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tIt is suggested that the dynami
s of liquid water has a 
omponent 
onsisting of O−2z(oxygen) anions and H+z (hydrogen) 
ations, like an ele
trolyte, where z is a (very small)redu
ed e�e
tive ele
tron 
harge. Su
h a model may apply to other similar liquids. Theeigenmodes of density os
illations are derived for su
h a two-spe
ies ioni
 plasma, in
ludedthe sound waves, and the diele
tri
 fun
tion is 
al
ulated. The plasmons may 
ontribute tothe elementary ex
itations in a model introdu
ed re
ently for the thermodynami
s of liquids.It is shown that the sound anomaly in water 
an be understood on the basis of this model.The results are generalized to an asymmetri
 short-range intera
tion between the ioni
 spe
iesas well as to a multi-
omponent plasma, and the stru
ture fa
tor is 
al
ulated.Introdu
tion. As simple as it may appear, water is still a 
omplex liquid involving variousintera
tions as well as kinemati
 and dynami
 
orrelations. It is widely agreed that the watermole
ule in liquid water preserves to some extent its integrity, espe
ially the dire
tionality of the
sp3-oxygen orbitals, though it may be a�e
ted substantially by hydrogen bonds.1 As su
h, it is
on
eived that water has a mole
ular ele
tri
 moment, an intrinsi
 polarizability and hinderedrotations (librations) whi
h may a�e
t its orientational polarizability. We examine herein anotherpossible 
omponent of the dynami
s of the liquid water, as resulting from the disso
iation of thewater mole
ule.The water mole
ule H2O has two H − O (hydrogen-oxygen) bonds whi
h make an angle of 

a
109◦ in a

ordan
e with the tetragonal symmetry of the four hybridized sp3-oxygen orbitals.The "spheri
al" diameter of the water mole
ule is approximately 2.75Å and the inter-mole
ularspa
ing in liquid water under normal 
onditions is a ∼ 3Å. This suggests that the water mole
ulein liquid water, while preserving the dire
tionality of the oxygen ele
troni
 orbitals, might bedisso
iated to a great extent, like in an ele
trolyte. Disso
iation models whi
h assume OH−−H+or OH− − H3O

+ pairs are known for water. This indi
ates a 
ertain mobility of hydrogens(and oxygens). We analyze herein the hypothesis that water may 
onsist of O−2z anions of mass
M = 16amu and density n and H+z 
ations (protons) of mass m = 1amu and density 2n, where
z is a very small redu
ed e�e
tive ele
tron 
harge (the atomi
 mass unit is 1amu ≃ 1.7×10−24g.).We shall see that su
h a hypothesis adds another dimension to the dynami
s of water. Su
h amodel may apply to other similar liquids.Due to their large mass the ions have a 
lassi
al dynami
s. Herein, we limit ourselves to 
onsideringthe ions motion in water under the a
tion of the Coulomb potentials ϕOO = 4z2e2/r, ϕHH = z2e2/r1L. Pauling, General Chemistry, Dover, NY (1982); Water: A Comprehensive Treatise, ed. by F. Franks,Plenum, NY (1972).



2 J. Theor. Phys.and ϕOH = −2z2e2/r, where −e (≃ −4.8 × 10−10esu) is the ele
tron 
harge and r denotes thedistan
e between the ions. For stability, it is ne
essary also to introdu
e a short-range repulsive(hard-
ore) potential χ.2 It is shown that in the limit z → 0 water may exhibit an anomaloussound-like mode beside both the ordinary (hydrodynami
) one and the non-equilibrium sound-like ex
itations governed by short-range intera
tions. We 
ompute the density os
illations for thismodel, the diele
tri
 fun
tion, the stru
ture fa
tor, and extend the model to a multi
omponentplasma, in
luding an asymmetri
 short-range intera
tion between ion spe
ies.Plasmons in a jellium model. Let us 
onsider one spe
ies of 
harged parti
les, with 
harge
−ze, 
ontinuously distributed with density n in a neutralising rigid 
ontinuous ba
kground ofpositive 
harge. This is the well-known jellium model.3 The Coulomb intera
tion reads

U =
1

2

∫

drdr′ϕ(r− r′)δn(r)δn(r′) , (1)where δn(r) denotes a small disturban
e of density (whi
h preserves the global neutrality). Weintrodu
e the Fourier representation
δn(r) =

1√
N

∑

q

δn(q)eiqr , δn(q) =
n√
N

∫

drδn(r)e−iqr , (2)where N = nV is the total number of parti
les in volume V . Similarly,
ϕ(r) =

1

V

∑

q

ϕ(q)eiqr , ϕ(q) =

∫

drϕ(r)e−iqr , (3)where ϕ(q) = 4πz2e2/q2 is the Fourier transform of the Coulomb potential (intera
tion). TheCoulomb intera
tion given by (1) be
omes
U =

1

2n

∑

q

ϕ(q)δn(q)δn(−q) (4)(where the q = 0- term is ex
luded by the positive ba
kground).The small variations δn(r) in density 
an be represented as δn = −ndivu, where u is a dis-pla
ement ve
tor.4 We emphasize that su
h a representation holds for qu(r) ≪ 1. It follows
δn(q) = −inqu(q), and one 
an see that the Coulomb intera
tion involves only longitudinal
omponents of the displa
ement ve
tor u(q) along the waveve
tor q. Therefore, we may write
u(q) = (q/q)u(q), with δn∗(−q) = δn(q), u∗(−q)=u(q) and u∗(−q) = −u(q). The Coulombintera
tion (4) be
omes

