (gij).
3

Within the approximation used here, we can look for a coordinate transformation of the form
ai

j = δi
j + Ai

j, where A
i
j � 1. To the �rst order, the metric reads

gij =


1 + 2A0

0 A0
1 − A1

0 A0
2 − A2

0 A0
3 − A3

0

A0
1 − A1

0 −1− 2A1
1 −A1

2 − A2
1 −A1

3 − A3
1

A0
2 − A2

0 −A1
2 − A2

1 −1− 2A2
2 −A2

3 − A3
2

A0
3 − A3

0 −A1
3 − A3

1 −A2
3 − A3

2 −1− 2A3
3

 . (16)

Obviously, Ai
i are related to dilations, A0

α, A
α
0 are asociated with translations, and Aβ

α are associ-
ated with spatial rotations. The metric given by (3) is obtained for A0

0 = h/2, Aα
0 = −A0

α = −gα/2
and Aα

β = −Aβ
α. This way, we are able to de�ne a curved space for any weak force, including an

3In the usual fancy language the ai
j are called tetrads or vierbeins.
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inertial force produced by a non-uniform translation, in the non-relativistic limit, by local coordi-
nate transformations. Force is therefore just a local coordinate transformation to a curved space,
where the motion is free.

Curved space. It is easy to see that the relativistic �at distance given by ds2 = ηijdx
idxj is

taken into the curved distance given by equation (3) by the local coordinate transformation

dt = (1+h)dt′+(g+β∆)dx′/c√
(1+h)((1−β2)

,

dx = cβ(1+h)dt′+(βg+∆)dx′√
(1+h)((1−β2)

,

(17)

dy = dy′ , dz = dz′, where ∆ =
√

1 + h+ g2, g is along dx = dx1, β = V/c and the velocity V is
V = dx/dt for dx′ = 0 (dy = dx2 , dz = dx3). The inverse of this transformation is

dt′ = g(βdt−dx/c)+∆(dt−βdx/c)

∆
√

(1+h)((1−β2)
,

dx′ =
√

1 + h · dx−cβdt

∆
√

1−β2
.

(18)

All the square roots in these equations must exist, which imposes certain restrictions upon h and
β (reality conditions; in particular,1 + h > 0, 1− β2 > 0).

In the local transformations given above it is assumed that there exist global transformations
xi(x′) and x′i(x), where x, x′ stand for all xi and, respectively, x′i, because the coe�cients in these
transformations are functions of x or, respectively, x′. This restricts appreciably the derivation
of metrics by means of (global) coordinate transformations, because, in general, the 10 elements
of a metric cannot be obtained by 4 functions xi(x′). Conversely, we can diagonalize the curved
metric at any point, such as to reduce it to a locally �at metric, 4 but the �at coordinates (axes)
will not, in general, be the same for all the points; they depend, in general, on the point.

One can see from (17) that in the �at limit h, g → 0 the above transformations become the Lorentz
transformations, as expected. Therefore, we may have corrections to the �at relativistic motion
by �rst-order contributions of the parameters h and g. Indeed, in this limit, the transformation
(17) becomes

dt = (1+h/2)dt′+(g+β)dx′/c√
1−β2

,

dx = cβ(1+h/2)dt′+(gβ+1)dx′√
1−β2

,

(19)

which include corrections to the Lorentz transformations, due to the curved space. If we choose
g = −β, then we get the non-relativistic limit (since g � 1)

dt = (1 + h/2)dt′ ,

dx = dx′ − cgdt′ = dx′ + V dt′
(20)

of the translations given by (10) in the presence of a (weak) force. We note that such corrections
a�ect the law of the composition of the velocities, but this law is now irrelevant since the velocities
in the curved space are "curved". One can check easily that the light propagates with the same
velocity c in both spaces.

4Usually called the tangent space in the sophisticated language.
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The metric given by (3) provides the proper time

dτ =
√

1 + h · dt , (21)

corresponding to dxα = 0. The metric given by (3) can also be written as

ds2 = c2(1 + h)[dt+ gdr/c(1 + h)]2 − [dr2 + (gdr)2/(1 + h)] , (22)

hence the length given by

dl2 = dr2 + (gdr)2/(1 + h) (23)

and the time

dt′ =
√

1 + h · [dt+ gdr/c(1 + h)] , (24)

corresponding to the length dl. The di�erence ∆t = gdr/c(1 + h) between the two times, dt1 =
dτ/
√
g00 = dt in the proper time (21) and dt2 = dt′/

√
g00 = dt + gdr/c(1 + h) in the time given

by (24), gives the di�erence in the synchronization of two simultaneous events, in�nitesimally
separated. The di�erence in time depends on the path followed to reach a point starting from
another point.

We note, by (22)-(24), that the light ray given by ds = 0 moves indeed with the velocity of light
dl/dt′ = c in the curved space. In addition, when solving for the motion of the eikonal, we will
have a shift in frequency (and a Doppler e�ect) and a bending of the light ray in the curved space.

We limit ourselves to the �rst order in h ,g, and put g = −V/c, in order to investigate corrections
to the motion under the action of a weak force in a �at space moving with a non-uniform velocity
V with respect to the observer. For the observer, such a motion is then a free motion in a curved
space with metric (3). The proper time is then dτ = (1 + h/2)dt, the time given by (24) becomes
dt′ = (1+h/2)dt+gdr/c and the length is given by dl2 = dr2, as for a three-dimensional euclidean
space.

Motion in a curved space. Let us assume that we have a particle moving freely in a �at
space. We denote its contravariant momentum by (P0 = E0/c,P) and the corresponding covariant
momentum by (P0,−P), such that P 2

0 − P 2 = m2c2, where E0 is the energy of the particle, and
P0, P are constant.

