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2 J. Theor. Phys.valid for quq ≪ 1, where q is the wavevetor and uq is the Fourier omponent of the displaement�eld. We assume a rigid neutralizing bakground of positive harge, as in the well-known jelliummodel. In the stati limit, i.e. for Coulomb interation, the lagrangian of the eletrons an bewritten as
L =

∫

dr
[

mnu̇2/2 − 1

2

∫

dr′U(|r − r′|)δn(r)δn(r′)
]

+ e
∫

drΦ(r)δn(r) , (1)where m is the eletron mass, U(r) = e2/r is the Coulomb energy, −e is the eletron harge and
Φ(r) is an external salar potential. Equation (1) leads to the equation of motion

mü = ngrad
∫

dr′U(|r − r′|)divu(r′) + egradΦ, (2)whih is the starting equation of our approah. We leave aside the damping e�ets.By using the Fourier transform for an in�nite plasma it is easy to see that the eigenmode of thehomogeneous equation (2) is the well-known bulk plasmon mode given by ω2
p = 4πne2/m. On theother side, in the stati limit, equation δn = −ndivu is equivalent with the Maxwell's equation

divEi = −4πeδn, where Ei = 4πneu is the internal eletri �eld (equal to −4πP, where P is thepolarization). Making use of the eletri indution D = −gradΦ = ε(D + Ei), where ε is thedieletri onstant, we get the well-known dieletri funtion ε = 1−ω2
p/ω

2 in the long-wavelengthlimit from the solution of the inhomogeneous equation (2). Similarly, sine the urrent density is
j = −enu̇, we get the well-known eletrial ondutivity σ = iω2

p/4πω, by solving equation (2).We apply this approah to a semi-in�nite plasma, and, after deriving the surfae and bulk plasmonmodes, ompute the dieletri response and the eletron energy loss. Further on, we onsider theinteration with the eletromagneti �eld, as desribed by the usual term (1/c)
∫

drjA − ∫

drρΦin the lagrangian, where A is the vetor potential, ρ = endivu is the harge density and Φ is thesalar potential. We limit ourselves to the interation with the eletri �eld (the non-relativistilimit), and ompute the re�eted and refrated waves, as well as the re�etion oe�ient. We �ndit more onvenient to use the retarded potentials, whih are equivalent with Maxwell's equations,instead of using diretly the later. It is shown that there are two types of eletromagneti wavesin a semi-in�nite plasma, either damped or propagating, and the region in the wavevetor spaeorresponding to their partiular behaviour is determined. Although the re�etion oe�ient hasno singularity, it exhibits nevertheless a enhanement on passing from the propagating to thedamping regime, as expeted. The present approah an be extended to various other strutureswith speial geometries.2 Plasma eigenmodesWe onsider a semi-in�nite plasma extending over the half-spae z > 0. The displaement �eld uis then represented as (v, u3)θ(z), where v is the displaement omponent in the (x, y)-plane, u3is the the displaement omponent along the z-diretion and θ(z) = 1 for z > 0 and θ(z) = 0 for
z < 0 is the step funtion. In equation of motion (2) divu an then be replaed by

divu =

(

divv +
∂u3

∂z

)

θ(z) + u30δ(z) , (3)where u30 = u3(r, z = 0), r being the in-plane (x, y) position vetor. Equation (2) beomes
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mü = ne2grad

∫

dr′dz′ 1√
(r−r′)2+(z−z′)2

[

divv(r′.z′) + ∂u3(r′,z′)
∂z′

]

+

+ne2grad
∫

dr′ 1√
(r−r′)2+z2

u3(r
′, 0) + egradΦ

(4)for z > 0. One an see the depolarizing �eld ourring at the free surfae z = 0 in equation (4).We use the Fourier transforms of the type
u(r, z; t) =

∑

k

∫

dωu(k, z; ω)eikre−iωt (5)(for unit area in the plane), as well as the Fourier representation
1√

r2 + z2
=
∑

k

2π

k
e−k|z|eikr (6)for the Coulomb potential. Then, it is easy to see that equation of motion (4) leads to