U = −n

2

∑

q

q2ϕ(q)u(q)u(−q) . (5)The kineti
 energy asso
iated with the 
oordinates u(q) is given by
T =

1

2

∫

drnmu̇2 = −1

2
m
∑

q

u̇(q)u̇(−q) , (6)2See also in this respe
t E. Teller, Revs. Mod. Phys. 34 627 (1962); E. H. Lieb and B. Simon, Phys. Rev.Lett. 31 681 (1973); Adv. Math. 23 22 (1977); L. Spru
h, Revs. Mod. Phys. 63 151 (1991). As it is well-known,a 
lassi
al plasma with Coulomb intera
tion only is unstable.3See, for instan
e, D. Pines, Elementary Ex
itations in Solids, Benjamin, NY (1963).4M. Apostol, Ele
tron Liquid, apoma, MB (2000).



J. Theor. Phys. 3where m denotes the parti
le mass. The equations of motion obtained from the Lagrange fun
tion
L = T − U are

mü(q) + nq2ϕ(q)u(q) = 0 , (7)whi
h leads to the well-known plasma os
illations with frequen
y given by ω2
p = 4πnz2e2/m.Plasma os
illations with two spe
ies of ions. We apply the above model to the two spe
iesof ions O−2z and H+z. The 
hange in density is asso
iated with a displa
ement ve
tor v in theformer and a displa
ement ve
tor u in the latter. First we note that the Fourier transforms ofthe Coulomb potentials are given by ϕOO = 4ϕ(q), ϕHH = ϕ(q) and ϕOH = −2ϕ(q), where

ϕ(q) = 4πz2e2/q2. Therefore, the intera
tions 
an be written as
UOO = −n

2

∑

q
q2 [4ϕ(q) + χ(q)] v(q)v(−q) ,

UHH = −2n
∑

q
q2 [ϕ(q) + χ(q)]u(q)u(−q) ,

UOH = n
∑

q
q2[2ϕ(q) − χ]u(q)v(−q) ,

(8)where n = N/V is the density of water mole
ules and the Fourier transform χ of a hard-
orepotential has been introdu
ed (the same for both spe
ies). The kineti
 energy is given by
T = −1

2
M
∑

q

v̇(q)v̇(−q) − m
∑

q

u̇(q)u̇(−q) , . (9)and the equations of motion read
mü + 2nq2(ϕ + χ)u − nq2(2ϕ − χ)v = 0

Mv̈ + nq2(4ϕ + χ)v − 2nq2(2ϕ − χ)u = 0 ,
(10)where we have dropped out the argument q.The solutions of these equations 
an be obtained straightforwardly. In the long wavelength limit

q → 0 there are two bran
hes of eigenfrequen
ies, one given by
ω2

p =
16πnz2e2

µ
(11)
orresponding to plasma os
illations and another given by

ω2
s =

9nχ

M + 2m
q2 = v2

sq
2 (12)
orresponding to sound-like waves propagating with velo
ity vs given by (12). µ = 2mM/(2m+M)is the redu
ed mass. The plasma os
illations are asso
iated with antiphase os
illations of therelative 
oordinate (2mu+Mv = 0), while the sound waves are asso
iated with in-phase os
illationsof the 
enter-of-mass 
oordinate (u − v = 0).Polarization. An external ele
tri
 �eld arising from a potential φ(r) gives an additional energy

Ui = qi

∫

drφ(r)δni(r) = −i(niqi/n)
∑

q

qφ(q)ui(−q) , (13)
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ies of ions labelled by i, with ele
tri
 
harge qi and density ni. We apply this formula tothe two-spe
ies ioni
 plasma, and get
UH = −2ize

∑

q

qφ(q)u(−q) , UO = 2ize
∑

q

qφ(q)v(−q) (14)Adding these two terms to the lagrangian, the equations of motion given by (10) be
ome
mü + 2nq2(ϕ + χ)u − nq2(2ϕ − χ)v = −izeqφ

Mv̈ + nq2(4ϕ + χ)v − 2nq2(2ϕ − χ)u = 2izeqφ ,
(15)where we have dropped out the argument q. This is a system of 
oupled harmoni
 os
illatorsunder the a
tion of an external for
e. In the limit of long wavelengths its solutions are given by

u = izeq
m

φ
ω2

−
2m
3µ

ω2
s

(ω2
−ω2

p)(ω2
−ω2

s)
,

v = −2izeq
M

φ
ω2

−
2M
3µ

ω2
s

(ω2
−ω2

p)(ω2
−ω2

s)
.

