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Abstract

It is suggested that the dynamics of liquid water has a component consisting of O~2?
(oxygen) anions and H* (hydrogen) cations, like an electrolyte, where z is a (very small)
reduced effective electron charge. Such a model may apply to other similar liquids. The
eigenmodes of density oscillations are derived for such a two-species ionic plasma, included
the sound waves, and the dielectric function is calculated. The plasmons may contribute to
the elementary excitations in a model introduced recently for the thermodynamics of liquids.
It is shown that the sound anomaly in water can be understood on the basis of this model.
The results are generalized to an asymmetric short-range interaction between the ionic species
as well as to a multi-component plasma, and the structure factor is calculated.

Introduction. As simple as it may appear, water is still a complex liquid involving various
interactions as well as kinematic and dynamic correlations. It is widely agreed that the water
molecule in liquid water preserves to some extent its integrity, especially the directionality of the
sp®-oxygen orbitals, though it may be affected substantially by hydrogen bonds.! As such, it is
conceived that water has a molecular electric moment, an intrinsic polarizability and hindered
rotations (librations) which may affect its orientational polarizability. We examine herein another
possible component of the dynamics of the liquid water, as resulting from the dissociation of the
water molecule.

The water molecule H,O has two H — O (hydrogen-oxygen) bonds which make an angle of cca
109° in accordance with the tetragonal symmetry of the four hybridized sp3-oxygen orbitals.
The "spherical" diameter of the water molecule is approximately 2.75A and the inter-molecular
spacing in liquid water under normal conditions is a ~ 3A. This suggests that the water molecule
in liquid water, while preserving the directionality of the oxygen electronic orbitals, might be
dissociated to a great extent, like in an electrolyte. Dissociation models which assume OH~ — H™
or OH~ — H30% pairs are known for water. This indicates a certain mobility of hydrogens
(and oxygens). We analyze herein the hypothesis that water may consist of O™2* anions of mass
M = 16amu and density n and H™* cations (protons) of mass m = lamu and density 2n, where
z is a very small reduced effective electron charge (the atomic mass unit is lamu ~ 1.7 x 107%g.).
We shall see that such a hypothesis adds another dimension to the dynamics of water. Such a
model may apply to other similar liquids.

Due to their large mass the ions have a classical dynamics. Herein, we limit ourselves to considering
the ions motion in water under the action of the Coulomb potentials poo = 42%€2/r, oy = 222 /r

L. Pauling, General Chemistry, Dover, NY (1982); Water: A Comprehensive Treatise, ed. by F. Franks,
Plenum, NY (1972).
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and pog = —22%¢*/r, where —e (~ —4.8 x 107'%su) is the electron charge and r denotes the
distance between the ions. For stability, it is necessary also to introduce a short-range repulsive
(hard-core) potential x.? It is shown that in the limit 2 — 0 water may exhibit an anomalous
sound-like mode beside both the ordinary (hydrodynamic) one and the non-equilibrium sound-
like excitations governed by short-range interactions. We compute the density oscillations for this
model, the dielectric function, the structure factor, and extend the model to a multicomponent
plasma, including an asymmetric short-range interaction between ion species.

Plasmons in a jellium model. Let us consider one species of charged particles, with charge
—ze, continuously distributed with density n in a neutralising rigid continuous background of
positive charge. This is the well-known jellium model.®> The Coulomb interaction reads

1

U= i/drdr’gp(r —1)on(r)dn(r') , (1)

where dn(r) denotes a small disturbance of density (which preserves the global neutrality). We
introduce the Fourier representation

1 , n :
n(r)=—=>» on(q)e? , dn(q) = —/alrén(r)e_m”r : (2)
9> =
where N = nV is the total number of particles in volume V. Similarly,

Pl = 5 S e@e ™ pla) = [ drp(re ®)

where ¢(q) = 4mz%¢*/q* is the Fourier transform of the Coulomb potential (interaction). The
Coulomb interaction given by (1) becomes

U =53 ela)in(@in(—a) (1

(where the ¢ = 0- term is excluded by the positive background).

