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Abstract

Plasmon and polariton modes are derived for a half-space (semi-infinite) plasma by using
a general, unifying procedure as based on the equations of motion and suitable boundary con-
ditions. Previous results are rederived in much a simpler manner and new ones are obtained.
The approach is based on representing the charge disturbances by a displacement field in the
positions of the moving particles (electrons). The dielectric response and the electron energy
loss are computed. The propagation of an electromagnetic wave in the semi-infinite plasma
is treated by using the retarded electromagnetic potentials, and the reflected and refracted
waves are computed, as well as the reflection coefficient. It is shown that there exist two waves
in the semi-infinite plasma, either damped or propagating. Although there is no singularity in
the reflection coefficient, it exhibits an enhancement on passing from the propagating regime
to the damped one.

1 Introduction

After the discovery of bulk plasmons in an infinite electron plasma,[1]-[3] there was a great deal
of interest in plasmons propagating in structures with special geometries, like a half-space (semi-
infinite) plasma, a plasma slab of finite thickness, a two-plasmas interface (two plasmas bounding
each other), a slab with a cilindrical hole, structures with surface gratings or regular holes pat-
terns, layered films, cilindrical rods and spherical particles, etc. There is a vast literature on
various structures with special geometries exhibiting plasmon modes. These studies were aimed
mainly at identifying new plasmon modes, like the surface plasmons,|4|-|7| accounting for the
electron energy loss experiments and exploring the interaction of the electron plasma with electro-
magnetic radiation (plasmon-polariton excitations).|8|-|13] More recently, a possible enhancement
of the electromagnetic radiation scattered on electron plasma with various geometries enjoyed a
particular interest. In all these studies the plasmon and polaritons modes are of fundamental
importance.[14, 15] The methods used in deriving such results were of great diversity, resorting
often to particular assumptions, such that the basic underlying mechanism of plasmons or po-
laritons’ occurrence is often obscured. The need is therefore felt of having a general, unifying
procedure for deriving plasmons and polaritons modes in structures with special geometries, as
based on the equation of motion of the charge density, Maxwell’s equations and the corresponding
boundary conditions. Such a procedure is presented in this paper for a semi-infinite plasma.

We represent the charge disturbances as dn = —ndivu, where n is the (constant, uniform) charge
concentration and u is a displacement field of the mobile charges (electrons). This representation is
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valid for quq < 1, where q is the wavevector and ug is the Fourier component of the displacement
field. We assume a rigid neutralizing background of positive charge, as in the well-known jellium
model. In the static limit, i.e. for Coulomb interaction, the lagrangian of the electrons can be
written as

L= [dr [mnﬁ2/2—% / dr'U(|r—r’|)5n(r)5n(r')] te [ dre()on(r) | (1)

where m is the electron mass, U(r) = e?/r is the Coulomb energy, —e is the electron charge and
®(r) is an external scalar potential. Equation (1) leads to the equation of motion

mu = ngmd/dr’U(\r — r'|)divu(r’) + egrad®, (2)

which is the starting equation of our approach. We leave aside the damping effects.

By using the Fourier transform for an infinite plasma it is easy to see that the eigenmode of the
homogeneous equation (2) is the well-known bulk plasmon mode given by w? = 4mne®/m. On the
other side, in the static limit, equation dn = —ndivu is equivalent with the Maxwell’s equation
divE; = —4mwedn, where E; = 4mneu is the internal electric field (equal to —47P, where P is the
polarization). Making use of the electric induction D = —grad® = ¢(D + E;), where ¢ is the
dielectric constant, we get the well-known dielectric function ¢ = 1—w§/w2 in the long-wavelength
limit from the solution of the inhomogeneous equation (2). Similarly, since the current density is
j = —ent1, we get the well-known electrical conductivity ¢ = iw? /47w, by solving equation (2).

We apply this approach to a semi-infinite plasma, and, after deriving the surface and bulk plasmon
modes, compute the dielectric response and the electron energy loss. Further on, we consider the
interaction with the electromagnetic field, as described by the usual term (1/¢) [drjA — [ drp®
in the lagrangian, where A is the vector potential, p = endivu is the charge density and ® is the
scalar potential. We limit ourselves to the interaction with the electric field (the non-relativistic
limit), and compute the reflected and refracted waves, as well as the reflection coefficient. We find
it more convenient to use the retarded potentials, which are equivalent with Maxwell’s equations,
instead of using directly the later. It is shown that there are two types of electromagnetic waves
in a semi-infinite plasma, either damped or propagating, and the region in the wavevector space
corresponding to their particular behaviour is determined. Although the reflection coefficient has
no singularity, it exhibits nevertheless a enhancement on passing from the propagating to the
damping regime, as expected. The present approach can be extended to various other structures
with special geometries.