(16)On the other hand, equation nidivui = −δni is in fa
t the Maxwell equation divEi = 4πqiδni,where the ele
tri
 �eld is given by Ei = −4πnqiui. We have therefore the internal ele
tri
 �elds
Eu = −8πnzeu and Ev = 8πnzev. The polarization P = −(Eu + Ev)/4π is given by

P (q) = 2nze [u(q) − v(q)] =
iq

4π
φ(q)

ω2
p

ω2 − ω2
p

. (17)The external �eld is related to the external potential through D(q) = −iqφ(q) and the diele
tri
fun
tion ε is given by D = εE = ε(D + Eint), where Eint = Eu + Ev is the internal �eld. We getthe diele
tri
 fun
tion5
ε = 1 − ω2

p/ω
2 , (18)as expe
ted. As it is well-known, its zero gives the longitudinal mode of plasma os
illations.The ωp in the nominator of equation (18) de�nes also the plasma edge: for frequen
ies lower than

ωp the ele
tromagneti
 waves are absorbed (the refra
tive index is given by n2 = ε). It is well-known that water exhibits indeed a strong absorption in the gigahertz-terrahertz region.6 On theother hand, neutron s
attering on heavy water,7 as well as inelasti
 X-ray s
attering,8 revealedthe existen
e of a dispersionless mode ≃ 4 − 5meV (≃ 1013s−1) in the stru
ture fa
tor, whi
hmay be taken tentatively as the ωp-plasmoni
 mode given by equation (11). Making use of thisequation we get ωp ≃ 3 × 1014zs−1(n = 1/a3, a = 3Å), so we may estimate the redu
ed e�e
tive
harge z ≃ 3 × 10−2.Diele
tri
 fun
tion. The diele
tri
 fun
tion given by equation (18) has a singularity for ω = 0,as arising from the exa
t 
an
ellation in the stati
 limit of the external �eld by the internal �eld.It is plausible to assume that residual polarization �elds are still present in this stati
 limit, like,5We disregard here the intrinsi
 and orientational polarizabilities.6See, for instan
e, K. H. Tsai and T.-M. Wu, Chem. Phys. Lett. 417 390 (2005); A. Padro and J. Marti, J.Chem. Phys. 118 452 (2003); K. N. Woods and H. Wiedemann, Chem. Phys. Lett. 393 159 (2004).7F. J. Bermejo, M. Alvarez, S. M. Bennington and R. Vallauri, Phys. Rev. E51 2250 (1995); C. Petrillo, F.Sa

hetti, B. Dorner and J.-B. Su
k, Phys. Rev. E62 3611 (2000).8F. Sette, G. Ruo

o, M. Kris
h, C. Mas
iove

hio, R. Verbeni and U. Bergmann, Phys. Rev. Lett. 77 83(1996).
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e, the intrinsi
 polarizability. In this 
ase, equation (18) is modi�ed, and the diele
tri
fun
tion is of the type
ε =

ω2 − ω2
p

ω2 + ω2
0

, (19)where ω0 is a plasma frequen
y asso
iated with the intrinsi
, mole
ular polarizability.9 As su
h,it is a very high frequen
y, and equation (19) gives a small, negative 
ontribution to the diele
tri
fun
tion in the stati
 limit (ω → 0).The diele
tri
 properties of water are still a matter of debate. It is agreed that the permitivitydispersion of water is des
ribed to some extent by a Debye model of the form ε = a+ b/(1− iωτ),where a and b are semi-empiri
al parameters and τ ∼ ηa3/T is a relaxation time; η denotesthe vis
osity and T is the temperature.10 This Debye model assumes mainly an orientationalpolarizability of ele
tri
 dipoles, whi
h, due to the preservation of the dire
tional 
hara
ter ofthe O − H bonds, is 
ompatible with the plasma model suggested here for water. Therefore, the
ontribution given by equation (19) should be added to the above Debye formula for the diele
tri
fun
tion, whi
h be
omes
ε = a +

b

1 − iωτ
+

ω2 − ω2
p

ω2 + ω2
0

. (20)Parameters a and b in equation (20) are related to the stati
 permitivity ε0 and high-frequen
ypermitivity ε∞ through
ε0 = a + b − ω2

p/ω
2
0 , ε∞ = a + 1 . (21)We may negle
t ω2

p/ω
2
0 here be
ause it is too small, and we may also take ε∞ = 1(a = 0). Thestati
 permitivity ε0 = b is given mainly by the ele
tri
 dipoles. Let p be su
h an ele
tri
 dipole.Its energy in an ele
tri
 �eld D is −pD cos θ, where θ is the angle between p and D. The thermaldistribution of su
h dipoles is dw ∼ exp(−pD cos θ/T )d(cos θ), .where T denotes the temperature.We get easily the thermal average 〈cos θ〉 = −L(pD/T ), where L(x) = coth x − 1/x is the well-known Langevin's fun
tion.We take p = 2eze(a/2) = ezea, where a ∼ 3Å and ze is a delo
alized redu
ed 
harge asso
iatedwith the H − O dipole. We estimate the argument pD/T of the Langevin's fun
tion. At roomtemperature, we �nd pD/T ≃ 3 × 10−4Dze. For pD/T = 1 this 
orresponds to an external �eld

D = 1
3ze

×104esu, or D = 108/zeV/m.11 This is an extremely high �eld, so we are justi�ed to take
pD/T ≪ 1, and L(pD/T ) ≃ pD/3T . We get therefore a polarization P = −np 〈cos θ〉 = np2D/3T ,an internal �eld Eint = −4πP = −4πnp2D/3T , and a permitivity

ε0 = b =
1

1 − 4πnp2/3T
(22)from D = εE = ε(D + Eint). This is the well-known Kirkwood formula.12 For the empiri
al value9A stati
 �eld D produ
es an ele
tri
 dipole p = qex, where qe is the ele
tri
 
harge and x is a small displa
ementsubje
ted to the equation of motion meẍ+ meω

2

px = qeD, where me is the mass of the ele
troni
 
loud. A

ordingto the plasma model suggested here, we assume that the ele
troni
 
loud in the H − O bonds have the sameeigenfrequen
y ωp as the H − O ensemble. In the stati
 limit x = qeD/meω
2

p (polarizability α = q2

e/meω
2

p in
p = αD), and we get a polarization P = p/a3

0
= q2

eD/mea
3

0
ω2

p, where a0 is of the order of the atomi
 size. Weget an internal �eld Eint = −4πP = −
(