The small variations on(r) in density can be represented as dn = —ndivu, where u is a dis-
placement vector.* We emphasize that such a representation holds for qu(r) < 1. Tt follows
on(q) = —inqu(q), and one can see that the Coulomb interaction involves only longitudinal
components of the displacement vector u(q) along the wavevector q. Therefore, we may write

u(q) = (q/q)u(q), with dn*(—q) = on(q), u*(—q)=u(q) and u*(—q) = —u(q). The Coulomb
interaction (4) becomes

n
U=-5) delau(@u(-q) . (5)
q
The kinetic energy associated with the coordinates u(q) is given by

T= %/alrnmll2 = —%mzq:u(q)u(—q) : (6)

2See also in this respect E. Teller, Revs. Mod. Phys. 34 627 (1962); E. H. Lieb and B. Simon, Phys. Rev.
Lett. 31 681 (1973); Adv. Math. 23 22 (1977); L. Spruch, Revs. Mod. Phys. 63 151 (1991). As it is well-known,
a classical plasma with Coulomb interaction only is unstable.

3See, for instance, D. Pines, Elementary Excitations in Solids, Benjamin, NY (1963).

“M. Apostol, Electron Liquid, apoma, MB (2000).
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where m denotes the particle mass. The equations of motion obtained from the Lagrange function
L=T-U are

mii(q) + ng*p(q)ula) =0 (7)
which leads to the well-known plasma oscillations with frequency given by wi = 4mnz?e?/m.

Plasma oscillations with two species of ions. We apply the above model to the two species
of ions O~% and H™*. The change in density is associated with a displacement vector v in the
former and a displacement vector u in the latter. First we note that the Fourier transforms of
the Coulomb potentials are given by poo = 4¢(q), vur = ¢(q) and Yoy = —2p(q), where
©(q) = 4mz%e*/q*. Therefore, the interactions can be written as

Uoo = —5 2_q ¢ l4¢(q) + x(@)] v(a@)v(—a) ,
Ui = =203, ¢ [v(q) + x(@)]u(a)u(—q) , (8)
Uon = n3_q¢*2¢(q) — xJu(a)v(—a) ,

where n = N/V is the density of water molecules and the Fourier transform y of a hard-core
potential has been introduced (the same for both species). The kinetic energy is given by

7= MY i)~ m Y ia)i(—q) . @

and the equations of motion read

mii + 2ng*(¢ + X)u — ng? (29 — x)v =10
(10)
Mo+ ng? (4o + x)v — 2n¢* (20 — X)u =0 ,
where we have dropped out the argument q.

The solutions of these equations can be obtained straightforwardly. In the long wavelength limit
q — 0 there are two branches of eigenfrequencies, one given by

16mn2%¢?
u}i _ TThzTe (11)
W

corresponding to plasma oscillations and another given by
wi = —"—q" =viq (12)

corresponding to sound-like waves propagating with velocity v, given by (12). u = 2mM/(2m+M)
is the reduced mass. The plasma oscillations are associated with antiphase oscillations of the
relative coordinate (2mu+Mv = 0), while the sound waves are associated with in-phase oscillations
of the center-of-mass coordinate (u — v = 0).

Polarization. An external electric field arising from a potential ¢(r) gives an additional energy

Ui =i [ deotw)bni(x) = ~ilng /) 3 aol@y(~a) (13)
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for a species of ions labelled by i, with electric charge ¢; and density n;. We apply this formula to
the two-species ionic plasma, and get

= —QZZequb , Uo = QZzequb —q) (14)

Adding these two terms to the lagrangian, the equations of motion given by (10) become

mii + 2nq* (o + x)u — ng*(2p — x)v = —izeqp
(15)
Mo+ ng*(4p + x)v — 2n¢* (20 — x)u = 2izeqp

where we have dropped out the argument q. This is a system of coupled harmonic oscillators
under the action of an external force. In the limit of long wavelengths its solutions are given by

ize w2—2—mwz
u = mq¢(w2_w2)3&2_w2) )
(16)
2ize “)2_237sz
v = Mq¢(w2_w2)&2_w2)
On the other hand, equation n;divu; = —dn; is in fact the Maxwell equation divE; = 4mwq;on;,
where the electric field is given by E; = —4mng;u;. We have therefore the internal electric fields
E, = —8mnzeu and E, = 8mnzev. The polarization P = —(FE, + E,)/4~ is given by
P(a) = 2nze [u(a) - 0(@)] = L ()2 (17
= 2nze|u(q) — v = — —_ .
q D vl = gl 5

The external field is related to the external potential through D(q) = —ig¢(q) and the dielectric
function ¢ is given by D = ¢E = (D + Ey,;), where E;,, = E, + F, is the internal field. We get
the dielectric function®

e=1-w2/w®, (18)

as expected. As it is well-known, its zero gives the longitudinal mode of plasma oscillations.