2 Plasma eigenmodes

We consider a semi-infinite plasma extending over the half-space z > 0. The displacement field u
is then represented as (v, u3)f(z), where v is the displacement component in the (x,y)-plane, ug
is the the displacement component along the z-direction and 0(z) = 1 for z > 0 and 6(z) = 0 for
z < 0 is the step function. In equation of motion (2) divu can then be replaced by

diva = (dz’vv + %) 0(2) + uspd(z) , (3)

where ugy = uz(r, z = 0), r being the in-plane (z,y) position vector. Equation (2) becomes
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mi = ne?grad [ dr'dz’ {divv(r’.z’) + %Z’Zl) +

1
V(=12 +(z—2")2
1 (4)
2 / /
+ne“grad [ dr T uz(r’,0) + egrad®
for z > 0. One can see the depolarizing field occurring at the free surface z = 0 in equation (4).

We use the Fourier transforms of the type
u(r, z;t) = Z/dwu(k, 7 w)ekr et (5)
k
(for unit area in the plane), as well as the Fourier representation

1 2T ks ik
— =" z| jikr 6
Ve laD N L ®)

for the Coulomb potential. Then, it is easy to see that equation of motion (4) leads to

1 o0 1 82’U ’ 1 ’ iek
2, _ 2 / —k|z—2/| 2 —kz
WU = —w dz' | kv — — e — —wiye " — —d 7
2 p/o < k@z’2> 2k PO m 0
and tkus = %, where we have dropped out for simplicity the arguments k, z and w and vé =
% . The v-component of the displacement field is directed along the wavevector k (in-plane
z=

longitudinal waves). This equation can easily be solved. Integrating by parts in its rhs we get

1 ek
wv = wgv — 5(4)12)’1106 b2 . @ | (8)
hence o
V= iekw, b e_kz ek P
2m (w2 —w2)(w?-w2/2) m w?—w?2
(9)
ckwp @ —kr _ e @
U3 = ———=L 0 e —

2m (w?—w2)(w2-w2/2) Euﬂ—wg

where &y = ®(k, z = 0;w) and & = aa—‘f.

The solutions given by equation (9) exhibit two eigenmodes, the bulk plasmon wy, = w, and the
surface plasmon w, = w,/V/2, as it is well-known.[4, 5| Indeed, the homogeneous equation (8)
(® = 0) has two solutions: the surface plasmon v = voe™** for w? = w?/2 and the bulk plasmon
vy = 0 for w? = wf,. Making use of this observation we can represent the general solution as an
eigenmodes series

v(k, 2) = V2kvy(k)e ™ + \/§Zv(k, K)sinkz (10)

for z > 0, where v(k, —r) = —v(k, k), and ikusw(k, z) = 6“8:’2). Then, it is easy to see that the

hamiltonian H = T+ U corresponding to the lagrangian L = T'— U given by equation (1) becomes

T = nm 5y 05 (K)io (k) + nm Ty, (1 — %) 0% (k, )k, )

(11)
U =2mn2e* Y vi(k)vo(k) + 4mn2e? Yy, (1 — ’,:—2) vi(k, k)v(k, k) ,

where T' is the kinetic energy and U is the potential energy. We can see that this hamiltonian
corresponds to harmonic oscillators with frequencies w, = wp/\/§ and w, = wp,.
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It is worth noting what happens if the surface of this semi-infinite plasma is covered with a
dielectric with dielectric constant . It is easy to see that the dielectric brings a surface polarization
proportional to 1/e — 1, so the surface displacement gets an additional contribution (1/e —1)vg in
equation (8), leading to a total surface displacement vy/e. The surface plasmon is then modified

to w = wpy/1 —1/2e.

Making use of E; = 4mneu and of equations (9) we can write down the internal fields (polarization)
as

zkw4<I> k,O;w —k» ikw2®(k,z;w

E, (k zw) = 2(w2—w2)(2£)2—w3/2)6 k- %g)
(12)

kwido (k,0;w —kz w2’ k,z;w

Ejk, zw) = _2(w2_f;g;)(a;2_w)g/2)e - pw%w%)

where E | is directed along the in-plane wavevector k and E is parallel with the z-axis (perpen-
dicular to the surface z = 0).

