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tPlasmon and polariton modes are derived for a half-spa
e (semi-in�nite) plasma by usinga general, unifying pro
edure as based on the equations of motion and suitable boundary 
on-ditions. Previous results are rederived in mu
h a simpler manner and new ones are obtained.The approa
h is based on representing the 
harge disturban
es by a displa
ement �eld in thepositions of the moving parti
les (ele
trons). The diele
tri
 response and the ele
tron energyloss are 
omputed. The propagation of an ele
tromagneti
 wave in the semi-in�nite plasmais treated by using the retarded ele
tromagneti
 potentials, and the re�e
ted and refra
tedwaves are 
omputed, as well as the re�e
tion 
oe�
ient. It is shown that there exist two wavesin the semi-in�nite plasma, either damped or propagating. Although there is no singularity inthe re�e
tion 
oe�
ient, it exhibits an enhan
ement on passing from the propagating regimeto the damped one.1 Introdu
tionAfter the dis
overy of bulk plasmons in an in�nite ele
tron plasma,[1℄-[3℄ there was a great dealof interest in plasmons propagating in stru
tures with spe
ial geometries, like a half-spa
e (semi-in�nite) plasma, a plasma slab of �nite thi
kness, a two-plasmas interfa
e (two plasmas boundingea
h other), a slab with a 
ilindri
al hole, stru
tures with surfa
e gratings or regular holes pat-terns, layered �lms, 
ilindri
al rods and spheri
al parti
les, et
. There is a vast literature onvarious stru
tures with spe
ial geometries exhibiting plasmon modes. These studies were aimedmainly at identifying new plasmon modes, like the surfa
e plasmons,[4℄-[7℄ a

ounting for theele
tron energy loss experiments and exploring the intera
tion of the ele
tron plasma with ele
tro-magneti
 radiation (plasmon-polariton ex
itations).[8℄-[13℄ More re
ently, a possible enhan
ementof the ele
tromagneti
 radiation s
attered on ele
tron plasma with various geometries enjoyed aparti
ular interest. In all these studies the plasmon and polaritons modes are of fundamentalimportan
e.[14, 15℄ The methods used in deriving su
h results were of great diversity, resortingoften to parti
ular assumptions, su
h that the basi
 underlying me
hanism of plasmons or po-laritons' o

urren
e is often obs
ured. The need is therefore felt of having a general, unifyingpro
edure for deriving plasmons and polaritons modes in stru
tures with spe
ial geometries, asbased on the equation of motion of the 
harge density, Maxwell's equations and the 
orrespondingboundary 
onditions. Su
h a pro
edure is presented in this paper for a semi-in�nite plasma.We represent the 
harge disturban
es as δn = −ndivu, where n is the (
onstant, uniform) 
harge
on
entration and u is a displa
ement �eld of the mobile 
harges (ele
trons). This representation is



2 J. Theor. Phys.valid for quq ≪ 1, where q is the waveve
tor and uq is the Fourier 
omponent of the displa
ement�eld. We assume a rigid neutralizing ba
kground of positive 
harge, as in the well-known jelliummodel. In the stati
 limit, i.e. for Coulomb intera
tion, the lagrangian of the ele
trons 
an bewritten as
L =

∫

dr
[

mnu̇2/2 − 1

2

∫

dr′U(|r − r′|)δn(r)δn(r′)
]

+ e
∫

drΦ(r)δn(r) , (1)where m is the ele
tron mass, U(r) = e2/r is the Coulomb energy, −e is the ele
tron 
harge and
Φ(r) is an external s
alar potential. Equation (1) leads to the equation of motion

mü = ngrad
∫

dr′U(|r − r′|)divu(r′) + egradΦ, (2)whi
h is the starting equation of our approa
h. We leave aside the damping e�e
ts.By using the Fourier transform for an in�nite plasma it is easy to see that the eigenmode of thehomogeneous equation (2) is the well-known bulk plasmon mode given by ω2
p = 4πne2/m. On theother side, in the stati
 limit, equation δn = −ndivu is equivalent with the Maxwell's equation

divEi = −4πeδn, where Ei = 4πneu is the internal ele
tri
 �eld (equal to −4πP, where P is thepolarization). Making use of the ele
tri
 indu
tion D = −gradΦ = ε(D + Ei), where ε is thediele
tri
 
onstant, we get the well-known diele
tri
 fun
tion ε = 1−ω2
p/ω

2 in the long-wavelengthlimit from the solution of the inhomogeneous equation (2). Similarly, sin
e the 
urrent density is
j = −enu̇, we get the well-known ele
tri
al 
ondu
tivity σ = iω2