4πq2
e/mea

3

0

)

D/ω2
p = −

(

ω2

0
/ω2

p

)

D, where ω0 is a frequen
y of the orderof atomi
 frequen
ies. Consequently, the diele
tri
 fun
tion ε in equation D = εE = ε(D + Eint) is given by
ε ≃ −ω2

p/ω2

0
(ω2

p/ω2

0
≪ 1), whi
h is pre
isely the stati
 diele
tri
 fun
tion given by equation (19).10See, for instan
e, H. Frohli
h, Theory of Diele
tri
s, Oxford (1958); P. Debye, Polar Mole
ules, Dover, NY(1945).111esu = 3 × 104V/m, J. D. Ja
kson, Classi
al Ele
trodynami
s, Wiley, NJ (1999).12See, for instan
e, H. Frohli
h, lo
 
it.
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ε0 = 80, we get (at room temperature) a redu
ed 
harge ze ≃ 10−2. This is in good agreementwith the H+z − O−2z plasma 
harge z estimated above.Cohesion and thermodynami
s. Re
ently, a model of liquid has been introdu
ed13 based on anex
itation spe
trum (per parti
le) of the form εn = −ε0+ε1(n+1/2), where ε0 is a 
ohesion energyand ε1 is the quanta of energy of a harmoni
 os
illator with one degree of freedom; n represents herethe quantum number. The model in
ludes also the kinemati
 
orrelations (spatial restri
tions)of the movement of the liquid mole
ules. This model leads to a 
onsistent thermodynami
s forliquids, arising from a statisti
s whi
h is equivalent with the statisti
s of bosons in two dimensions.For water, the 
ohesion energy per parti
le ε0 
an be estimated from the vaporization heat (≃
40kJ/mol). It gives ε0 ∼ 103K. On the other hand, it was shown in a previous paper14 that thetransition temperature beween a gas and a liquid of identi
al parti
les is approximately given by

Tt =
4

3

ε0

ln(ε0/T0)
, (23)where T0 = ~

2n2/3/m is a gas 
hara
teristi
 temperature. We 
an apply this formula to waterdissso
iation, taking n as the density of hydrogen atoms, m as the mass of two hydrogen atomsand Tt = 383K (at normal pressure; ε0 depends on the inter-parti
le spa
ing). We may negle
tthe oxygen, as it is too heavy in 
omparison with the hydrogen atoms. We get T0 ≃ 2K andthe above formula gives ε0 ≃ 2000K ≃ 200meV for the 
ohesion energy of water per mole
ule,whi
h is 
onsistent with the above estimate (1eV ≃ 11.6 × 103K; n ≃ 1/a3 with a = 3Å and
~ ≃ 10−27erg · s; Bohr radius aH = ~

2/mee
2 ≃ 0.53Å, e2/aH ≃ 27.2eV , where me is the ele
tronmass).15The plasma os
illations obtained above 
an be quantized and the energy levels of the plasma read

En =
∑

q

~ωp(n + 1/2) =
V

(2π)3

4π

3
q3
c · ~ωp(n + 1/2) , (24)where qc is a 
uto� waveve
tor. The prefa
tor in equation (24) is V q3

c/6π2 ≃ N(aqc/4)3, so theenergy levels given above 
an be written as
En = Nε1(n + 1/2) , (25)where ε1 = (aqc/4)~ωp. These energy levels 
orrespond to a harmoni
 os
illator with one degreeof freeedom. It follows that the present des
ription of water as a two-spe
ies of highly disso
iatedioni
 plasma provides a further support for the liquid model mentioned above. If we take qc ≃ 1/athe energy quanta ε1 = (aqc/4)3

~ωp =≃ 3zmeV represents the ε1 parameter in the spe
trum ofthe liquid. (The plasma frequen
y given by equation (11) is ωp ≃ 200zmeV ).Debye s
reening and the 
orrelation energy. As it is well-known the plasma ex
itationsdes
ribed above represent 
olle
tive os
illations of the density in the long wavelength limit. Atthe same time they indu
e 
orrelations in the ioni
 movements. For a 
lassi
al plasma these
orrelations are asso
iated with a s
reening length given by the Debye-Hu
kel theory as 16
κ−1 =

(

T/24πnz2e2
)1/2 (26)13M. Apostol, J.Theor. Phys. 125 163 (2006).14M. Apostol, Mod. Phys. Let. B21 893 (2007); see also M. Apostol, J. Theor. Phys. 123 155 (2006).15It is worth noting that the me
hanism of vaporization assumed here implies the disso
iation of the watermole
ule.16See, for instan
e, L. Landau and E. Lifshitz, Course of Theoreti
al Physi
s, vol. 5, Statisti
al Physi
s, Elsevier(1980).
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ase (κ−1 = (T/4πe2
∑

i niz
2
i )