ω2v =
1

2
ω2

p

∫ ∞

0
dz′

(

kv − 1

k

∂2v

∂z′2

)

e−k|z−z′| − 1

2k
ω2

pv
′

0e
−kz − iek

m
Φ (7)and iku3 = ∂v

∂z
, where we have dropped out for simpliity the arguments k, z and ω and v

′

0 =
∂v
∂z

∣

∣

∣

z=0
. The v-omponent of the displaement �eld is direted along the wavevetor k (in-planelongitudinal waves). This equation an easily be solved. Integrating by parts in its rhs we get

ω2v = ω2
pv − 1

2
ω2

pv0e
−kz − iek

m
Φ , (8)hene

v =
iekω2

p

2m
Φ0

(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − iek
m

Φ
ω2−ω2

p

u3 = −ekω2
p

2m
Φ0

(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − e
m

Φ
′

ω2−ω2
p

(9)where Φ0 = Φ(k, z = 0; ω) and Φ
′
= ∂Φ

∂z
.The solutions given by equation (9) exhibit two eigenmodes, the bulk plasmon ωb = ωp and thesurfae plasmon ωs = ωp/

√
2, as it is well-known.[4, 5℄ Indeed, the homogeneous equation (8)(Φ = 0) has two solutions: the surfae plasmon v = v0e

−kz for ω2 = ω2
p/2 and the bulk plasmon

v0 = 0 for ω2 = ω2
p. Making use of this observation we an represent the general solution as aneigenmodes series

v(k, z) =
√

2kv0(k)e−kz +
√

2
∑

κ

v(k, κ) sin κz , (10)for z > 0, where v(k,−κ) = −v(k, κ), and iku3w(k, z) = ∂v(k,z)
∂z

. Then, it is easy to see that thehamiltonian H = T +U orresponding to the lagrangian L = T −U given by equation (1) beomes
T = nm

∑

k v̇∗
0(k)v̇0(k) + nm

∑

kκ

(

1 − κ2

k2

)

v̇∗(k, κ)v̇(k, κ)

U = 2πn2e2∑

k v∗
0(k)v0(k) + 4πn2e2∑

kκ

(

1 − κ2

k2

)

v∗(k, κ)v(k, κ) ,

(11)where T is the kineti energy and U is the potential energy. We an see that this hamiltonianorresponds to harmoni osillators with frequenies ωs = ωp/
√

2 and ωb = ωp.



4 J. Theor. Phys.It is worth noting what happens if the surfae of this semi-in�nite plasma is overed with adieletri with dieletri onstant ε. It is easy to see that the dieletri brings a surfae polarizationproportional to 1/ε− 1, so the surfae displaement gets an additional ontribution (1/ε− 1)v0 inequation (8), leading to a total surfae displaement v0/ε. The surfae plasmon is then modi�edto ω = ωp

√

1 − 1/2ε.Making use of Ei = 4πneu and of equations (9) we an write down the internal �elds (polarization)as
E⊥(k, z; ω) =

ikω4
p
Φ0(k,0;ω)

2(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − ikω2
p
Φ(k,z;ω)

ω2−ω2
p

E‖(k, z; ω) = − kω4
p
Φ0(k,0;ω)

2(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − ω2
p
Φ

′
(k,z;ω)

ω2−ω2
p

(12)where E⊥ is direted along the in-plane wavevetor k and E‖ is parallel with the z-axis (perpen-diular to the surfae z = 0).We take an external potential of the form Φ(k, z) = Φ0(k)eiκz (leaving aside the frequeny argu-ment ω), and get the eletri indution D⊥(k, z) = −ikΦ0(k)eiκz and D‖(k, z) = −iκΦ0(k)eiκzfrom D = −gradΦ. Then, we an see that the surfae terms do not ontribute to the response,as expeted, and, making use of Ei = (1/ε − 1)D, we get the well-known dieletri funtion
ε(κ, ω) = 1 − ω2

p/ω
2 in the long-wavelength limit.3 Eletron energy lossIt is well known that the energy loss per unit time (stopping power) is given by

P =
d

dt

(

mv2

2

)