The w, in the nominator of equation (18) defines also the plasma edge: for frequencies lower than
w, the electromagnetic waves are absorbed (the refractive index is given by n? = ). It is well-
known that water exhibits indeed a strong absorption in the gigahertz-terrahertz region.® On the
other hand, neutron scattering on heavy water,” as well as inelastic X-ray scattering,® revealed
the existence of a dispersionless mode ~ 4 — 5meV (=~ 10"s7!) in the structure factor, which
may be taken tentatively as the w,-plasmonic mode given by equation (11). Making use of this
equation we get w, ~ 3 x 1025~ (n = 1/a®, a = 3A), so we may estimate the reduced effective
charge z ~ 3 x 1072

Dielectric function. The dielectric function given by equation (18) has a singularity for w = 0,
as arising from the exact cancellation in the static limit of the external field by the internal field.
It is plausible to assume that residual polarization fields are still present in this static limit, like,

SWe disregard here the intrinsic and orientational polarizabilities.

6See, for instance, K. H. Tsai and T.-M. Wu, Chem. Phys. Lett. 417 390 (2005); A. Padro and J. Marti, J.
Chem. Phys. 118 452 (2003); K. N. Woods and H. Wiedemann, Chem. Phys. Lett. 393 159 (2004).

"F. J. Bermejo, M. Alvarez, S. M. Bennington and R. Vallauri, Phys. Rev. E51 2250 (1995); C. Petrillo, F.
Sacchetti, B. Dorner and J.-B. Suck, Phys. Rev. E62 3611 (2000).

8F. Sette, G. Ruocco, M. Krisch, C. Masciovecchio, R. Verbeni and U. Bergmann, Phys. Rev. Lett. 77 83
(1996).
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for instance, the intrinsic polarizability. In this case, equation (18) is modified, and the dielectric

function is of the type
2

2
w JR—
P
E = y 19
w? + w} (19)
where wy is a plasma frequency associated with the intrinsic, molecular polarizability.” As such,
it is a very high frequency, and equation (19) gives a small, negative contribution to the dielectric

function in the static limit (w — 0).

The dielectric properties of water are still a matter of debate. It is agreed that the permitivity
dispersion of water is described to some extent by a Debye model of the form e = a+b/(1 —iwT),
where a and b are semi-empirical parameters and 7 ~ na®/T is a relaxation time; 1 denotes
the viscosity and T is the temperature.!® This Debye model assumes mainly an orientational
polarizability of electric dipoles, which, due to the preservation of the directional character of
the O — H bonds, is compatible with the plasma model suggested here for water. Therefore, the
contribution given by equation (19) should be added to the above Debye formula for the dielectric
function, which becomes

2 2
b w W,

= . 20
c a+1—iw7+w2+wg (20)

Parameters a and b in equation (20) are related to the static permitivity €y and high-frequency
permitivity €., through
go=a+b—wi/wy , esc=a+1. (21)

We may neglect wf,/wg here because it is too small, and we may also take e, = 1(a = 0). The
static permitivity €9 = b is given mainly by the electric dipoles. Let p be such an electric dipole.
Its energy in an electric field D is —pD cosf, where 6 is the angle between p and D. The thermal
distribution of such dipoles is dw ~ exp(—pD cos0/T)d(cos ), .where T denotes the temperature.
We get easily the thermal average (cosf) = —L(pD/T), where L(z) = cothax — 1/x is the well-
known Langevin’s function.

We take p = 2ez.(a/2) = ez.a, where a ~ 3A and z, is a delocalized reduced charge associated
with the H — O dipole. We estimate the argument pD/T of the Langevin’s function. At room
temperature, we find pD/T ~ 3 x 107*Dz,. For pD/T = 1 this corresponds to an external field
D= i x 10%esu, or D = 10®/z,V/m.!! This is an extremely high field, so we are justified to take
pD/T < 1, and L(pD/T) ~ pD/3T. We get therefore a polarization P = —np (cos @) = np*D /3T,
an internal field Ej,; = —4nP = —47np*D /3T, and a permitivity

1

= b e — e —
=0 1 — dmnp?/3T

(22)

from D = ¢F = (D + Ej,;). This is the well-known Kirkwood formula.'? For the empirical value

9A static field D produces an electric dipole p = g.x, where g, is the electric charge and x is a small displacement
subjected to the equation of motion m.Z + mewgaz = g.D, where m, is the mass of the electronic cloud. According
to the plasma model suggested here, we assume that the electronic cloud in the H — O bonds have the same
eigenfrequency w, as the H — O ensemble. In the static limit z = qu/mewz (polarizability a = qg/mewz in
p = aD), and we get a polarization P = p/a3 = qu/meagwg, where ag is of the order of the atomic size. We
get an internal field By, = —47P = — (4mq2/meag) D /w? = — (w§/w2) D, where wy is a frequency of the order
of atomic frequencies. Consequently, the dielectric function ¢ in equation D = ¢FE = &(D + E;;,;) is given by
€ o~ —wg/wg (wz/wg < 1), which is precisely the static dielectric function given by equation (19).