−1where i labels the ioni
 spe
ies with density ni and 
harge
ezi). The formula is valid for the Coulomb energy z2e2/a mu
h lower than the temperature T . Inthe present 
ase we have z2e2/a ≃ 45K (for z ≃ 3× 10−2), whi
h shows that the above 
onditionis ful�lled. From (26) we get κ−1 ∼ 1Å (at room temperature), in agreement with the presentmole
ular-disso
iation model. The 
orrelation energy per parti
le is given by

εcorr = −e2

a

√

πe2

Ta
(6z2)3/2 (27)(εcorr = −(e2/a)

√

πe2/Ta(
∑

i niz
2
i )

3/2). The estimation of this energy gives εcorr ∼ 102K (atroom temperature). It 
ontributes to the 
ohesion energy.Sound anomaly. The sound-like bran
h ω2 ≃ ωs = vsq, where vs =
√

9nχ/(M + 2m) a

ord-ing to equation (12), is distin
t from the ordinary hydrodynami
 sound whose velo
ity is givenby the well-known formula v0 = 1/
√

κnm for a one-
omponent �uid, where κ is the adiabati

ompressibility. For the present two-
omponent �uid (H+z − O−2z plasma), the velo
ity of theordinary sound is given by v0 = 1/
√

κn(M + 2m). The former represents a non-equilibrium ele-mentary ex
itation, whose velo
ity vs does not depend on temperature, while the latter pro
eedsby thermodynami
, equilibrium, adiabati
 pro
esses, and its velo
ity v0 depends on temperaturethorugh the adiabati
 
onpresibility κ. In order to distinguish them from the hydrodynami
 soundwe propose to 
all the sound-like ex
itations derived here density "kineti
" modes or "densitons".The distin
tion between the two sounds is made by a threshold waveve
tor qt in the followingmanner. Suppose that there is a �nite lifetime τ for the sound-like ex
itations ωs propagatingwith a velo
ity vs and a 
orresponding meanfree path Λ = vsτ . If the sound-like wavelength λ ismu
h longer than the meanfree path, λ ≫ Λ, then we are in the 
ollision-like regime (ωsτ ≪ 1),and the 
ollisions may restore the thermodynami
 equilibrium. In this 
ase the hydrodynami
sound proapagates, and the sound-like ex
itations do not. This 
ondition de�nes the thresholdwaveve
tor qt = 1/vsτ . In the opposite 
ase, q ≫ qt (
ollision-less regime), it is the sound-likeex
itations that propagate, and not the hydrodynami
 sound. The �nite lifetime τ originates inthe residual intera
tions between the 
olle
tive modes and the underlying motion of the individ-ual parti
les. It is easy to estimate this residual intera
tion.17 It is given by √
εT , where ε isthe mean energy per parti
le 
orresponding to the motion of the individual parti
les. We gettherefore τ ≃ ~/

√
εT and the threshold waveve
tor qt =

√
εT/~vs. It is di�
ult to have a reliableestimation of the mean energy ε; for a resonable value ε = 10meV we get qt ≃ 0.1Å−1 at roomtemperature for v = 3000m/s, whi
h is in good agreement with experimental data.Indeed, the phenomenon of two-sound anomaly in water is well-do
umented.18 Neutron, X-ray, Brillouin or ultraviolet light s
attering on water revealed the existen
e of a hydrodynami
sound propagating with velo
ity v0 ≃ 1500m/s for smaller waveve
tors and an additional soundpropagating with velo
ity ≃ 3000m/s for larger waveve
tors. In addition, though both soundvelo
ities do exhibit an isotopi
 e�e
t, their ratio does not. A

ording to the above dis
ussion,we assign this additional, faster sound to the sound-like ex
itations derived here. We 
an see thatboth v0 and vs given above exhibit a weak isotopi
 e�e
t, while their ratio vs/v0 = 3n

√
κχ doesnot. From vs =

√

9nχ/(M + 2m) = 3000m/s we get the short-range intera
tion χ ≃ 7eV · Å3.Similar results are obtained for other forms of disso
iation of the water mole
ule, like OH− −H+or OH− − H3O
+, so the H+z − O−2z plasma model employed here 
an be viewed as an average,e�e
tive model for various plasma 
omponents that may exist in water.17M. Apostol, Ele
tron Liquid, apoma, MB (2000).18See, for instan
e, J. Teixeira, M. C. Bellissent-Funel, S. H. Chen and B. B Dorner, Phys. Rev. Lett. 54 2681(1985); S. C. Santu

i, D. Fioretto, L. Comez, A. Gessini and C. Mas
hiove

hio, Phys. Rev. Lett. 97 225701(2006) and referen
es therein.
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pFigure 1: The spe
trum of the density os
illations given by equation (28) for the H+z − O−2zplasma with the same short-range intera
tion between ioni
 spe
ies.Another possible anomalous sound. It is worth 
al
ulating the spe
trum given by equationsof motion (10) without negle
ting higher-order 
ontributions in q2. The result of this 
al
ulationis given by
ω2

1,2 =
1

2
ω2

p

[

1 + Ax2 ±
√

1 + 2Bx2 + A2x4
]

, (28)where
A =

1

9α
(2 + 5α + 2α2) , B =

1

9α
(2 − 13α + 2α2) , α = m/M (29)and x = vsq/ωp. It is shown in Fig. 1.Frequen
y ω2 in equation (28) represents the sound-like bran
h, whi
h goes like ω2 ≃ ωs = vsq inthe long wavelength limit and approa
hes the horizontal asymptote ω2 = ωp/