We can use the coordinate transformation given by (18) to get the momentum of the particle in
the curved space. We prefer to write it down in its covariant form, using the metric (4). We get

p0 = (1 + h)p0 + gp1 =
√

1 + h · P0−βP1√
1−β2

,

p1 = gp0 − p1 = (g+β∆)P0−(gβ+∆)P1√
(1+h)(1−β2)

.

(25)

Then, it seems that we would have already an integral of motion for the motion in the curved
space, by using the de�nition pi = mcdui/ds. However, this is not true, because the pi are at
point x′ in the curved space, while the coe�cients in the transformation (18) are at point x in the
�at space. To know the global coordinate transformations x(x′) and x′(x) would amount to solve
in fact the equations of motion.

We can revert the above transformations for P0 and P1, and make use of P 2
0 − P 2 = m2c2, with

p2 = −P2, p3 = −P3 for g = −β. We get

(p0 + gp1)
2 −∆2(p2 +m2c2) = 0 , (26)



6 J. Theor. Phys.

or
(E − cgp)2 − c2(1 + h+ g2)(p2 +m2c2) = 0 , (27)

where E is the energy of the particle and p denotes its three-dimensional momentum. This is
the relation between energy and momentum for the motion in the curved space. It gives the
Hamilton-Jacobi equation.

Equations of motion. The action of a free particle moving in the metric (3) is given by

S = −mc
∫
ds = −mc2

∫
dt · (1 + h+ 2gv/c− v2/c2)1/2 =

∫
dt · L , (28)

where L is the lagrangian. By the principle of least action, we get the equations of motion

dp/dt = F , (29)

where the momentum is given by

p = ∂L/∂v =
mv − cmg

(1 + h+ 2gv/c− v2/c2)1/2
(30)

and force

F = ∂L/∂r = −(mc2/2) · ∂h/∂r

(1 + h+ 2gv/c− v2/c2)1/2
. (31)

In deriving the force we assume that h is a function of the coordinates only and g is a function of
the time only. Similarly, the energy is given by

E = pv − L =
mc2(1 + h) +mcvg

(1 + h+ 2gv/c− v2/c2)1/2
. (32)

We see that in the limit h, g → 0 the above equations become the equations of motion for a
relativistic particle under the action of the force derived from the potential ϕ = mc2h/2, subjected
to a translation with velocity V = −cg. The product vF gives the variation in time of the kinetic
energy dEkin/dt, by de�nition, but the energy is not conserved, due to the g-term in the lagrangian;
indeed, ∂E/∂t = −∂L/∂t.
Making use of u = v/c− g in the above equations we get straightforwardly the Hamilton-Jacobi
equation (27).

Hamilton-Jacobi equation. The variation of ds in (28) is obtained by

δds2 = 2dsδds = δ(gijdx
idxj) = 2gijdx

idδxj + dxidxj(∂gij/∂x
k)δxk . (33)

With a vanishing motion at the ends of the trajectory we get the equation of motion (2) from the
principle of least action. In addition, the �rst term in (33) gives also the momentum pi,

−∂S/∂xi = mcui = pi , (34)

for the motion at the ends of the trajectory.5

On the other hand, by (28), we can derive the equations of motion in the form d(∂L/∂q̇)/dt −
∂L/∂q = 0 for a generic coordinate q, the momentum p = ∂L/∂q̇ = ∂S/∂q (the metric is now the
�at one, and this p corresponds to the contravariant momentum) and introduce the hamiltonian

5The variation of the action at the ends of the trajectory was �rst introduced by Lagrange (~1780) and employed
further by Hamilton (~1830) and Jacobi (~1880).
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H = pq̇−L, as we did before. By δH and the equations of motion we get the canonical equations
of motion q̇ = ∂H/∂q and ṗ = −∂H/∂q, and, what is more important, from dS/dt = L =
∂S/∂t + q̇(∂S/∂q) = ∂S/∂t + pq̇, we get ∂S/∂t = −H, i.e. the Hamilton-Jacobi equation, which
de�nes the energy as E = −∂S/∂t, or E/c = −∂S/∂x0 = p0. It follows that

pi = (E/c,−p) (35)

and E as a function of p and the coordinates is the hamiltonian.

Obviously, for a free particle, pip
i is a constant, and we put pip

i = m2c2. Therefore, the Hamilton-
Jacobi equation reads

gijpipj = m2c2 , (36)

with pi = −∂S/∂xi. The contravariant metric gij (the inverse matrix with respect to gij) is given
by

gij =
1

∆2


1 g1 g2 g3

g1 −∆2 + g2
1 g1g2 g1g3

g2 g1g2 −∆2 + g2
2 g2g3

g3 g3g1 g3g2 −∆2 + g2
3

 . (37)

Making use of this metric, one can check easily that equation (36) is the same as the Hamilton-
Jacobi equation (27). With −∂S/∂xi = pi, i.e. E = −∂S/∂t and p = ∂S/∂r, it reads

(∂S/∂t+ cg∂S/∂r)2 − c2(1 + h+ g2)[(∂S/∂r)2 +m2c2] = 0 . (38)

In the limit h = 2ϕ/mc2 → 0 and g = −V/c→ 0 it describes the relativistic motion of a particle
under the action of the (weak) force f = −∂ϕ/∂r and for an observer moving with a (small)
velocity V. One can check directly that the coordinate transformations given by equation (20)
takes the free Hamilton-Jacobi equation (∂S/∂t)2 − c2[(∂S/∂r)2 + m2c2] into the "interacting"
Hamilton-Jacobi equation (38), as expected.