p/4πω, by solving equation (2).We apply this approa
h to a semi-in�nite plasma, and, after deriving the surfa
e and bulk plasmonmodes, 
ompute the diele
tri
 response and the ele
tron energy loss. Further on, we 
onsider theintera
tion with the ele
tromagneti
 �eld, as des
ribed by the usual term (1/c)
∫

drjA − ∫

drρΦin the lagrangian, where A is the ve
tor potential, ρ = endivu is the 
harge density and Φ is thes
alar potential. We limit ourselves to the intera
tion with the ele
tri
 �eld (the non-relativisti
limit), and 
ompute the re�e
ted and refra
ted waves, as well as the re�e
tion 
oe�
ient. We �ndit more 
onvenient to use the retarded potentials, whi
h are equivalent with Maxwell's equations,instead of using dire
tly the later. It is shown that there are two types of ele
tromagneti
 wavesin a semi-in�nite plasma, either damped or propagating, and the region in the waveve
tor spa
e
orresponding to their parti
ular behaviour is determined. Although the re�e
tion 
oe�
ient hasno singularity, it exhibits nevertheless a enhan
ement on passing from the propagating to thedamping regime, as expe
ted. The present approa
h 
an be extended to various other stru
tureswith spe
ial geometries.2 Plasma eigenmodesWe 
onsider a semi-in�nite plasma extending over the half-spa
e z > 0. The displa
ement �eld uis then represented as (v, u3)θ(z), where v is the displa
ement 
omponent in the (x, y)-plane, u3is the the displa
ement 
omponent along the z-dire
tion and θ(z) = 1 for z > 0 and θ(z) = 0 for
z < 0 is the step fun
tion. In equation of motion (2) divu 
an then be repla
ed by

divu =

(

divv +
∂u3

∂z

)

θ(z) + u30δ(z) , (3)where u30 = u3(r, z = 0), r being the in-plane (x, y) position ve
tor. Equation (2) be
omes



J. Theor. Phys. 3
mü = ne2grad

∫

dr′dz′ 1√
(r−r′)2+(z−z′)2

[

divv(r′.z′) + ∂u3(r′,z′)
∂z′

]

+

+ne2grad
∫

dr′ 1√
(r−r′)2+z2

u3(r
′, 0) + egradΦ

(4)for z > 0. One 
an see the depolarizing �eld o

urring at the free surfa
e z = 0 in equation (4).We use the Fourier transforms of the type
u(r, z; t) =

∑

k

∫

dωu(k, z; ω)eikre−iωt (5)(for unit area in the plane), as well as the Fourier representation
1√

r2 + z2
=
∑

k

2π

k
e−k|z|eikr (6)for the Coulomb potential. Then, it is easy to see that equation of motion (4) leads to

ω2v =
1

2
ω2

p

∫ ∞

0
dz′

(

kv − 1

k

∂2v

∂z′2

)

e−k|z−z′| − 1

2k
ω2

pv
′

0e
−kz − iek

m
Φ (7)and iku3 = ∂v

∂z
, where we have dropped out for simpli
ity the arguments k, z and ω and v

′

0 =
∂v
∂z

∣

∣

∣

z=0
. The v-
omponent of the displa
ement �eld is dire
ted along the waveve
tor k (in-planelongitudinal waves). This equation 
an easily be solved. Integrating by parts in its rhs we get

ω2v = ω2
pv − 1

2
ω2

pv0e
−kz − iek

m
Φ , (8)hen
e

v =
iekω2

p

2m
Φ0

(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − iek
m

Φ
ω2−ω2

p

u3 = −ekω2
p

2m
Φ0

(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − e
m

Φ
′

ω2−ω2
p

(9)where Φ0 = Φ(k, z = 0; ω) and Φ
′
= ∂Φ

∂z
.The solutions given by equation (9) exhibit two eigenmodes, the bulk plasmon ωb = ωp and thesurfa
e plasmon ωs = ωp/

√
2, as it is well-known.[4, 5℄ Indeed, the homogeneous equation (8)(Φ = 0) has two solutions: the surfa
e plasmon v = v0e

−kz for ω2 = ω2
p/2 and the bulk plasmon

v0 = 0 for ω2 = ω2
p. Making use of this observation we 
an represent the general solution as aneigenmodes series

v(k, z) =
√

2kv0(k)e−kz +
√

2
∑

κ

v(k, κ) sin κz , (10)for z > 0, where v(k,−κ) = −v(k, κ), and iku3w(k, z) = ∂v(k,z)
∂z

. Then, it is easy to see that thehamiltonian H = T +U 
orresponding to the lagrangian L = T −U given by equation (1) be
omes
T = nm

∑

k v̇∗
0(k)v̇0(k) + nm

∑

kκ

(

1 − κ2

k2

)

v̇∗(k, κ)v̇(k, κ)

U = 2πn2e2∑

k v∗
0(k)v0(k) + 4πn2e2∑

kκ

(

1 − κ2

k2

)

v∗(k, κ)v(k, κ) ,

(11)where T is the kineti
 energy and U is the potential energy. We 
an see that this hamiltonian
orresponds to harmoni
 os
illators with frequen
ies ωs = ωp/
√

2 and ωb = ωp.