√
A ≃ ωp

√

m/2Mfor shorter wavelengths. Frequen
y ω1 in equation (28) represents the plasmoni
 bran
h (ω1 ≃ ωpfor q → 0). In the long wavelength limit it goes like
ω1 ≃ ωp +

(M − m)2

9mM
v2

sq
2/ωp , q → 0 . (30)Due to the large disparity between the two masses m and M we 
an see that the plasma frequen
yhas an abrupt in
rease toward the short-wavelength oblique asymptote given by

ωa ≃
√

Avsq ≃
√

2M/9m + 5/9vsq . (31)For small values of ωp (vanishing Coulomb 
oupling, z → 0) this asymptoti
 frequen
y may looklike an anomalous sound propagating with velo
ity
va ≃

√

2M/9m + 5/9vs . (32)For water, we get va ≃ 2vs from this formula. However, the ratios va/vs or va/v0 exhibit a ratherstrong isotopi
 e�e
t, whi
h is not supported by experimental data.Multi-
omponent plasma. The model presented herein might be generalized to a multi-
omponent plasma 
onsisting of several ioni
 spe
ies labelled by i, ea
h with number Ni of parti
les,density ni, 
harge zie and mass mi, su
h that ∑i zini = 0.



J. Theor. Phys. 9The lagrangian of the density os
illations is given by
L = − 1

2n

∑

iq miniu̇i(q)u̇i(−q) + 1
2n

∑

ijq ninjq
2 [ϕij(q) + χ(q)]ui(q)uj(−q)+

+i e
n

∑

iq niziqφ(q)ui(−q) ,
(33)where ϕij(q) = 4πzizje

2/q2. The equations of motion are given by
miüi + 4πe2zi

∑

j

zjnjuj + q2χ
∑

j

njuj = −iqeziφ . (34)Making use of the notations
S1 =

∑

i

z2
i ni/mi , S2 =

∑

i

ni/mi , S3 =
∑

i

zini/mi , (35)the eigenfrequen
ies ω1,2 of the system of equations (34) in the long wavelength limit are given by
ω2

1 ≃ ω2
p = 4πe2S1 =

∑

i

4πe2z2
i ni

mi
, (36)whi
h represents the plasma bran
h of the spe
trum, and

ω2
2 ≃ ω2

s =
(

S2 − S2
3/S1

)

χq2 = v2
sq

2 , (37)whi
h represents the sound-like ex
itations.19 The plasma bran
h of the spe
trum has an obliqueasimptote given by ω1 ≃ ωa =
√

χS2q, whi
h may be taken as an anomalous sound propagatingwith velo
ity va =
√

χS2 for small values of ωp. The ratio of the two sound velo
ities is given by
va/vs =

1
√

1 − S2
3/S1S2

, (38)whi
h is always higher than unity. The sound bran
h of the spe
trum has an horizontal asymptotegiven by ω2 ≃
√

1 − S2
3/S1S2ωp. For the H+z − O−2z plasma we 
an 
he
k from (38) that

va/vs ≃ (2M/9m + 5/9)1/2 ≃ 2, and ω2 ≃ 3
√

m/2Mωp, as obtained above. As we have dis
ussedabove this ratio exhibits a rather strong isotopi
 e�e
t, whi
h is not in a

ord with experimentaldata. We assign therefore the additional sound to sound-like ex
itations propagating with velo
ity
vs given by equation (37). The ordinary, hydrodynami
 sound in a multi-
omponent mixturehas the velo
ity v0 = 1/

√

κ
∑

i nimi. It 
an be shown that v2
s/v

2
0 ≥ n2κχ for a neutral multi-
omponent mixture.The internal �eld is given by

Eint = −4πe
∑

i

ziniui ; (39)we get easily from equations (34)
Eint = −iqφ

ω2
p

ω2 − ω2
p

(40)and the diele
tri
 fun
tion ε = 1 − ω2
p/ω

2, as expe
ted.19The sound velo
ity given by (37) is always a real quantity, as a 
onsequen
e of the S
hwarz-Cau
hy inequality.
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ture fa
tor. The stru
ture fa
tor is de�ned by
S(q, ω) = 1

2π

∫

drdr′dt 〈δn(r, t)δn(r′, 0)〉 eiq(r−r
′)−iωt =

= N
2πn2

∫

dt 〈δn(q, t)δn(−q, 0)〉 e−iωt ,
(41)where the bra
kets stand for the thermal average (we leave aside the 
entral peak). Sin
e

δn(q, t) = −iq
∑

i

niui(q, t) , (42)it be
omes
S(q, ω) =

Nq2

2πn2

∫

dt
∑

ij

ninj 〈ui(t)uj(0)〉 e−iωt , (43)where we dropped out the argument q.In order to 
al
ulate the thermal averages we turn ba
k to the system of equations (34) withoutthe external ele
tri
 �eld. This system 
an be written as
(−ω2 + aS1)x + bS3y = 0 ,

aS3x + (−ω2 + bS2)y = 0 ,
(44)where a = 4πe2, b = χq2, S1,2,3 are given by equation (35) and

x =
1

n

∑

i

ziniui , y =
1

n

∑

i

niui . (45)In addition,
ui =

anzi

miω2
x +

bn

miω2
y . (46)The system of equations (44) has two eigenfrequen
ies ω1,2 as given by equations (36) and (37).The 
orresponding eigenve
tors are given by

x1 ∼ S1 , y1 ∼ S3 ; x2 ∼ bS3 , y2 ∼ −aS1 (47)in the long wavelength limit. A

ording to equation (46) the 
oordinates ui 
an be written as
u

(1,2)
i =

anzi

miω
2
1,2

x1,2e
iω1,2t +

bn

miω
2
1,2

y1,2e
iω1,2t , (48)and one 
an see that they are 
oordinates of linear harmoni
 os
illators with frequen
ies ω1,2and potential energies miω