The eikonal equation. A wave moves through kidx
i = −dΦ, where ki = −∂Φ/∂xi = (ω/c,−k),

ω is the frequency, k is the wavevector and Φ is called the eikonal.6 In a �at space ki are constant,
and the wave propagates along a straight line, such that kik

i = 0, i.e. ω2/c2 − k2 = 0 and
Φ = −ωt+kr. This is a light ray. In a curved space kik

i = 0 reads gijkikj = 0, and for gij slightly
departing from the �at metric we have the geometric approximation to the wave propagation. It
is governed by the eikonal equation gij(∂Φ/∂xi)(∂Φ/∂xj) = 0, or

(∂Φ/c∂t+ g∂Φ/∂r)2 − (1 + h+ g2)(∂Φ/∂r)2 = 0 , (39)

which is the Hamilton-Jacobi equation (38) for m = 0.

We neglect the g2-contributions to this equation and notice that the �rst term may not depend
on the time (h is a function of the coordinates only). It follows then that the �rst term in the
above equation can be put equal to ω0/c,

∂Φ/c∂t+ g∂Φ/∂r = −ω0/c , (40)

where ω0 is the frequency of the wave in the �at space, and

(∂Φ/∂r)2 = k2 =
1

1 + h
· (ω0/c)

2 =
1

1 + h
· k2

0 , (41)

6It follows that the propagation of light goes by an extremum of the eikonal written as
∫
dλ ·√

gij(dxi/dλ(dxj/dλ), where λ is an arbitrary parameter. Equations of motion (2) are then obtained with ds
replaced by dλ.
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where k0 is the wavevector in the �at space. Within our approximation equation (40) becomes

∂Φ/c∂t = −ω0/c− gk0 . (42)

We measure the frequency ω corresponding to the proper time, i.e. ω/c = −∂Φ/c∂τ , where
dτ =

√
1 + hdt for our metric, so the measured frequency of the wave is given by

ω/c = −∂Φ/c∂τ = − 1√
1 + h

· ∂Φ/c∂t =
1√

1 + h
· ω0/c+ gk0 . (43)

There exists, therefore, a shift in frequency

∆ω/ω0 = −h/2 + cgk0/ω0 . (44)

The �rst term in equation (44) is due to the static forces (like the gravitational potential, for
instance), while the second term is analogous to the (longitudinal) Doppler e�ect, for g = −V/c.

By (41) we have
(∂Φ/∂r)2 = (1− h)k2

0 . (45)

We assume that h depends only on the radius r, and write the above equation in spherical coor-
dinates; Φ does not depend on θ, and we put θ = π/2;

(∂Φ/∂r)2 + (1/r2)(∂Φ/∂ϕ)2 = (1− h)k2
0 ; (46)

the solution is of the form
Φ = Φr(r) +Mϕ , (47)

where M is a constant and

Φr(r) =

∫ r

∞
dr ·

√
(1− h)k2

0 −M2/r2 ; (48)

the trajectory is given by ∂Φ/∂M = const,7 hence

ϕ = −
∫ r

∞
dr · M/r2√

(1− h)k2
0 −M2/r2

. (49)

For h = 0 we get r sinϕ = M/k0, which is a straight line passing at distance M/k0 from the
centre. The deviation angle is

∆ϕ = −(k2
0/2)

∫ r

∞
dr · h ·M/r2

(k2
0 −M2/r2)3/2

. (50)

Therefore, the light ray is bent by the static forces in a curved space. 8 One can also de�ne the
refractive index n of the curved space, by k = n(ω/c). Its magnitude is related to gk0, while its
direction is associated to the inhomogeneity h of the space.

It is worth noting, by (42), that the time-dependent part of the eikonal is given by

Φt(t) = −ω0t+ k0R(t) (51)

7Constant M is a generalized coordinate which moves freely; therefore, the force acting upon it vanishes,
∂L/∂M = 0, or d(∂S/∂M)/dt = 0, i.e. ∂S/∂M = const.

8The metric given by (3) for h = 2ϕ/c2 di�ers from the metric created by a gravitational point mass m with
ϕ = Gm/r; they coincide only in the non-relativistic limit. The deviation angle given by (50) for a gravitational
potential is smaller by a factor of 4 than the deviation angle in the gravitational potential of a point mass.
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for g = −V/c, i.e. the eikonal corresponding to a translation, as expected.

Quantization. Suppose that we have a free motion. Then we know its solution, i.e. the de-
pendence of the coordinates, say some x, on some parameter, which may be called some time
t. Suppose further that we have a motion under the action of some forces. Then, we know the
dependence of its coordinates, say some x′, on some parameter, which may be the same t as in the
former case. Then, we may establish a correspondence between x and x′, i.e. a global coordinate
transformation. It follows that the motion under the action of the forces is a global coordinate
transformation applied to the free motion. Similarly, two distinct motions are put in relation to
each other by such global coordinate transformations.

This line of thought, due to Einstein, lies at the basis of both the special theory of relativity and
the general theory of relativity.

Indeed, it has beeen noticed that the equations of the electromagnetic �eld are invariant under
Lorentz transformations of the coordinates, which leave the distance given by s2 = c2t2 − r2

invariant. These transformations are an expression of the principle of inertia, and this invariance
is the principle of relativity.9 As such, the Lorentz transformations are applicable to the motion
of particles, starting, for instance, from a particle at rest. Let x = cβτ/

√
1− β2, t = τ/

√
1− β2

be these Lorentz transformations where τ is the time of the particle at rest. We may apply these
transformations to the momentum p = ∂S/∂r and p0 = −∂S/c∂t = E/c, where E is the energy
of the particle. Then, we get immediately p = vE/c2 and E = E0/

√
1− β2. The non-relativistic

limit is recovered for E0 = mc2, the "inertia of the energy". The equations of motion are dp/dt = f ,
and we can see that indeed, there appear additional, "dynamic forces", depending on relativistic
v2/c2-terms, in comparison with Newton's law. In adition, we get the Hamilton-Jacobi equation
E2 − c2(p2 +m2c2) = 0. This is the whole theory of special relativity.