4 J. Theor. Phys.It is worth noting what happens if the surfa
e of this semi-in�nite plasma is 
overed with adiele
tri
 with diele
tri
 
onstant ε. It is easy to see that the diele
tri
 brings a surfa
e polarizationproportional to 1/ε− 1, so the surfa
e displa
ement gets an additional 
ontribution (1/ε− 1)v0 inequation (8), leading to a total surfa
e displa
ement v0/ε. The surfa
e plasmon is then modi�edto ω = ωp

√

1 − 1/2ε.Making use of Ei = 4πneu and of equations (9) we 
an write down the internal �elds (polarization)as
E⊥(k, z; ω) =

ikω4
p
Φ0(k,0;ω)

2(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − ikω2
p
Φ(k,z;ω)

ω2−ω2
p

E‖(k, z; ω) = − kω4
p
Φ0(k,0;ω)

2(ω2−ω2
p
)(ω2−ω2

p
/2)

e−kz − ω2
p
Φ

′
(k,z;ω)

ω2−ω2
p

(12)where E⊥ is dire
ted along the in-plane waveve
tor k and E‖ is parallel with the z-axis (perpen-di
ular to the surfa
e z = 0).We take an external potential of the form Φ(k, z) = Φ0(k)eiκz (leaving aside the frequen
y argu-ment ω), and get the ele
tri
 indu
tion D⊥(k, z) = −ikΦ0(k)eiκz and D‖(k, z) = −iκΦ0(k)eiκzfrom D = −gradΦ. Then, we 
an see that the surfa
e terms do not 
ontribute to the response,as expe
ted, and, making use of Ei = (1/ε − 1)D, we get the well-known diele
tri
 fun
tion
ε(κ, ω) = 1 − ω2

p/ω
2 in the long-wavelength limit.3 Ele
tron energy lossIt is well known that the energy loss per unit time (stopping power) is given by

P =
d

dt

(

mv2

2

)

= −evEi , (13)for an ele
tron moving with velo
ity v = (v⊥, v‖), where the �eld Ei is taken at r = v⊥t and
z = v‖t for t > 0 (z > 0). It is assumed that the ele
tron energy is su�
iently large and theenergy loss is small enough to use a 
onstant v in estimating the rhs of equation (13). Thepotential 
reated by this ele
tron is given by the Poisson equation ∆Φ = 4πeδ(r−v⊥t)δ(z − v‖t),when
e, by making use of the Fourier representation (6), we get

Φ(k, z; ω) = − 2ev‖
(ω − kv⊥)2 + k2v2

‖

e−i(kv⊥−ω)z/v‖ . (14)We introdu
e this potential in equation (12) and 
ompute the energy loss. It 
ontains two 
ontri-butions, one asso
iated with the bulk plasmons,
Pb = e2ω2

p

∑

k

∫

dω
iω

ω2
p − ω2

· 2v‖
(ω − kv⊥)2 + k2v2

‖

, (15)and another arising from surfa
e e�e
ts,
Ps = e2ω4

p

∑

k

∫

dω
1

(ω2 − ω2
p/2)(ω2 − ω2

p)
· v‖(ikv⊥ − kv‖)

(ω − kv⊥)2 + k2v2
‖

e−kv‖tei(kv⊥−ω)t . (16)Both 
ontributions 
an be 
al
ulated straightforwardly. We get the well-known result Pb =
(

−e2ω2
pv‖/2v2

)

ln(vk0/ωp), where k0 is a maximum 
ut-o� waveve
tor (asso
iated with the ioniza-tion energy, or with the inverse of the mean inter-parti
le spa
ing), and
Ps = −2π

e2ωpv‖
v2t

(√
2 sin ωpt/

√
2 − sin ωpt

) (17)