2
1,2

[

u
(1,2)
i

]2

/2 . The thermal distribution of the 
oordinate u for su
han os
illator is given by dw =
√

mω2/2πT exp (−mω2u2/2T ) du in the 
lasssi
al limit, where Tdenotes the temperature (T ≫ ~ω). It follows
〈

u
(1,2)
i u

(1,2)
j

〉

=
T

miω2
1,2

δij . (49)Writing
ui = u

(1)
i eiω1t + u

(2)
i eiω2t (50)



J. Theor. Phys. 11and making use of equation (49) the stru
ture fa
tor given by equation (43) be
omes
S(q, ω) = NTq2

(

∑

i

n2
i /n

2mi

)

[

1

ω2
1

δ(ω − ω1) +
1

ω2
2

δ(ω − ω2)

]

. (51)We 
an see from this equation that the relevant sound 
ontributions are given by
S(q, ω) ≃ NT

v2
s,a

(

∑

i

n2
i /n

2mi

)

δ(ω − vs,aq) . (52)Asymmetri
 short-range intera
tion. Up to now, the short-range intera
tion was assumedto be the same for all ioni
 spe
ies. In general, we may introdu
e a short-range intera
tion
χij depending on the nature of the ioni
 spe
ies. If this intera
tion is separable, the solutiongiven above for a multi-
omponent plasma holds with minor modi�
ations. For a non-separableshort-range intera
tion, appre
iable 
hanges may appear in the spe
trum, whi
h may exhibitmultiple bran
hes. Su
h a spe
trum may serve to identify the nature (mass, 
harge) of variousmole
ular aggregates in a multi-
omponent plasma. It is worth noting that a range of frequen
ies
1010s−1 − 1012s−1 is do
umented in living 
ells by mi
rowave, Raman and opti
al spe
tros
opiesand by 
ell-biology studies, upon whi
h the theory of 
oheren
e domains in living matter is built.20We 
onsider here again the H+z − O−2z plasma with di�erent short-range intera
tion χHH =
χ1 , χOO = χ2 , χOH = χ3; it still exhibits two bran
hes of frequen
ies, a plasmoni
 one (ω1) anda sound-like one (ω2), but the spe
trum may have 
ertain pe
uliarities (the diele
tri
 
onstant isnot a�e
ted by this modi�
ation). Equations of motion (15) be
ome now

mü + 2nq2(ϕ + χ1)u − nq2(2ϕ − χ3)v = −izeqφ

Mv̈ + nq2(4ϕ + χ2)v − 2nq2(2ϕ − χ3)u = 2izeqφ .
(53)We introdu
e the notations

a = 2nq2ϕ/m = 8πne2z2/m , b1,2,3 = nχ1,2,3/m . (54)The dispersion relations 
an be 
omputed straightforwardly. In the long wavelength limit (q → 0)we get the plasmoni
 bran
h
ω2

1 ≃ (1 + 2α)a +
2b1 + α2b2 − 4αb3

1 + 2α
q2 , (55)where (1 + 2α)a = 16πne2z2/µ is the plasma frequen
y, and the sound-like bran
h

ω2
2 ≃ α(4b1 + b2 + 4b3)

1 + 2α
q2 = v2

sq
2 ; (56)one 
an see that the sound velo
ity vs is always a real quantity.The sound-like bran
h exhibits an asymptote in the short-wavelength limit given by

ω2
2 ∼ 1

2

[

2b1 + αb2 −
√

(2b1 − αb2)2 + 8αb2
3

]

q2 , (57)20See, for instan
e, H. Frohli
h, Phys. Lett. A26 402 (1968); Int. J. Quant. Chem. 2 641 (1968); S. J. Webb,M. E. Stoneham and H. Frohli
h, Phys.Lett A63 407 (1977); S. Webb, Phys. Reps. 60 201 (1980); S. Rowlands etal, Phys. Lett. A82 436 (1981); S. C. Roy, Phys. Lett. A83 142 (1981); E. del Giudi
e et al, Nu
l. Phys. B275185 (1986).
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itation spe
trum given by equation (59) for the H+z −O−2z plasma with short-rangepotentials χOO = χHH = 0 and χOH = χ 6= 0.whose slope may have either sign or vanish. It is easy to see that this slope is positive for
b2
3 < b1b2, negative for b2

3 > b1b2 (when the sound-like bran
h has a maximum value) and itvanishes for b2
3 = b1b2 (when the sound-like bran
h has an horizontal asymptote). In the 
ase ofa negative slope the sound velo
ity may exhibit a negative velo
ity and the sound may su�er astrong absorption for moderate values of the waveve
tor, whi
h may indi
ate an anomalous orunphysi
al situation.We return now to the plasmon bran
h given by equation (55), and write it as

ω2
1 = ω2

p + b2
2x2 − 4αλx + α2

1 + 2α
q2 , (58)where λ2 = b2

3/b1b2 and x =
√

b1/b2. It is easy to see that for λ2 > 1 the plasmoni
 spe
trumexhibits a dip around a 
ertain value q0 of the waveve
tor q for (λ −
√