We take an external potential of the form ®(k, z) = ®q(k)e™* (leaving aside the frequency argu-
ment w), and get the electric induction D, (k, z) = —ik®y(k)e™* and Dy(k, z) = —irPo(k)e™*
from D = —grad®. Then, we can see that the surface terms do not contribute to the response,
as expected, and, making use of E; = (1/e — 1)D, we get the well-known dielectric function
e(k,w) =1 —w?/w? in the long-wavelength limit.

3 Electron energy loss

It is well known that the energy loss per unit time (stopping power) is given by

2
= % (%) = —evE; |, (13)

for an electron moving with velocity v = (v.,v)), where the field E; is taken at r = v ¢ and
z =t for t > 0 (z > 0). It is assumed that the electron energy is sufficiently large and the
energy loss is small enough to use a constant v in estimating the rhs of equation (13). The
potential created by this electron is given by the Poisson equation A® = 4wed(r — v t)d(z —vt),
whence, by making use of the Fourier representation (6), we get

26U||

Dk, z;w) = —
( 7Z7w) (w—kVL)2+kQUﬁ

—i(kv—w)z/y| ) (14)

We introduce this potential in equation (12) and compute the energy loss. It contains two contri-
butions, one associated with the bulk plasmons

2v
6 w Z/ W (w — kVJ_)2 + ]{,‘2Uﬁ ) ( )
and another arising from surface effects,
1 v(tkv, — kvy)  _ (kv | —
— 4 d . ” ” k’l}“t Z(kVL w)t . 16
- Z/ 22 W) (W kv kR (16)

Both contributions can be calculated straightforwardly. We get the well-known result P, =
(—e2w§v”/2@2) In(vko/w,), where kg is a maximum cut-off wavevector (associated with the ioniza-
tion energy, or with the inverse of the mean inter-particle spacing), and

P, =27 ¢ wpv” (\/§smwpt/\/_ sin w, ) (17)

v2
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for w, < vk. We can see the oscillatory behaviour of the stopping power arising from the surface
effects in the transient regime near the surface.

4 Electromagnetic radiation

We assume a plane wave incident on the plasma surface under angle a. Its frequency is given
by w = cK, where c is the velocity of light and the wavevector K = (k, ) has the in-plane
component k and the perpendicular-to-plane component k, such as k = K sina and k = K cos a.
In addition, k = k(cos ¢, sin ). The electric field is taken as E = Ey(cos 3,0, — sin 3)ekFeirze =it
such as cos fsina cos p — sin Fcosa = 0 (transversality condition KEy = 0). In spite of the fact
that the electrons are acted by a propagating wave, we still use the Coulomb interaction between
them (static limit), which is unphysical. Consequently, some features of the results given in this
section are unphysical. Nevertheless, we present here such a treatment, in order to show the main
technical points involved in the next section, where the correct treatment is given.

Starting from equation (2) and using the Fourier representation (6), we write down the equations
of motion similar with those given by equation (7). It is convenient to use the projections of the
in-plane displacement field v on the vector k and on the vector k; = k(—sin ¢, cos p). We denote
these components by v; = kv/k and v, = k; v/k. Leaving aside the irrelevant arguments k and
w (and making an integration by parts in order to remove some explicit surface terms) we get the
equations of motion

w1 (2) = kw? [5° d2'vy (2)e T ?l4

(18)
w2 57 d2'ug(z 2 Le H#l 4 £ Ey(2) cos Beosp
wus(2) = —iw? [5° dz'vy (') Ze M4
(19)
torw? [ dz'ug(z )azaz,e_k‘z_zl‘ — ZFEy(z)sin 3
and .
w?vy(2) = ——FEy(2) cos Bsin p . (20)
m

Equation (20) is already solved. Equations (18) and (19) can be solved easily by noting that they
imply the relationship

81]1

0z

5 (z'kEo sin 3 + % cos 3 cos gp) . (21)

For a plane wave Fy(z) = Epe™™* we get

. 2 .
ZewaO SIn ﬁ —kz €E0 COS ﬁ COS mz

= 22
v mw?(2w? — w2) mw? ’ (22)
E i -
2]2:_6 Ocosﬁzsmgoemz (23)
mw
and )

ew? By sin Eysi ,

vy = — 20 Bt _ BSOS oo (24)

mw?(2w? — w?) mw?
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We can see that the displacement field exhibits both a surface term (~ e**), with a resonance
at the frequency of the surface plasmons, and a bulk term (~ e*#). The bulk plasmons are
absent, in accordance with their longitudinal character. In addition, the bulk contribution to
the displacement field is transversal to the propagation wavevector K, as it is produced by the

transversal external electric field.