= −evEi , (13)for an eletron moving with veloity v = (v⊥, v‖), where the �eld Ei is taken at r = v⊥t and
z = v‖t for t > 0 (z > 0). It is assumed that the eletron energy is su�iently large and theenergy loss is small enough to use a onstant v in estimating the rhs of equation (13). Thepotential reated by this eletron is given by the Poisson equation ∆Φ = 4πeδ(r−v⊥t)δ(z − v‖t),whene, by making use of the Fourier representation (6), we get

Φ(k, z; ω) = − 2ev‖
(ω − kv⊥)2 + k2v2

‖

e−i(kv⊥−ω)z/v‖ . (14)We introdue this potential in equation (12) and ompute the energy loss. It ontains two ontri-butions, one assoiated with the bulk plasmons,
Pb = e2ω2

p

∑

k

∫

dω
iω

ω2
p − ω2

· 2v‖
(ω − kv⊥)2 + k2v2

‖

, (15)and another arising from surfae e�ets,
Ps = e2ω4

p

∑

k

∫

dω
1

(ω2 − ω2
p/2)(ω2 − ω2

p)
· v‖(ikv⊥ − kv‖)

(ω − kv⊥)2 + k2v2
‖

e−kv‖tei(kv⊥−ω)t . (16)Both ontributions an be alulated straightforwardly. We get the well-known result Pb =
(

−e2ω2
pv‖/2v2

)

ln(vk0/ωp), where k0 is a maximum ut-o� wavevetor (assoiated with the ioniza-tion energy, or with the inverse of the mean inter-partile spaing), and
Ps = −2π

e2ωpv‖
v2t

(√
2 sin ωpt/

√
2 − sin ωpt

) (17)



J. Theor. Phys. 5for ωp ≪ vk. We an see the osillatory behaviour of the stopping power arising from the surfaee�ets in the transient regime near the surfae.4 Eletromagneti radiationWe assume a plane wave inident on the plasma surfae under angle α. Its frequeny is givenby ω = cK, where c is the veloity of light and the wavevetor K = (k, κ) has the in-planeomponent k and the perpendiular-to-plane omponent κ, suh as k = K sin α and κ = K cos α.In addition, k = k(cos ϕ, sin ϕ). The eletri �eld is taken as E = E0(cos β, 0,− sin β)eikreiκze−iωt,suh as cos β sin α cos ϕ − sin β cos α = 0 (transversality ondition KE0 = 0). In spite of the fatthat the eletrons are ated by a propagating wave, we still use the Coulomb interation betweenthem (stati limit), whih is unphysial. Consequently, some features of the results given in thissetion are unphysial. Nevertheless, we present here suh a treatment, in order to show the maintehnial points involved in the next setion, where the orret treatment is given.Starting from equation (2) and using the Fourier representation (6), we write down the equationsof motion similar with those given by equation (7). It is onvenient to use the projetions of thein-plane displaement �eld v on the vetor k and on the vetor k⊥ = k(− sin ϕ, cos ϕ). We denotethese omponents by v1 = kv/k and v2 = k⊥v/k. Leaving aside the irrelevant arguments k and
ω (and making an integration by parts in order to remove some expliit surfae terms) we get theequations of motion

ω2v1(z) = 1
2
kω2

p

∫∞
0 dz′v1(z

′)e−k|z−z′|+

+ i
2
ω2

p

∫∞
0 dz′u3(z

′) ∂
∂z′

e−k|z−z′| + e
m

E0(z) cos β cos ϕ ,
(18)

ω2u3(z) = − i
2
ω2

p

∫∞
0 dz′v1(z

′) ∂
∂z

e−k|z−z′|+

+ 1
2k

ω2
p

∫∞
0 dz′u3(z

′) ∂2

∂z∂z′
e−k|z−z′| − e

m
E0(z) sin β

(19)and
ω2v2(z) = − e

m
E0(z) cos β sin ϕ . (20)Equation (20) is already solved. Equations (18) and (19) an be solved easily by noting that theyimply the relationship

∂v1

∂z
= iku3 +

e

mω2

(

ikE0 sin β +
∂E0

∂z
cos β cos ϕ

)