10Gee, for instance, H. Frohlich, Theory of Dielectrics, Oxford (1958); P. Debye, Polar Molecules, Dover, NY
(1945).

Wesu =3 x 10°V/m, J. D. Jackson, Classical Electrodynamics, Wiley, NJ (1999).

12Gee, for instance, H. Frohlich, loc cit.
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g9 = 80, we get (at room temperature) a reduced charge z, ~ 1072, This is in good agreement
with the H+* — O~2? plasma charge z estimated above.

Cohesion and thermodynamics. Recently, a model of liquid has been introduced'? based on an
excitation spectrum (per particle) of the form e,, = —gg+¢1(n+1/2), where ¢ is a cohesion energy
and €7 is the quanta of energy of a harmonic oscillator with one degree of freedom; n represents here
the quantum number. The model includes also the kinematic correlations (spatial restrictions)
of the movement of the liquid molecules. This model leads to a consistent thermodynamics for
liquids, arising from a statistics which is equivalent with the statistics of bosons in two dimensions.

For water, the cohesion energy per particle gy can be estimated from the vaporization heat (~
40kJ/mol). Tt gives gy ~ 103K . On the other hand, it was shown in a previous paper'! that the
transition temperature beween a gas and a liquid of identical particles is approximately given by

4 s
a 31H(€0/T0) ’

t (23)
where Ty = h?n?3/m is a gas characteristic temperature. We can apply this formula to water
disssociation, taking n as the density of hydrogen atoms, m as the mass of two hydrogen atoms
and T, = 383K (at normal pressure; g depends on the inter-particle spacing). We may neglect
the oxygen, as it is too heavy in comparison with the hydrogen atoms. We get Ty ~ 2K and
the above formula gives ¢y >~ 2000K =~ 200meV for the cohesion energy of water per molecule,
which is consistent with the above estimate (leV ~ 11.6 x 103K; n ~ 1/a® with a = 3A and
i~ 10%erg - s; Bohr radius ay = h?/mee® ~ 0.53A, €?/ay ~ 27.2¢V, where m, is the electron
mass).

The plasma oscillations obtained above can be quantized and the energy levels of the plasma read

By = Yo +1/2) = (2‘;)3%”(13 T+ 1/2) | (24)

where ¢, is a cutoff wavevector. The prefactor in equation (24) is V¢ /67% ~ N(agq./4)>, so the
energy levels given above can be written as

E, = Nei(n+1/2) , (25)

where €1 = (aq./4)hw,. These energy levels correspond to a harmonic oscillator with one degree
of freeedom. It follows that the present description of water as a two-species of highly dissociated
ionic plasma provides a further support for the liquid model mentioned above. If we take ¢. ~ 1/a
the energy quanta &1 = (aq./4)*hw, == 3zmeV represents the e; parameter in the spectrum of
the liquid. (The plasma frequency given by equation (11) is w, ~ 200zmeV).

Debye screening and the correlation energy. As it is well-known the plasma excitations
described above represent collective oscillations of the density in the long wavelength limit. At
the same time they induce correlations in the ionic movements. For a classical plasma these
correlations are associated with a screening length given by the Debye-Huckel theory as 6

T (T/247r712262)1/2 (26)

I3M. Apostol, J.Theor. Phys. 125 163 (2006).

M. Apostol, Mod. Phys. Let. B21 893 (2007); see also M. Apostol, J. Theor. Phys. 123 155 (2006).

151t is worth noting that the mechanism of vaporization assumed here implies the dissociation of the water
molecule.

16Gee, for instance, L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 5, Statistical Physics, Elsevier
(1980).
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for our case (k7! = (T'/4me? Y, n;22)”'where i labels the ionic species with density n; and charge
ez;). The formula is valid for the Coulomb energy z?¢%/a much lower than the temperature 7. In
the present case we have z%¢?/a ~ 45K (for z ~ 3 x 1072), which shows that the above condition
is fulfilled. From (26) we get x~! ~ 1A (at room temperature), in agreement with the present
molecular-dissociation model. The correlation energy per particle is given by

2 |me?