We pass now to computing the radiation field. The displacements given above can be represented
as
" (I', 2 t) — Ulsezkre—kze—zwt 4 Ulbezkremze—zwt 7 (25)

and similarly for v, and wus, where the amplitudes vi5p, vos, and ugsp are given by equations
(22)-(24). These fields produce a current density j = —enuf(z)e**e~™®! and a charge density
p = endivu = enusd(z)e* e~ arising from the surface polarization. It is worth noting that the
bulk charge (ikv + %) (=) is vanishing, as expected. The current and charge density gives rise

to a vector potential
1 j(r', 2t — R
A(r, z;t) = . /dr'/dz"](r’z ’R /<) (26)

and a scalar potential

O(r, z;t) = /dr’/dz’p(r/’Z/;;_ Rjc) : (27)

where R = \/(r —1/)2 4 (2 — 2’)2. These integrals can be calculated exactly. They reduce to the
known integral®

/|O|O dxJy (k:\/ x? — z2) elwele = %ei’ﬂz‘ : (28)

where Jj is the zeroth-order Bessel function of the first kind. From E = —(1/0)%—? — grad® we
get the electric field

w2Ey o L w2 ;
_ *p sin 3 D —1KZ
FE = 5 snoa | COS2a + iz sin2a ) e

w2Eo cos 3 sin i
— _*p Y —1kz
E2 - 4w?  cos?a € (29)
By = —pfosing (o000 4% gin2a ) e—in®
3 — 4w? cos? a 2w?

radiated in the region z < 0. We can see that this field represents the reflected plane wave
(k — —k), and we may check easily the orthogonality of the bulk contribution to the wavevector.
We give here for convenience the bulk contribution to the radiated field:

By = (w2 /4w? cos® a)(cos B cos @, — cos Bsin p,sin f)e”*. The remaining contribution with re-
spect to equations (29) is the surface contribution (which is not transversal to the propagation
vector), arising both from the curent and charge densities. It is worth noting that this contribution
goes like 1/w? in the high-frequency limit, as does the bulk contribution. The reflection coefficient
Rin R? = |E|* /E? is given by

w? 2 _ sin? 3 w? >
P = meta) (et omer Sy [t (g5 ) sntoalp o)
p

One can see that it exhibits a singularity at the surface plasmons frequency, which, as we see in

the next section, is unphysical.

1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press (2000), pp. 714-715,
6.677; 1,2.
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5 Polaritons

In the presence of an electromagnetic wave we use the equation of motion
e e ,
wiu = —E + —Eye"* | (31)
m m

where we have preseved explicitly only the z-dependence (i.e. we leave aside the factors e’kFe=%t),
We find it convenient to employ the retarded potentials given by equations (26) and (27), instead
of Maxwell’s equations, where j —-neu and p = nedivu = ne (iku—i— %) 0(z) + neuz(0)d(z).
Obviously, these potentials are equivalent with Maxwell’s equations. We preserve the geometry
of the incident wave Ej given in the preceding section, and use the coordinates v; o given there,
as well as the components F; = kE/k, E; = k) E/k and similar ones for the external field Eo.

Under these circumstances we get the electric field

Ey = —2miner [y dz'uy (7)1~ — 2anek [)dz'ug(2") e
Ey = —27rine% Jo dz'ug () et = =7 (32)

F5 = 2mnek = JodZui ()52 0 ginlz—2'| _ 2m’ne% N dz'us(2) e =7

from the retarded potentials, where we have used equation (28) and w? = ¢>K2. Now, we employ
equation of motion (31) and get the integral equations

) 2
oy = B [yt (e — B () e £ By cos eos e
Wy = Z;C;J Jy dz'vy(2")el=#1 — < £ Ej cos (3 sin e (33)
iw2 k2
wgu _ fo dz' Ul( ){;9 em\z 2 _ lw2pH fo dZ/’lL3(Z/)€m|Z 2| e EO Slnﬁemz

for the coordinates v; 2 and ug in the region z > 0.