The situation is similar in the general theory of relativity, except for the fact that in a curved space
we have not the global coordinate transformations, in general, as in a �at space. However, the
Hamilton-Jacobi equation gives access to the action function, which may provide a relationship
between some integrals of motion. Action S depends on some constants of integration, say M .
Then, these constants can be viewed as freely-moving generalized coordinates, so ∂S/∂M = const,
because the force ∂L/∂M = d(∂S/∂M)/dt vanishes. Equation ∂S/∂M = const provides the
equation of the trajectory. Of course, this is based upon the assumption that the motion is
classical, i.e. non-quantal, in the sense that there exists a trajectory.10 For instance, the solution
of the Hamilton-Jacobi equation for a free particle is S = −Et+pr, where E and p are constants
such that E =

√
m2c4 + c2p2. By ∂S/∂E = const we get −t + (E/c2p)(pr/p) = const, which is

the trajectory of a free particle.

For a classical motion it is useless to attempt to solve the motion in a curved space produced by a
non-inertial motion, like non-uniform translations, because it is much simpler to solve the motion in
the absence of the non-inertial motion and then get the solution by a coordinate transformation,
like a non-uniform translation for instance. For a quantal motion, however, the things change
appreciably.

The Hamilton-Jacobi equation admits another kind of motion too, the quantal motion. Obviously,
for a free particle, the classical action given above is the phase of a wave. Then, it is natural to
introduce a wavefunction ψ through S = −i~ lnψ, where ~ turns out to be Planck's constant.
The classical motion is recovered in the limit ~ → 0, Reψ = finite and Imψ → ∞, such that

9This was noticed by Einstein (1905).
10This procedure, applied to the Hamilton-Jacobi equation (27) with g = 0 led to the precession in Mercury's

perihelia in the gravitational �eld of the Sun (Einstein, 1915).
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S = finite. With this transformation we have p = −i~(∂ψ/∂r)/ψ and E = i~(∂ψ/∂t)/ψ, which
means that momentum and energy are eigenvalues of their corresponding operators, −i~∂/∂r and
i~∂/∂t, respectively.11 It follows that the physical quantities have not well-de�ned values anymore,
in contrast to the classical motion. In particular, there is no trajectory of the motion. Instead,
they have mean values and deviations, i.e. they have a statistical meaning, and the measurement
process has to be de�ned in such terms. It turns out that the wavefunction squared is just the
density of probability for the motion to be in some quantal state, and for a de�ned motion this
probability must be conserved.

Klein-Gordon equation. With the substitution E → i~∂/∂t and p → −i~∂/∂r in the
Hamilton-Jacobi equation in the �at space we get the Klein-Gordon equation

∂2ψ/∂t2 − c2∂2ψ/∂r2 + (m2c4/~2)ψ = 0 . (52)

A similar quantization for the Hamilton-Jacobi equation given by (38) encounters di�culties, since
the operators 1 + h + g2 and p2 + m2c2 do not commute with each other, nor with the operator
E−cgp (we recall that h is a function of the coordinates only, h(r), and g is a function of the time
only, g(t)). We may neglect the g2-term in 1 + h + g2, and write the Hamilton-Jacobi equation
(38) as

1

1 + h
(E − cgp)2 = c2(p2 +m2c2) , (53)

where the two operators in the lhs of this equation commute now, up to quantities of the order of
hg (or higher), which we neglect. With these approximations, the quantization rules can now be
applied, and we get an equation which can be written as

(∂/∂t+ cg∂/∂r)2ψ − c2(1 + h)[∂2ψ/∂r2 − (m2c2/~2)ψ] = 0 . (54)

It can be viewed as describing the quantal motion of a particle under the action of a weak force
−(mc2/2)∂h(r)/∂r, as seen by an observer moving with the small velocity −cg(t). It can be
derived directly from (52) by the coordinate transformations (20), in the limit h, g → 0.12 It is
worth noting, however, that there is still a slight inaccuracy in deriving this equation, arising from
the fact that the operator (1 + h)(p2 + m2c2) is not hermitean. It re�ects the inde�neteness in
writing (1 + h)(p2 +m2c2) or (p2 +m2c2)(1 + h) when passing from (53) to (54). This indicates
the ambiguities in quantizing the relativistic motion, and they are remedied by the theory of the
quantal �elds, as it is shown below.

The above equation can be written more conveniently as

(i~∂/∂t− cgp)2ψ − c2(1 + h)(p2 +m2c2)ψ = 0 , (55)

where p = −i~∂/∂r and i~∂/∂t stands for the energy E.
We introduce the operator

H2 = c2(1 + h)(p2 +m2c2) = c2(p2 +m2c2) + c2h(p2 +m2c2) , (56)

which is time-independent, and treat the h-term as a small perturbation. It is easy to see, in the
�rst-order of the perturbation theory, that the wavefunctions are labelled by momentum p, and

11Einstein's (1905) quantization of energy and de Broglie's (1923) quantization of momentum follow immediately
by this assumption, which gives a meaning to the Bohr-Sommerfeld quantization rules (Bohr, 1913, Sommerfeld,
1915). The quantal operators was �rst seen as matrices by Heisenberg, Born, Jordan, Pauli (1925-1926).