Ecorr =
aV Ta

(corr = —(€%/a)\/me2/Ta(>",n;z2)%?). The estimation of this energy gives .o ~ 102K (at

i

room temperature). It contributes to the cohesion energy.

(62%)%/? (27)

Sound anomaly. The sound-like branch wy ~ w, = v,q, where v, = \/9nx/(M + 2m) accord-
ing to equation (12), is distinct from the ordinary hydrodynamic sound whose velocity is given
by the well-known formula vy = 1/y/knm for a one-component fluid, where & is the adiabatic
compressibility. For the present two-component fluid (H™* — O~2? plasma), the velocity of the
ordinary sound is given by vy = 1/y/kn(M + 2m). The former represents a non-equilibrium ele-
mentary excitation, whose velocity v, does not depend on temperature, while the latter proceeds
by thermodynamic, equilibrium, adiabatic processes, and its velocity vy depends on temperature
thorugh the adiabatic conpresibility . In order to distinguish them from the hydrodynamic sound
we propose to call the sound-like excitations derived here density "kinetic" modes or "densitons".
The distinction between the two sounds is made by a threshold wavevector ¢, in the following
manner. Suppose that there is a finite lifetime 7 for the sound-like excitations w, propagating
with a velocity v, and a corresponding meanfree path A = v,7. If the sound-like wavelength X is
much longer than the meanfree path, A > A, then we are in the collision-like regime (w,7 < 1),
and the collisions may restore the thermodynamic equilibrium. In this case the hydrodynamic
sound proapagates, and the sound-like excitations do not. This condition defines the threshold
wavevector ¢, = 1/v,7. In the opposite case, ¢ > ¢ (collision-less regime), it is the sound-like
excitations that propagate, and not the hydrodynamic sound. The finite lifetime 7 originates in
the residual interactions between the collective modes and the underlying motion of the individ-
ual particles. Tt is easy to estimate this residual interaction.'” Tt is given by veT, where ¢ is
the mean energy per particle corresponding to the motion of the individual particles. We get
therefore 7 ~ h/\/E_T and the threshold wavevector ¢, = \/E_T/h'US. It is difficult to have a reliable
estimation of the mean energy ¢; for a resonable value ¢ = 10meV we get ¢, ~ 0.1A7" at room
temperature for v = 3000m/s, which is in good agreement with experimental data.

Indeed, the phenomenon of two-sound anomaly in water is well-documented.'® Neutron, X-
ray, Brillouin or ultraviolet light scattering on water revealed the existence of a hydrodynamic
sound propagating with velocity vy ~ 1500m/s for smaller wavevectors and an additional sound
propagating with velocity ~ 3000m/s for larger wavevectors. In addition, though both sound
velocities do exhibit an isotopic effect, their ratio does not. According to the above discussion,
we assign this additional, faster sound to the sound-like excitations derived here. We can see that
both vy and v, given above exhibit a weak isotopic effect, while their ratio v,/vy = 3n,/rkx does
not. From vy = 1/9nx/(M + 2m) = 3000m/s we get the short-range interaction y ~ TeV - A®,
Similar results are obtained for other forms of dissociation of the water molecule, like OH~ — H™
or OH~ — H30%, so the H* — O~2% plasma model employed here can be viewed as an average,
effective model for various plasma components that may exist in water.

1"M. Apostol, Electron Liquid, apoma, MB (2000).

18Gee, for instance, J. Teixeira, M. C. Bellissent-Funel, S. H. Chen and B. B Dorner, Phys. Rev. Lett. 54 2681
(1985); S. C. Santucci, D. Fioretto, L. Comez, A. Gessini and C. Maschiovecchio, Phys. Rev. Lett. 97 225701
(2006) and references therein.
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12 L m

Figure 1: The spectrum of the density oscillations given by equation (28) for the H** — O=%
plasma with the same short-range interaction between ionic species.

Another possible anomalous sound. It is worth calculating the spectrum given by equations
of motion (10) without neglecting higher-order contributions in ¢?. The result of this calculation
is given by

1
Wiy = Jul [1+Aa® £ VIS 2827 + A2a;4] , (28)
where ) )
2 2
_ 1 _ Lo _ 2
A 9a(2+50z+2a),B 9a(2 13a+2a%) , a=m/M (29)

and x = v,q/w,. It is shown in Fig. 1.