. (21)For a plane wave E0(z) = E0e
iκz we get

v1 =
ieω2

pE0 sin β

mω2(2ω2 − ω2
p)

e−kz +
eE0 cos β cos ϕ

mω2
eiκz , (22)

v2 = −eE0 cos β sin ϕ

mω2
eiκz (23)and

u3 = −
eω2

pE0 sin β

mω2(2ω2 − ω2
p)

e−kz − eE0 sin β

mω2
eiκz . (24)



6 J. Theor. Phys.We an see that the displaement �eld exhibits both a surfae term (∼ e−kz), with a resonaneat the frequeny of the surfae plasmons, and a bulk term (∼ eiκz). The bulk plasmons areabsent, in aordane with their longitudinal harater. In addition, the bulk ontribution tothe displaement �eld is transversal to the propagation wavevetor K, as it is produed by thetransversal external eletri �eld.We pass now to omputing the radiation �eld. The displaements given above an be representedas
v1(r, z; t) = v1se

ikre−kze−iωt + v1be
ikreiκze−iωt , (25)and similarly for v2 and u3, where the amplitudes v1s,b, v2s,b and u3s,b are given by equations(22)-(24). These �elds produe a urrent density j = −enu̇θ(z)eikre−iωt and a harge density

ρ = endivu = enu30δ(z)eikre−iωt arising from the surfae polarization. It is worth noting that thebulk harge (ikv + ∂u3

∂z

)

θ(z) is vanishing, as expeted. The urrent and harge density gives riseto a vetor potential
A(r, z; t) =

1

c

∫

dr′
∫

dz′
j(r′, z′; t − R/c)

R
(26)and a salar potential

Φ(r, z; t) =
∫

dr′
∫

dz′
ρ(r′, z′; t − R/c)

R
, (27)where R =

√

(r− r′)2 + (z − z′)2. These integrals an be alulated exatly. They redue to theknown integral1
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (28)where J0 is the zeroth-order Bessel funtion of the �rst kind. From E = −(1/c)∂A

∂t
− gradΦ weget the eletri �eld

E1 =
ω2

p
E0

2ω2

sinβ
sin 2α

(

cos 2α + i
ω2

p

2ω2 sin 2α
)

e−iκz

E2 = −ω2
p
E0

4ω2

cos β sinϕ
cos2 α

e−iκz

E3 = −ω2
p
E0

4ω2

sinβ
cos2 α

(

cos 2α + i
ω2

p

2ω2 sin 2α
)

e−iκz

(29)
radiated in the region z < 0. We an see that this �eld represents the re�eted plane wave(κ → −κ), and we may hek easily the orthogonality of the bulk ontribution to the wavevetor.We give here for onveniene the bulk ontribution to the radiated �eld:
Eb = (ω2

p/4ω2 cos2 α)(cos β cos ϕ,− cos β sin ϕ, sin β)e−iκz. The remaining ontribution with re-spet to equations (29) is the surfae ontribution (whih is not transversal to the propagationvetor), arising both from the urent and harge densities. It is worth noting that this ontributiongoes like 1/ω2 in the high-frequeny limit, as does the bulk ontribution. The re�etion oe�ient
R in R2 = |E|2 /E2

0 is given by
R2 =

(

ω2
p

4ω2 cos2 α

)2






cos2 β sin2 ϕ +
sin2 β

sin2 α



cos2 2α +

(

ω2
p

2ω2 − ω2
p

)2

sin2 2α











. (30)One an see that it exhibits a singularity at the surfae plasmons frequeny, whih, as we see inthe next setion, is unphysial.1I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Produts, Aademi Press (2000), pp. 714-715,6.677; 1,2.



J. Theor. Phys. 75 PolaritonsIn the presene of an eletromagneti wave we use the equation of motion
ω2u =

e

m
E +

e

m
E0e

iκz , (31)where we have preseved expliitly only the z-dependene (i.e. we leave aside the fators eikre−iωt).We �nd it onvenient to employ the retarded potentials given by equations (26) and (27), insteadof Maxwell's equations, where j=-neu̇ and ρ = nedivu = ne
(

iku + ∂u3

∂z

)