The second equation (33) can be solved by noticing that

92 /dz vy (el = g /dzv )e === 4 2k, (34)
z
We get

0%

8222 + (K —wi /vy =0 (35)

The solution of this equation is

. 2, (!
eEycos Bsing 2¢°kK (“2 - “) in
vy = . e’ (36)
2 2 )
mw; w

where
Ky = /K2 —wZ/c? . (37)
For k? < wf,/c2 this wave does not propagate. For % > cu;/c2 it represents a refracted wave with
the refraction angle v, given by
sin o 1
, = =1/vc. (38)
S1n &« /1 — wg/w2
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The polariton frequency corresponding to this mode is given by
wi =c2K?* = wﬁ +AK? (39)

as it is well known, where K'2 = k2 + k?. In the limit ¢ — oo equation (36) reduces to equation
(23), as expected.

The first and the third equations (33) can be solved by using the same equation (34) and by
noticing that they imply x2us = il{:%, which is the transversality condition. We get

eFq cos (3 cos @ 2¢%K? (/{’1 - /{) o

'Ul — - ez’ilz (40)

mw? W2k + 2k? (/@1 — /{)
and ;o

L cBrcoseosy 20 (xi— ) o (a1)
3 = ) / ’
mw? w2k + 2k? (/{1 — %)
where
, W2 — w2
Ky = K2 P (42)

w?k? + w2k? ’

For w < w, these waves do not propagate. For w > w, these displacement fields represent another
refracted wave, with the refraction angle o/l given by

. ’ ) -1/2
sina; (1 w? ) | (43)

sin «v w? 4 w2 tan? o

Similarly, the polariton frequency corresponding to this mode is obtained from w? = ¢*(k? + k?),
where equation (42) is used to get s as a function of ;. This is a third-order equation

! ! ]. ! i
xS — (K % cos 20, + wf,/cQ) Kt — ZK4sin2 20, (/@2 + 1) =0 (44)

in k2, which has only one solution. In the long-wavelength limit the polariton frequency is given
by w%(K’ —0) ~ wf, + 02/{/12, while in the short-wavelength limit it reaches the photon frequency,

wi (K" — 00) = cK', as expected (and k] — k).
The electric field propagating in the semi-infnite plasma (z > 0) can be derived straightforwardly

from equation (31) and the displacement field given above. It is easy to see that it is not anymore
transversal to its wavevector, due to the change x — k.

In order to get the reflected wave (the region z < 0) we turn to equation (32) and use therein the
solutions given above for v; 5 and us. We get straightforwardly the fields
1— ftan®*a 1—f _, .

. e y
1+ ftan’a 1+ f

E, = Eycos 3 cosp - (45)

where

w? + w2 tan? o

1/cu?cos?a—cuf, —wcosa
6—2/'{2 (47)
,/wQCOSQa—wg—i-wcosa

=\t (19

Ey = Eycosf3sinp -
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and B3 = kFE,/k. We can see that these fields represent the reflected wave (k — —k), and we can
check its transversality to the propagation wavevector. The reflection coefficient can be written

" 2 o2 2 2 2 ; 5
\Jw? cos? a — w2 — wcos a sin28 11— ftanZa 1—
R? = cos? Bsin? ¢ L : 25 / — f (48)
Yw?cos? a — w2 +wcosa sin“a |1+ ftan*a 14 f

We can see that there is no singularity in this function, but there are two cusps in its behaviour,
associated with the transition from the propagating regime to the damping regime. They occurr
at w? = wi and w? = wz/ cos® a where the reflection coefficient exhibits a sudden enhancement on
passing from the propagating regime to the damping one, as expected. For w? < wi the reflection
coefficient is given by

sin? 3

sin? o

R? = cos? Bsin? p + : (49)

while
sin’ 3 1

) 4
S & (\/1+sin2a—|—sina)

for w? = w?/ cos® av. Slightly above w? and w?/ cos® o the slope of the function R*(w?) is —oo.

R?* = cos® Bsin® p + 50
¥

6 Conclusions

The approach presented here is a quasi-classical one, valid for wavelengths much longer than the
amplitude of the Fourier components of the displacement field. This is not a particularly restrictive
condition. When this condition is violated, as, for instance, for wavelengths much shorter than the
mean separation distance between electrons, there appear both higher-order terms in the equations
of motion and the coupling to the individual motion of the electrons. These couplings affect in
general the dispersion relations and introduce a finite lifetime (damping) for the plasmon and
polaritons modes. Some of these questions are left for a forthcoming investigation. Several other
particular issues, as the derivation of the van der Waals force from the fluctuations of the surface
plasmons, surface impedance, surface plasmons radiative decay, response to point-like charges,
etc, may get a new, more accurate aspect by means of the results presented here.
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