Frequency ws in equation (28) represents the sound-like branch, which goes like wy ~ ws; = v4q in
the long wavelength limit and approaches the horizontal asymptote wy = w,,/\/Z ~ w,\/m/2M
for shorter wavelengths. Frequency w; in equation (28) represents the plasmonic branch (w; ~ w,
for ¢ — 0). In the long wavelength limit it goes like

(M —m)?

9mM U§q2/wp ) q - O . (30)

w1 >~ wp +

Due to the large disparity between the two masses m and M we can see that the plasma frequency
has an abrupt increase toward the short-wavelength oblique asymptote given by

wa ~ VAv,q ~ \/2M/9m + 5/90,q . (31)

For small values of w, (vanishing Coulomb coupling, z — 0) this asymptotic frequency may look
like an anomalous sound propagating with velocity

Vo = \/2M/9m + 5/9v, . (32)

For water, we get v, >~ 2v, from this formula. However, the ratios v,/vs or v, /vy exhibit a rather
strong isotopic effect, which is not supported by experimental data.

Multi-component plasma. The model presented herein might be generalized to a multi-
component plasma consisting of several ionic species labelled by 7, each with number N; of particles,
density n;, charge z;e and mass m;, such that ZZ zin; = 0.
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The lagrangian of the density oscillations is given by

L= =55 375 minitis (Q)ii(=q) + 55 >0 mingq® i (@) + x ()] wi(q)u;(—q)+

(33)
FiL Y g Mi%iqp(Qui(—q)
where ¢;;(q) = 4mz;z;¢*/¢*. The equations of motion are given by
m;il; + dme?z; Z 2in;u; + X Z nju; = —igez;¢ . (34)

J J

Making use of the notations
Sy=>Y_zZni/mi, Sa=> mifmi, Ss=Y zni/mi , (35)

the eigenfrequencies wy o of the system of equations (34) in the long wavelength limit are given by

2

dme22n,
w%2w§:4ﬂ'6251 :Z% g (36)

which represents the plasma branch of the spectrum, and
wh ~ w? = (Sy— S3/51) xa® =i, (37)

which represents the sound-like excitations.!” The plasma branch of the spectrum has an oblique
asimptote given by w; ~ w, = 1/xS2q, which may be taken as an anomalous sound propagating
with velocity v, = /xS for small values of w,. The ratio of the two sound velocities is given by

1
V1—252/5,8;

which is always higher than unity. The sound branch of the spectrum has an horizontal asymptote
given by wy ~ /1 —53/51Ssw,. For the H** — O~?* plasma we can check from (38) that
Vo /Vs =~ (2M/9m + 5/9)Y/2 ~ 2, and w, ~ 31/m/2Mw,, as obtained above. As we have discussed
above this ratio exhibits a rather strong isotopic effect, which is not in accord with experimental
data. We assign therefore the additional sound to sound-like excitations propagating with velocity
vs given by equation (37). The ordinary, hydrodynamic sound in a multi-component mixture
has the velocity vg = 1/y/k ), nym;. It can be shown that v2/v > n*kx for a neutral multi-
component mixture.

Vo Vs = (38)

The internal field is given by

B, = —4me Z 2inil; (39)
we get easily from equations (34)
2
» w
Ejnt = —iqp——— (40)
w? — w2

and the dielectric function e =1 — wi/uﬂ, as expected.

9The sound velocity given by (37) is always a real quantity, as a consequence of the Schwarz-Cauchy inequality.
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Structure factor. The structure factor is defined by

S(q.w) = & [ drdr'dt (5n(r, 1)dn(r’, 0)) eal—)=ir — (41)
1
[ dt {(5n(q,t)on(—q,0)) e~™*

- 27rn2

where the brackets stand for the thermal average (we leave aside the central peak). Since

it becomes

S(q,w) = 27m2/dtznm] ui(t)u;(0)) e it (43)

where we dropped out the argument q.