θ(z) + neu3(0)δ(z).Obviously, these potentials are equivalent with Maxwell's equations. We preserve the geometryof the inident wave E0 given in the preeding setion, and use the oordinates v1,2 given there,as well as the omponents E1 = kE/k, E2 = k⊥E/k and similar ones for the external �eld E0.Under these irumstanes we get the eletri �eld
E1 = −2πineκ

∫

0 dz′u1(z
′)eiκ|z−z′| − 2πnek

κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′|

E2 = −2πine ω2

c2κ

∫

0 dz′u2(z
′)eiκ|z−z′|

E3 = 2πnek
κ

∫

0 dz′u1(z
′) ∂

∂z
eiκ|z−z′| − 2πinek2

κ

∫

0 dz′u3(z
′)eiκ|z−z′|

(32)from the retarded potentials, where we have used equation (28) and ω2 = c2K2. Now, we employequation of motion (31) and get the integral equations
ω2v1 = − iω2

p
κ

2

∫

0 dz′v1(z
′)eiκ|z−z′| − ω2

p
k

2κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′| + e

m
E0 cos β cos ϕeiκz

ω2v2 = − iω2
p
ω2

2c2κ

∫

0 dz′v2(z
′)eiκ|z−z′| − e

m
E0 cos β sin ϕeiκz

ω2u3 =
ω2

p
k

2κ

∫

0 dz′v1(z
′) ∂

∂z
eiκ|z−z′| − iω2

p
k2

2κ

∫

0 dz′u3(z
′)eiκ|z−z′| − e

m
E0 sin βeiκz

(33)for the oordinates v1,2 and u3 in the region z > 0.The seond equation (33) an be solved by notiing that
∂2

∂z2

∫

0
dz′v2(z

′)eiκ|z−z′| = −κ2
∫

0
dz′v2(z

′)eiκ|z−z′| + 2iκv2 . (34)We get
∂2v2

∂z2
+ (κ2 − ω2

p/c
2)v2 = 0 (35)The solution of this equation is

v2 =
eE0 cos β sin ϕ

mω2
p

·
2c2κ

(

κ
′

2 − κ
)

ω2
eiκ

′

2
z , (36)where

κ
′

2 =
√

κ2 − ω2
p/c

2 . (37)For κ2 < ω2
p/c

2 this wave does not propagate. For κ2 > ω2
p/c

2 it represents a refrated wave withthe refration angle α
′

2 given by
sin α

′

2

sin α
=

1
√

1 − ω2
p/ω

2
= 1/

√
ε . (38)



8 J. Theor. Phys.The polariton frequeny orresponding to this mode is given by
ω2

2 = c2K2 = ω2
p + c2K

′2 , (39)as it is well known, where K
′2 = κ

′2
2 + k2. In the limit c → ∞ equation (36) redues to equation(23), as expeted.The �rst and the third equations (33) an be solved by using the same equation (34) and bynotiing that they imply κ2u3 = ik ∂v1

∂z
, whih is the transversality ondition. We get

v1 = −eE0 cos β cos ϕ

mω2
p

·
2c2κ2

(

κ
′

1 − κ
)

ω2κ + c2k2
(

κ
′

1 − κ
)eiκ

′

1
z (40)and

u3 =
eE0 cos β cos ϕ

mω2
p

·
2c2kκ

′

1

(

κ
′

1 − κ
)

ω2κ + c2k2
(

κ
′

1 − κ
)eiκ

′

1
z , (41)where

κ
′

1 = κ2

√

√

√

√

ω2 − ω2
p

ω2κ2 + ω2
pk

2
. (42)For ω < ωp these waves do not propagate. For ω > ωp these displaement �elds represent anotherrefrated wave, with the refration angle α

′

1 given by
sin α

′

1

sin α
=

(

1 − ω2
p

ω2 + ω2
p tan2 α

)−1/2

. (43)Similarly, the polariton frequeny orresponding to this mode is obtained from ω2
1 = c2(κ2 + k2),where equation (42) is used to get κ as a funtion of κ

′

1. This is a third-order equation
κ6 −

(

K
′2 cos 2α

′

1 + ω2
p/c

2
)

κ4 − 1

4
K

′4 sin2 2α
′

1

(

κ2 + 1
)