12It has to be compared with the Klein-Gordon equation (i~∂/∂t − eϕ)2ψ − c2[(i~∂/∂r + eA/c)2 + m2c2] = 0
for a particle with charge e in the electromagnetic �eld (ϕ,A), which, hystorically, was �rst considered for the
Hydrogen atom (Schrodinger, Klein, Gordon, 1926). There, the forces come by the electromagnetic gauge �eld.
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are plane waves with a weak admixture of plane waves of the order of h; we denote them by ϕ(p).
Similarly, in the �rst-order of the perturbation theory, the eigenvalues of H2 can be written as
E2(p) = c2(1 + h̄)(p2 +m2c2), where h = (1/V )

∫
dr ·h, V being the volume of normalization. We

have, therefore, H2ϕ(p) = E2(p)ϕ(p). Now, we look for a time-dependent solution of equation
(55) (i~∂/∂t − cgp)2ψ = H2ψ, which can also be written as (i~∂/∂t − cgp)ψ = Hψ, where ψ is
a superposition of eigenfunctions

ψ =
∑
p

cp(t)e−iE(p)t/~ϕ(p) . (57)

We get

ċp′ = −(i/~)
∑
p

cpe
−i[E(p)−E(p′)]/~cgpp′p , (58)

where pp′p is the matrix element of the momentum p betwen the states ϕ(p′) and ϕ(p). We
assume cp = c0p + c1p, such as c0p′ = 0 for all p′ 6= p and c0p = 1, and get

ċ1p′ = −(i/~)e−i[E(p)−E(p′)]/~cgpp′p , (59)

which can be integrated straightforwardly. The square
∣∣c1p′∣∣2 gives the transition probability from

state ϕ(p) in state ϕ(p′).13

It follows that an observer in a non-uniform translation might see quantal transitions between the
states of a relativistic particle, providing the frequencies in the Fourier expansion of g(t) match the
di�erence in the energy levels. In the zeroth-order of the perturbation theory the eigenfunctions
ϕ(p) are plane waves, and the matrix elements pp′p of the momentum vanish, so there are no such
transitions to this order. In general, if the total momentum is conserved, as for free or interacting
particles, these transitions do not occur. In the �rst order of the perturbation theory for the
external force represented by h the matrix elements of the momentum do not vanish, in general,
and we may have transitions, as an e�ect of a non-uniform translation. Within this order of the
perturbation theory the matrix elements of the momentum are of the order of h, and the transition
amplitudes given by (59) are of the order of gh. We can see that the time-dependent term of the
order of gh neglected in deriving equation (55) produces corrections to the transition amplitides
of the order of gh2, so its neglect is justi�ed.

In general, the solution of the second-order di�erential equation (54) can be approached by using
the Fourier transform. Then, it reduces to a homogeneous matricial equation, where labels are
the frequency and the wavevector (ω,k), conveniently ordered. The condition of a non-trivial
solution is the vanishing of the determinant of such an equation. This gives a set of conditions
for the ordered points (ω,k) in the (ω,k)-space, but these conditions do not provide anymore an
algebraic connection between the frequency ω and the wavevector k.14 This amounts to saying
that for a given ω the wavevectors are not determined, and, conversely, for a given wavevector
k the frequencies are not determined, i.e. the quantal states do not exist in fact, anymore.
The particle exhibits quantal transitions, which make its quantal state undetermined. The same
conclusion can also be seen by introducing a non-uniform translation in the phase of a plane wave,
expanding the plane wave with respect to this translation, under certain restrictions, and then
using the time Fourier expansion of the translation. The frequency of the original plane wave

13The same interaction gives an irrelevant phase factor for the original state ϕ(p).
14This may be related to the well-known problem of the Ising models. Though it is true that for the statistical

sum we need the eigenvalues, it is also true that we need also the weight of these eigenvalues, which depend on the
symmetries. In general, we do not have these weights for the label-ordered eigenvalues, except for two dimensions,
where the hamiltonian can be diagonalized in its own original labels, in fact.
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changes correspondingly, which indicates indeed that there are quantal transitions. One may say
that for a curved space as the one represented by the metric given here, the quantization question
has no meaning anymore, or it has the meaning given here.

In the non-relativistic limit, the above Klein-Gordon equation becomes

i~∂ψ/∂t = Hψ = (mc2 + p2/2m+ ϕ)ψ + cgpψ , (60)

which is Schrodinger's equation up to the rest energy mc2, and one can see more directly the
perturbation cgp = −Vp. It is worth noting that the derivation of Schrodinger's equation holds
irrespectively of the ambiguities related to the quantization of the Hamilton-Jacobi equation. It
follows, that under the conditions mentioned above, i.e. in the presence of a (non-trivial) external
�eld ϕ, an observer in a non-uniform translation may observe quantal transitions in the non-
relativistic limit, due to the non-inertial motion.15 Obviously, the frequency of this motion must
match the quantal energy gaps, for such transitions to be observed.

Dirac equation. Fields. As it is well-known, the Klein-Gordon equation (52) has a serious
drawback. It conserves the density ψ∗(∂ψ/∂t)−(∂ψ∗/∂t)ψ, which, because of negative frequencies
(energies), is not always positive; therefore, we cannot take it as a density of probability, as we
can for Schrodinger's equation, where the energies are positive only. It has been thought for a
while that this di�culty is circumvented by Dirac equation16

i~∂ψ/∂t = Hψ = (αcp + βmc2)ψ , (61)

where α, β are the well-known Dirac matrices and ψ is a four-components column. Indeed,
applying twice the operator in the rhs of equation (56), we get the Klein-Gordon equation
E2ψ = (c2p2 + m2c4)ψ, since α2 = β2 = 1 and αβ + βα = 0, and the conserved density of
probability is now ψψ, which is positive, ψ being the complex-conjugate four-components line .