In order to calculate the thermal averages we turn back to the system of equations (34) without
the external electric field. This system can be written as

(—w2 + &Sl)l’ + ngy =0 s
(44)
aSsx + (—w? + bSy)y =0

where a = 4me?, b = xq?, S123 are given by equation (35) and

= %Z Zinu; , Y = %Zn,u, . (45)

In addition,
anz; bn

U; =

miwzat miuﬂy ) (46)

The system of equations (44) has two eigenfrequencies wy 5 as given by equations (36) and (37).
The corresponding eigenvectors are given by

1~ 51, y1 ~ S ; wa~bS3, ys ~—aS; (47)

in the long wavelength limit. According to equation (46) the coordinates u; can be written as

(172) _ anz; iwi 2ot bn w1 ot
u, = 5—T12e" " + Y1202, (48)
m2w172 mlwlg

and one can see that they are coordinates of linear harmonic oscillators with frequencies wy o
and potential energies miwiQ [u(l & ] /2 . The thermal distribution of the coordinate u for such

an oscillator is given by dw = /mw? /27T exp (—mw?u?/2T) du in the classsical limit, where T
denotes the temperature (7' > hAw). It follows

T
<u§1’2)u§1’2)> =0y . (49)

Writing ' ‘
u; = ulMert 4 Pt (50)
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and making use of equation (49) the structure factor given by equation (43) becomes

1 2

S(q,w) = NT¢* (an/n m2> L} (w—w1)+%5(w—w2) : (51)

We can see from this equation that the relevant sound contributions are given by
N T
S(q,w) ~ (Z n /n? mz> 8(w — vsaq) - (52)

Asymmetric short-range interaction. Up to now, the short-range interaction was assumed
to be the same for all ionic species. In general, we may introduce a short-range interaction
Xi; depending on the nature of the ionic species. If this interaction is separable, the solution
given above for a multi-component plasma holds with minor modifications. For a non-separable
short-range interaction, appreciable changes may appear in the spectrum, which may exhibit
multiple branches. Such a spectrum may serve to identify the nature (mass, charge) of various
molecular aggregates in a multi-component plasma. It is worth noting that a range of frequencies
101971 — 102571 is documented in living cells by microwave, Raman and optical spectroscopies

and by cell-biology studies, upon which the theory of coherence domains in living matter is built.?’

We consider here again the H™* — O~% plasma with different short-range interaction yyy =
X1,X00 = X2, Xou = Xs; it still exhibits two branches of frequencies, a plasmonic one (w;) and
a sound-like one (ws), but the spectrum may have certain peculiarities (the dielectric constant is
not affected by this modification). Equations of motion (15) become now

mii +2ng*(¢ + x1)u — ng*(2p — x3)v = —izeqo

(53)
Mo+ ng®(4p + x2)v — 2n¢* (20 — x3)u = 2izeqo .
We introduce the notations
a = 2nq*p/m = 8mne*z* /m | bios = nxi123/m . (54)

The dispersion relations can be computed straightforwardly. In the long wavelength limit (¢ — 0)
we get the plasmonic branch

2b1 + Oé2b2 — 4Oéb3 2

2
~ (1+2 25
where (1 + 2a)a = 16mne?2%/p is the plasma frequency, and the sound-like branch
2 Oé(4b1 + b2 + 4b3) 2 2 9
~ = ; 56
one can see that the sound velocity v, is always a real quantity.
The sound-like branch exhibits an asymptote in the short-wavelength limit given by
1
w3 ~ 5 {2191 + aby — \/(261 — aby)? + 8abi| ¢* | (57)

20Gee, for instance, H. Frohlich, Phys. Lett. A26 402 (1968); Int. J. Quant. Chem. 2 641 (1968); S. J. Webb,
M. E. Stoneham and H. Frohlich, Phys.Lett A63 407 (1977); S. Webb, Phys. Reps. 60 201 (1980); S. Rowlands et
al, Phys. Lett. A82 436 (1981); S. C. Roy, Phys. Lett. A83 142 (1981); E. del Giudice et al, Nucl. Phys. B275
185 (1986).
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Figure 2: Excitation spectrum given by equation (59) for the H™* — O~2% plasma with short-range
potentials xoo = xgg = 0 and yog = x # 0.

whose slope may have either sign or vanish. It is easy to see that this slope is positive for
b3 < biby, negative for b3 > byby (when the sound-like branch has a maximum value) and it
vanishes for b2 = b;by (when the sound-like branch has an horizontal asymptote). In the case of
a negative slope the sound velocity may exhibit a negative velocity and the sound may suffer a
strong absorption for moderate values of the wavevector, which may indicate an anomalous or
unphysical situation.

We return now to the plasmon branch given by equation (55), and write it as

22° — dadr +a?