λ2 − 1/2
)

α <
√

b1/b2 <
(

λ +
√

λ2 − 1/2
)

α; it approa
hes an asymptote with a positive slope for q → ∞, whi
h mayde�ne again an anomalous sound for small values of ωp.We illustrate these anomalies for a parti
ular 
ase of short-range intera
tion χ1,2 = 0 and χ3 = χ(b3 = nχ/m). The dispersion relations of the system of equations (53) be
ome
ω2

1,2 =
1

2
ω2

p

[

1 ±
√

1 − 4v2
sq

2/ω2
p +

(1 + 2α)2

2α
v4

sq
4/ω4

p

]

. (59)The plasmoni
 bran
h has a minimum value for q0 ≃ 2
√

m/Mωp/vs, where the sound-like bran
hhas a maximum value (≃ √

2m/Mωp). The spe
trum is shown in Fig. 2. Using ωp ≃ 1013s−1estimated above and the sound velo
ity vs ≃ 3000m/s in water we get q−1
0 ≃ 6Å. We mayexpand ω1 in series of (q − q0)

2 around its mimimum value at q0 and get ω1 ≃ ωp + (M/4m +
1)(v4

sq
2
0/ω

3
p)(q−q0)

2 = ωp+(1+4m/M)v2
s(q−q0)

2/ωp. This is similar with the rotons-like dispersionrelation dis
ussed in 
onne
tion with the 
oheren
e domains in water.21 Although this might bean interesting suggestion, it is in
onsequential here, be
ause ωp is too small in 
omparison with21G. Preparata, QED Coheren
e in Matter, World S
i (1995).



J. Theor. Phys. 13the temperatures at whi
h water exists and, therefore, this "dip" feature has no e�e
t for thewater thermodynami
s.Con
lusion. We summarize the main features of the model suggested here for liquid water. First,we assume, as it is generally a

epted, the four, dire
tional sp3-oxygen ele
troni
 orbitals. Theele
tron delo
alization along two su
h orbitals together with a 
orresponding delo
alization of thehydrogen ele
troni
 
harge lead to the water 
ohesion. It is represented by the 
ohesion energy ε0dis
ussed here. Within su
h a pi
ture, we 
an still visualize the oxygen and the hydrogen as neutralatoms, moving around almost freely (as a 
onsequen
e of the uniformity of the environment; thisgives a noteworthy support to the "hydrogen bonds" 
on
ept).22 To this pi
ture the present modeladds another 
omponent, arising from a very small 
harge transfer between hydrogen and oxygenatoms, leading to a H+z − O−2z plasma, with the redu
ed 
harge z. It originates in the weakasymmetry of the two o

upied sp3-oxygen ele
troni
 orbitals. Under these 
ir
umstan
es, thehydrogen and oxygen ions intera
t, both by Coulomb and short-range potentials. This intera
tiongives the plasma frequen
y and the sound-like ex
itations frequen
y. The plasmons 
ontribute tothe ex
itations whi
h give rise to a 
onsistent thermodynami
s for liquids, in a model introdu
edre
ently. In addition, the ioni
 plasma os
illations entail os
illations of the delo
alized ele
troni

loud, with the same eigenfrequen
y. Subje
ted to an external �eld, these ele
troni
 os
illationsprodu
e an intrinsi
 polarizability whi
h removes the ω = 0 singularity in the plasma diele
tri
fun
tion (the ω0 frequen
y). In addition, the magnitude of the ele
tri
 moment p whi
h is respon-sible for the orientational, stati
 diele
tri
 fun
tion is in satisfa
tory agrement with the plasma
harge z derived herein.On the basis of this model we are able to understand to some extent, both qualitatively andin some pla
es even quantitatively, the sound anomaly, the diele
tri
 fun
tion (permitivity dis-persion), the stru
ture fa
tor, 
ohesion and thermodynami
s of water. The model is extendedto a multi-
omponent 
lassi
al plasma, in
luding an asymmetri
 short-range intera
tion betweenthe 
omponents, whi
h might be relevant for more 
omplex stru
tural aggregates like those inbiologi
al matter.
© J. Theor. Phys. 2008, apoma�theor1.theory.nipne.ro

22The point of view taken in this paper is that the hydrogen bonds in water are introdu
ed merely to a

ount forthe uniformity of the environment of a water mole
ule in liquid water. As su
h, it helps understand the 
ohesion.However, a 
onsistent upholding of the hydrgen-bonds 
on
ept would mean a vanishing dipole momentum of liqudwater. Pauling himself, (L. Pauling, lo
 
it) who introdu
ed originary this 
on
ept, quali�es it by admiting anasymmetry in the four hydrogen bonds around an oxygen ion, arising from the two-out-of-four o

upied orbitals.We suggest that the uniformity of the environment makes the hydrogen atoms (ions) moving as independententities, while the asymmetry indu
es a small 
harge z, so the ion motion is subje
ted to Coulomb and short-rangeintera
tions. The ele
tri
 moment is as
ribed to the dire
tional 
hara
ter of the sp3-oxygen ele
troni
 orbitals andthe 
harge transfer between oxygen and hydrogen. Thereby, the hydrogen-bond 
on
ept is employed here throughits two features, dire
tionality and uniformity, with a slight asymmetry, all viewed as independent qualitativefeatures.