It is impossible, in general, to get a similar Dirac equation for equation (61), because the oper-
ators (1 − h/2)(E − cgp) and αcp + βmc2, which represent the square roots of the two sides of
equation (53) do not commute anymore. Nevertheless, if we limit ourselves to the �rst order of
the perturbation theory, we can see that the operator H2 de�ned in the previous section reduces
to c2(p2 +m2) providing we rede�ne the energy levels such as to include the factor 1 + h̄. Within
this approximation, we get the Dirac equation

(i~∂/∂t− cgp)ψ = (αcp + βmc2)ψ , (62)

where ψ contains now a weak admixture of plane waves, of the order of h. It is worth noting that
this equation is the Dirac equation given by (61), subjected to the translation r = r′ + R, and
t = t′. The non-uniform translation in the lhs of equation (62) gives now quantal transitions.

Though conserving a probability, the Dirac equation has still negative energies, which raise dif-
�culties in giving them a meaning. On the other hand, it turned out that the Dirac equation
corresponds to a particle of spin 1/2, so the original Klein-Gordon equation (52), which has no
spin at all, still remains to be given a meaning, with respect to its lack of a well-de�ned prob-
ability. The solution to all these problems was given by the notion of quantal �elds. The ψ in

15M. Apostol, J. Theor. Phys. 140, 142 (2006). A suitable unitary transformation of the wavefunction (for
instanceexp(−iRp/~)) can produce such an interaction in the time-dependent lhs of the Schrodinger equation, but,
at the same time, it produces an equivalent interaction in the hamiltonian, such that the Schrodinger equation is
left unchanged. Such unitary transformations are related to symmetries (Wigner's theorem, 1931) and they are
di�erent from a change of coordinates.

16Dirac (1928).
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these equations are not wavefunctions anymore, but �elds. They are expanded in series of wave-
functions which satisfy di�erential equations, but the coe�cients of the expansion are operators of
creating and annihilating particles, with de�nite Bose-Einstein or Fermi-Dirac commutation rela-
tions. This is called the "second quantization".17 The probability which had no meaning for the
Klein-Gordon equation is now the charge, which may be negative too. It appeared the necessity
of introducing antiparticles in the quantal �eld theory. The �elds move in their own right, and
lagrangians have to be established for this motion, which involves essentially the motion of the
number of particles.18 This way, the whole problem of the quantal relativistic motion receives a
di�erent meaning.

A scalar �eld in a curved space. Let19

S =

∫
dx0dr

√
−g ·

[
(∂iψ)(∂iψ) + (m2c2/~2)ψ2

]
(63)

be the lagrangian for the (real) scalar �eld ψ, where g = −∆2 = −(1 + h+ g2) is the determinant
of the metric given by (4). It is easy to see that the principle of least action for ψ in a �at space
leads to the Klein-Gordon equation (53). For the metric given by (4), and neglecting g2-terms,
we get a generalized Klein-Gordon equation

(∂/∂t+ cg∂/∂r) 1√
1+h

(∂/∂t+ cg∂/∂r)ψ−

−c2(∂/∂r)
√

1 + h(∂/∂r)ψ +
√

1 + h(m2c4/~2)ψ = 0 .

(64)

We can apply the same perturbation approach to this equation as we did for equation (53). Doing
so, we get equation (55) and an additional term i(c2~/2)(∂h/∂r)p, which yields no di�culties in
the perturbation approach. The resulting equation reads

(i~∂/∂t− cgp)2ψ − c2(1 + h)(p2 +m2c2)ψ + (ic2~/2)(∂h/∂r)pψ = 0 . (65)

It is worth noting that in the limit g → 0 this is an exact equation. The qualitative conclusions
derived above for equation (55), as regards the quantal transitions produced by the non-uniform
translation, remain valid, though, we have now a language of �elds. It follows that a quantal par-
ticle, either relativistic or non-relativistic, in a curved space of the form analyzed herein becomes
a wave packet from a plane wave (or even forms a bound state), as a consequence of the forces,
and, at the same time, su�ers quantal transitions, due to the time-dependent metric (as if in a
non-inertial translation for instance). This gives no meaning to the problem of the quantization
in curved spaces, or it gives the meaning discussed here.

The density L of lagrangian in the action S =
∫
dtdr · L given by (63) gives the momentum

Π = ∂L/∂(∂ψ/∂t) and the hamiltonian density Π∂ψ/∂t− L. The quantized �eld reads

ψ =
∑
p

(c~/2
√
ε)(ape

−iεt/~+ipr/~ + a+
p e

iεt/~−ipr/~) , (66)

17Fock (1933), Furry and Oppenheimer (1934) for electrons; Pauli and Weisskopf (1934) for scalar particles.
After previous work by Born, Heisenberg and Jordan (1926), Dirac (1927), Jordan (1927), Jordan and Wigner
(1928), Fermi (1930, 1932).