= 0 (44)in κ2, whih has only one solution. In the long-wavelength limit the polariton frequeny is givenby ω2
1(K

′ → 0) ≃ ω2
p + c2κ

′2
1 , while in the short-wavelength limit it reahes the photon frequeny,

ω1(K
′ → ∞) = cK

′, as expeted (and κ
′

1 → κ).The eletri �eld propagating in the semi-infnite plasma (z > 0) an be derived straightforwardlyfrom equation (31) and the displaement �eld given above. It is easy to see that it is not anymoretransversal to its wavevetor, due to the hange κ → κ
′

1.In order to get the re�eted wave (the region z < 0) we turn to equation (32) and use therein thesolutions given above for v1,2 and u3. We get straightforwardly the �elds
E1 = E0 cos β cos ϕ · 1 − f tan2 α

1 + f tan2 α
· 1 − f

1 + f
e−iκz , (45)where

f =

√

√

√

√

ω2 − ω2
p

ω2 + ω2
p tan2 α

, (46)
E2 = E0 cos β sin ϕ ·

√

ω2 cos2 α − ω2
p − ω cos α

√

ω2 cos2 α − ω2
p + ω cos α

e−iκz (47)



J. Theor. Phys. 9and E3 = kE1/κ. We an see that these �elds represent the re�eted wave (κ → −κ), and we anhek its transversality to the propagation wavevetor. The re�etion oe�ient an be writtenas
R2 = cos2 β sin2 ϕ

∣

∣

∣

∣

∣

∣

√

ω2 cos2 α − ω2
p − ω cos α

√

ω2 cos2 α − ω2
p + ω cos α

∣

∣

∣

∣

∣

∣

2

+
sin2 β

sin2 α

∣

∣

∣

∣

∣

1 − f tan2 α

1 + f tan2 α
· 1 − f

1 + f

∣

∣

∣

∣

∣

2

. (48)We an see that there is no singularity in this funtion, but there are two usps in its behaviour,assoiated with the transition from the propagating regime to the damping regime. They ourrat ω2 = ω2
p and ω2 = ω2

p/ cos2 α where the re�etion oe�ient exhibits a sudden enhanement onpassing from the propagating regime to the damping one, as expeted. For ω2 ≤ ω2
p the re�etionoe�ient is given by

R2 = cos2 β sin2 ϕ +
sin2 β

sin2 α
, (49)while

R2 = cos2 β sin2 ϕ +
sin2 β

sin2 α
· 1
(√

1 + sin2 α + sin α
)4 (50)for ω2 = ω2

p/ cos2 α. Slightly above ω2
p and ω2

p/ cos2 α the slope of the funtion R2(ω2) is −∞.6 ConlusionsThe approah presented here is a quasi-lassial one, valid for wavelengths muh longer than theamplitude of the Fourier omponents of the displaement �eld. This is not a partiularly restritiveondition. When this ondition is violated, as, for instane, for wavelengths muh shorter than themean separation distane between eletrons, there appear both higher-order terms in the equationsof motion and the oupling to the individual motion of the eletrons. These ouplings a�et ingeneral the dispersion relations and introdue a �nite lifetime (damping) for the plasmon andpolaritons modes. Some of these questions are left for a forthoming investigation. Several otherpartiular issues, as the derivation of the van der Waals fore from the �utuations of the surfaeplasmons, surfae impedane, surfae plasmons radiative deay, response to point-like harges,et, may get a new, more aurate aspet by means of the results presented here.Referenes[1℄ D. Bohm and D. Pines, Phys. Rev. 82 625 (1951).[2℄ D. Pines and D. Bohm, Phys. Rev. 85 338 (1952).[3℄ D. Bohm and D. Pines, Phys. Rev. 92 609 (1953).[4℄ R. H. Rithie, Phys. Rev. 106 874 (1957).[5℄ E. A. Stern and R. A. Ferrell, Phsy. Rev. 120 130 (1960).[6℄ S. DasSarma and J. J. Quinn, Phys. Rev. B20 4872 (1979).[7℄ N. E. Glass and A. A Maradudin, Phys. Rev. B24 595 (1981).[8℄ P. A. Fedders, Phys. Rev. 153 438 (1967).
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