2 58
1+ 2« ¢ (58)

2

where A2 = b2/biby and x = /b /by. It is easy to see that for A* > 1 the plasmonic spectrum
exhibits a dip around a certain value gy of the wavevector ¢ for <>\ — /A2 — 1/2) a < /by /by <
<)\ + /A2 — 1/2) a; it approaches an asymptote with a positive slope for ¢ — oo, which may

define again an anomalous sound for small values of w,,.

We illustrate these anomalies for a particular case of short-range interaction x;9 = 0 and x3 = x
(b3 = nx/m). The dispersion relations of the system of equations (53) become

1 1+ 2a)?
Wi, = 5%2 1+ \/1 —dvZg? w2 + %vﬁq‘l/w;‘;] . (59)

The plasmonic branch has a minimum value for ¢y >~ 2y/m/Mw,/v,, where the sound-like branch
has a maximum value (~ /2m/Mw,). The spectrum is shown in Fig. 2. Using w, ~ 10"3s7!
estimated above and the sound velocity v, ~ 3000m/s in water we get qo_l ~ 6A. We may
expand w; in series of (¢ — ¢o)? around its mimimum value at gy and get wy ~ w, + (M/4m +
D)(vigs/wi)(q—q0)* = wp+(14+4m/M)vZ(q—qo)? /wp. This is similar with the rotons-like dispersion
relation discussed in connection with the coherence domains in water.?! Although this might be
an interesting suggestion, it is inconsequential here, because w, is too small in comparison with

21G. Preparata, QED Coherence in Matter, World Sci (1995).
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the temperatures at which water exists and, therefore, this "dip" feature has no effect for the
water thermodynamics.

Conclusion. We summarize the main features of the model suggested here for liquid water. First,
we assume, as it is generally accepted, the four, directional sp3-oxygen electronic orbitals. The
electron delocalization along two such orbitals together with a corresponding delocalization of the
hydrogen electronic charge lead to the water cohesion. It is represented by the cohesion energy ¢
discussed here. Within such a picture, we can still visualize the oxygen and the hydrogen as neutral
atoms, moving around almost freely (as a consequence of the uniformity of the environment; this
gives a noteworthy support to the "hydrogen bonds" concept).?? To this picture the present model
adds another component, arising from a very small charge transfer between hydrogen and oxygen
atoms, leading to a H** — O~2* plasma, with the reduced charge z. It originates in the weak
asymmetry of the two occupied sp3-oxygen electronic orbitals. Under these circumstances, the
hydrogen and oxygen ions interact, both by Coulomb and short-range potentials. This interaction
gives the plasma frequency and the sound-like excitations frequency. The plasmons contribute to
the excitations which give rise to a consistent thermodynamics for liquids, in a model introduced
recently. In addition, the ionic plasma oscillations entail oscillations of the delocalized electronic
cloud, with the same eigenfrequency. Subjected to an external field, these electronic oscillations
produce an intrinsic polarizability which removes the w = 0 singularity in the plasma dielectric
function (the wy frequency). In addition, the magnitude of the electric moment p which is respon-
sible for the orientational, static dielectric function is in satisfactory agrement with the plasma
charge z derived herein.

On the basis of this model we are able to understand to some extent, both qualitatively and
in some places even quantitatively, the sound anomaly, the dielectric function (permitivity dis-
persion), the structure factor, cohesion and thermodynamics of water. The model is extended
to a multi-component classical plasma, including an asymmetric short-range interaction between
the components, which might be relevant for more complex structural aggregates like those in
biological matter.

@© J. Theor. Phys. 2008, apoma@theorl.theory.nipne.ro

22The point of view taken in this paper is that the hydrogen bonds in water are introduced merely to account for
the uniformity of the environment of a water molecule in liquid water. As such, it helps understand the cohesion.
However, a consistent upholding of the hydrgen-bonds concept would mean a vanishing dipole momentum of liqud
water. Pauling himself, (L. Pauling, loc c¢it) who introduced originary this concept, qualifies it by admiting an
asymmetry in the four hydrogen bonds around an oxygen ion, arising from the two-out-of-four occupied orbitals.
We suggest that the uniformity of the environment makes the hydrogen atoms (ions) moving as independent
entities, while the asymmetry induces a small charge z, so the ion motion is subjected to Coulomb and short-range
interactions. The electric moment is ascribed to the directional character of the sp>-oxygen electronic orbitals and
the charge transfer between oxygen and hydrogen. Thereby, the hydrogen-bond concept is employed here through
its two features, directionality and uniformity, with a slight asymmetry, all viewed as independent qualitative
features.