18Heisenberg and Pauli (1929).
19In general, the action for �elds must be written by replacing the �at metric ηij by the curved metric gij

(including
√
−g in the elementary volume of integration) and replacing the derivatives ∂i by covariant derivatives

Di. The latter requirement can produce technical di�culties, in general. However, for a scalar �eld or for the
electromagnetic �eld the Di has the same e�ect as ∂i, so the former are super�uos.
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and
Π = −i

∑
p

(
√
ε/c)(ape

−iεt/~+ipr/~ − a+
p e

iεt/~−ipr/~) , (67)

where ε = c
√
m2c2 + p2 and [ψ(t, r),Π(t, r′)] = i~δ(r−r′) with usual commutation relations for the

bosonic operators ap, a
+
p and a normalization of one p-state in a unit volume. The hamiltonian

is obtained by integrating its density given above over the whole space. It can be written as
H = H0 +H1h +H1g, where

H0 =

∫
dr ·

[
c2Π2/4 + (∂ψ/∂r)2 + (m2c2/~2)ψ2

]
=

∑
p

(ε/2)(apa
+
p + a+

pap) (68)

is the free hamiltonian,

H1h =

∫
dr · (

√
1 + h− 1)

[
c2Π2/4 + (∂ψ/∂r)2 + (m2c2/~2)ψ2

]
(69)

is the interacting part due to the external �eld h and

H1g = −(c/2)

∫
dr · [Π(g∂ψ/∂r) + (g∂ψ/∂r)Π] = −(c/2)

∑
p

(gp)(apa
+
p + a+

pap) (70)

is the time-dependent interaction. Perturbation theory can now be applied systematically in the
�rst-order of g and all the orders of h, with the same results as those described above: the quanta
will scatter both their wavevectors and their energy. Similar �eld theories can be set up for charged
particles, or for particles with spin 1/2 and for photons, moving in a curved space given by the
metric (4).

Electromagnetic �eld in curved spaces. Photons. The action for the electromagnetic �eld
is

S = −(1/16πc)

∫
dx0dr ·

√
−gFijF

ij , (71)

where the electromagnetic �elds Fij are given by the potentials Ai through Fij = ∂iAj−∂jAi. This
leads immediately to the �rst pair of Maxwell equations (the free equations) ∂iFjk+∂jFki+∂kFij =
0 and the principle of least action gives the second pair of Maxwell equations

∂j(
√
−gF ij) = 0 . (72)

In the presence of charges and currents the rhs of equation (72) contains the current, conveniently
de�ned. The antisymmetric tensor Fij consists of a vector and a three-tensor in spatial compo-
nents, the latter being representable by another vector, its dual. Let these vectors be denoted by
E and B. Similarly, by raising or lowering the su�xes we can de�ne other two vectors, related
to the former pair of vectors, and denoted by D and H. Then, the Maxwell equations obtained
above take the usual form of Maxwell equations in matter, namely curlE = −(1/c

√
γ)∂(

√
γB)/∂t

, divB = 0 (the free equations) and divD = 4πρ, curlH = (1/c
√
γ)∂(

√
γD)/∂t + (4π/c)(ρv),

where ρ is the density of charge divided by
√
γ and γαβ = −gαβ + g0αg0β/g00 is the spatial metric

(div and curl are conveniently de�ned in the curved space). For our metric, and neglecting g2,
the matrix γ reduces to the euclidean metric of the space (γ = 1).

We use A0 = 0, F0α = ∂0Aα and Fαβ = ∂αAβ − ∂βAα. We de�ne an electric �eld E = gradA and
a magnetization �eld B = −curlA. Then, neglecting g2, equation (72) can be written as

div[(E + g ×B)/∆] = 0 (73)
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and
∂

c∂t
[(E + g ×B)/∆] = curl[∆B + g × E/∆] , (74)

where ∆ =
√

1 + h. One can see that we may have a displacement �eld D = (E + g×B)/∆ and
a magnetic �eld H = ∆B + g × E/∆, and the Maxwell equations divD = 0, ∂D/c∂t = curlH
without charges.

Equations (73) and (74) can be solved by the perturbation theory, for small values of h and
g, starting with free electromagnetic waves as the unperturbed solution. Doing so, we arrive
immediately at the result that the solution must be a wave packet, and the frequencies are not
determined anymore, in the sense that either for a given wavevector we have many frequencies
or for a given frequency we have many wavevectors. This can be most conveniently expressed in
terms of photons which su�er quantal transitions.

The quantization of the electromagnetic �eld in a curved space proceeds in the usual way. The
action given by (71) can be written as

S = (1/8π)

∫
dtdr ·∆(D2 −B2) = (1/8π)

∫
dtdr · (1/∆)[E2 + 2E(g ×B)−∆2B2] (75)

which exhibits the well-known density of lagrangian in the limit h, g→ 0. We change now to the
covariant vector potential A → −A, such that E = −∂A/c∂t and B = curlA. Leaving aside
the factor 1/8π, the momentum is given by Π = ∂L/∂(∂A/∂t) = (2/∆c2)(∂A/∂t− g ×B). The
vector potential is represented as

Aα =
∑
αp

(c~/2
√
ε)[aαpe

αe−iεt/~+ipr/~ + h.c.] (76)

and the momentum by

Πα = −i
∑
αp

(
√
ε/c)[aαpe

αe−iεt/~+ipr/~ − h.c.] , (77)

where eα is the polarization vector along the direction α, perpendicular to p = ~k (we assume the
transversality condition divA = 0), ε = ~ω = cp, ω is the frequency and k is the wavevector. The
commutation relations are the usual bosonic ones, and we get the hamiltonianH = H0+H1h+H1g,
given by

H0 =
∫
dr · (c2Π2/4 +B2) =

∑
αp(ε/2)(a+

αpaαp + aαpa
+
αp) ,

H1h =
∫
dr · (

√
1 + h− 1)(c2Π2/4 + B2) ,

H1g = −
∑

αp(gp/2)(a+
αpaαp + aαpa

+
αp) .

(78)

Systematic calculations can now be performed within the perturbation theory, and we can see
that quantal transitions between the photonic states may appear, starting with the hg-order of
the perturbation theory. Therefore, an observer moving with a non-uniform velocity is able to see
a "blue shift" in the frequency of the photons "acted" by a force like the gravitational one.20 The
shift occurs obviously at the expense of the energy of the observer's motion.21

20This is similar with the Unruh e�ect (1976).
21It is worth investigating the change in the equilibrium distribution of the black-body radiation as a consequence

of the non-uniform translation in a gravitational �eld. The frequency shift amounts to a change of temperature,
which increases, most likely, by ∆T/T ∼ ¯(gh)2, with temporal and spatial averages (for the quantization of the
black-body radiation see Fermi, 1932). In this respect, the e�ect discussed here, though related to the Unruh e�ect,
is di�erent. The Unruh e�ect assumes rather that the external non-uniform translation, as a macroscopic motion,
consists of a coherent vacuum, so equilibrium photons can be created; the related increase in temperature is rather
the measurement made by the observer of its own motion.
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Other �elds. A similar approach can be used for other �elds in a curved space. In particular,
it can be applied to spin-1/2 Dirac �elds, with similar conclusions, though, technically, it is more
cumbersome to write down the action for spinors in curved spaces.22 The question of quantizing
the gravitational �eld can also be tackled in a similar manner. Indeed, weak perturbations of
the �at metric can be represented as gravitational waves,23 which can be quantized by using the
gravitational action

∫
dx0dr ·

√
−gR, where R is the curvature of the space.24 Now, we may

suppose that these gravitons move in a curved space with the metric g. We may use the same
gravitational action as before, where g is now the metric of the space and R contains the graviton
�eld. Or, alternately, we expand g = g0 + δg, where g0is the background part and δg is the
graviton part. We get a �eld theory of gravitons interacting with the underlying curved space,
and we get quantal transitions of the gravitons, which gives a meaning to the quantization of the
gravity, in the sense that either it is not possible or the gravitons su�er quantal transitions. The
space and time (the gravitons) are then scattered statistically by matter (which in turn su�ers a
similar process) or by the non-inertial motion.

Rotations. A rotation of angular frequency Ω about some axis is an orthogonal transformation
of coordinates de�ned locally by

dr′ = dr + (Ω× r) dt , (79)

such that the velocity is v′ = v + Ω× r and

dv′ = dv +
(
Ω̇× r

)
dt+ (Ω× v) dt+ [Ω× (v + Ω× r)] dt =

= dv +
(
Ω̇× r

)
dt+ 2 (Ω× v) dt+ [Ω× (Ω× r)] dt .

(80)

It is easy to see that in Newton's law for a particle of mass m there appears a force related to
the non-uniform rotation (Ω̇), the Coriolis force ∼ Ω × v and the centrifugal force ∼ Ω2. The
lagrangian L = mv′2/2− ϕ, where ϕ is a potential, leads to the hamiltonian

H = mv2/2−m(Ω× r)2/2 + ϕ = p2/2m− Ω(r× p) + ϕ =

= p2/2m− ΩL + ϕ ,
(81)

where L = r × p is the angular momentum. We can see that neither the Coriolis force nor
the centrifugal potential appear anymore in the hamiltonian. Instead, it contains the angular
momentum. It is this hamiltonian which is subjected to quantization, so we may have quantal
transitions between the states of the particle, providing these states do not conserve the angular
momentum. This requires a force, as the one given by the potential ϕ.

The local coordinate transformation (79) leads to a distance given by

ds2 = [1 + h− (Ω× r)2/c2]dx02 − 2[(Ω× r)/c]drdx0 − dr2 , (82)

where a static potential ∼ h is introduced as before, related to the potential ϕ in (81). It can be
checked, through more laborious calculations, that the free motion in the curved space given by
(82) is equivalent with the non-relativistic equations of motion given by (80).

A di�culty appears however in the above metric, related to the unbounded increase with r of
the Ω × r. Therefore, we drop out the square of this term in the g00-term above, and keep

22It implies essentially the vierbeins.
23Einstein (1918).
24Though, there are di�culties in establishing a relativistically-invariant quantal theory for particles with helicity

2, like the gravitons. Another related di�culty is the general non-localizability of the gravitational energy.
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only the �rst-order contributions in Ω × r in the subsequent calculations. As one can see, this
approximation does not a�ect the hamiltonian (81). With this approximation, the metric given
by (82) is identical with the metric given by equation (4), with the identi�cation

g = −(Ω× r)/c . (83)

The Ω × r is exactly the rotation velocity V, so we can apply directly the formalism developed
above for a non-uniform translation to a non-uniform rotation. The only di�erence is that the g for
rotations depends on the spatial coordinates too, beside its time dependence. The g-interaction
gives rise to terms of the type ΩL, and the evaluation of the matrix elements in the interacting
terms becomes more cumbersome. It is worth keeping in mind the condition Ωr � c in such
evaluations.

Conclusion. The quantal motion implies, basically, delocalized waves, like the plane wave, both
in space and time. The general theory of relativity, gravitation or curved space as the one discussed
here, arising from weak static forces and non-inertial motion, imply localized �eld, both in space
and time. Consequently, the quantization is destroyed in those situations involved by the latter
case, in the sense that quanta are scattered both in energy and the wavevector, and we have to
deal there with transition amplitudes and probabilities, i.e. with a statistical perspective. The
basic equations for the classical motion in these cases become meaningful only with scattered
quanta. This shows indeed that the quantization is both necessary and illusory. The basic aspect
of the natural world is its statistical character in terms of quanta.
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