J. Theor. Phys. 5for ωp ≪ vk. We 
an see the os
illatory behaviour of the stopping power arising from the surfa
ee�e
ts in the transient regime near the surfa
e.4 Ele
tromagneti
 radiationWe assume a plane wave in
ident on the plasma surfa
e under angle α. Its frequen
y is givenby ω = cK, where c is the velo
ity of light and the waveve
tor K = (k, κ) has the in-plane
omponent k and the perpendi
ular-to-plane 
omponent κ, su
h as k = K sin α and κ = K cos α.In addition, k = k(cos ϕ, sin ϕ). The ele
tri
 �eld is taken as E = E0(cos β, 0,− sin β)eikreiκze−iωt,su
h as cos β sin α cos ϕ − sin β cos α = 0 (transversality 
ondition KE0 = 0). In spite of the fa
tthat the ele
trons are a
ted by a propagating wave, we still use the Coulomb intera
tion betweenthem (stati
 limit), whi
h is unphysi
al. Consequently, some features of the results given in thisse
tion are unphysi
al. Nevertheless, we present here su
h a treatment, in order to show the mainte
hni
al points involved in the next se
tion, where the 
orre
t treatment is given.Starting from equation (2) and using the Fourier representation (6), we write down the equationsof motion similar with those given by equation (7). It is 
onvenient to use the proje
tions of thein-plane displa
ement �eld v on the ve
tor k and on the ve
tor k⊥ = k(− sin ϕ, cos ϕ). We denotethese 
omponents by v1 = kv/k and v2 = k⊥v/k. Leaving aside the irrelevant arguments k and
ω (and making an integration by parts in order to remove some expli
it surfa
e terms) we get theequations of motion

ω2v1(z) = 1
2
kω2

p

∫∞
0 dz′v1(z

′)e−k|z−z′|+

+ i
2
ω2

p

∫∞
0 dz′u3(z

′) ∂
∂z′

e−k|z−z′| + e
m

E0(z) cos β cos ϕ ,
(18)

ω2u3(z) = − i
2
ω2

p

∫∞
0 dz′v1(z

′) ∂
∂z

e−k|z−z′|+

+ 1
2k

ω2
p

∫∞
0 dz′u3(z

′) ∂2

∂z∂z′
e−k|z−z′| − e

m
E0(z) sin β

(19)and
ω2v2(z) = − e

m
E0(z) cos β sin ϕ . (20)Equation (20) is already solved. Equations (18) and (19) 
an be solved easily by noting that theyimply the relationship

∂v1

∂z
= iku3 +

e

mω2

(

ikE0 sin β +
∂E0

∂z
cos β cos ϕ

)

. (21)For a plane wave E0(z) = E0e
iκz we get

v1 =
ieω2

pE0 sin β

mω2(2ω2 − ω2
p)

e−kz +
eE0 cos β cos ϕ

mω2
eiκz , (22)

v2 = −eE0 cos β sin ϕ

mω2
eiκz (23)and

u3 = −
eω2

pE0 sin β

mω2(2ω2 − ω2
p)

e−kz − eE0 sin β

mω2
eiκz . (24)



6 J. Theor. Phys.We 
an see that the displa
ement �eld exhibits both a surfa
e term (∼ e−kz), with a resonan
eat the frequen
y of the surfa
e plasmons, and a bulk term (∼ eiκz). The bulk plasmons areabsent, in a

ordan
e with their longitudinal 
hara
ter. In addition, the bulk 
ontribution tothe displa
ement �eld is transversal to the propagation waveve
tor K, as it is produ
ed by thetransversal external ele
tri
 �eld.We pass now to 
omputing the radiation �eld. The displa
ements given above 
an be representedas
v1(r, z; t) = v1se

ikre−kze−iωt + v1be
ikreiκze−iωt , (25)and similarly for v2 and u3, where the amplitudes v1s,b, v2s,b and u3s,b are given by equations(22)-(24). These �elds produ
e a 
urrent density j = −enu̇θ(z)eikre−iωt and a 
harge density

ρ = endivu = enu30δ(z)eikre−iωt arising from the surfa
e polarization. It is worth noting that thebulk 
harge (ikv + ∂u3

∂z

)

θ(z) is vanishing, as expe
ted. The 
urrent and 
harge density gives riseto a ve
tor potential
A(r, z; t) =

1

c

∫

dr′
∫

dz′
j(r′, z′; t − R/c)

R
(26)and a s
alar potential

Φ(r, z; t) =
∫

dr′
∫

dz′
ρ(r′, z′; t − R/c)

R
, (27)where R =

√

(r− r′)2 + (z − z′)2. These integrals 
an be 
al
ulated exa
tly. They redu
e to theknown integral1
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (28)where J0 is the zeroth-order Bessel fun
tion of the �rst kind. From E = −(1/c)∂A

∂t
− gradΦ weget the ele
tri
 �eld

E1 =
ω2

p
E0

2ω2

sinβ
sin 2α

(

cos 2α + i
ω2

p

2ω2 sin 2α
)

e−iκz

E2 = −ω2
p
E0

4ω2

cos β sinϕ
cos2 α

e−iκz

E3 = −ω2
p
E0

4ω2

sinβ
cos2 α

(

cos 2α + i
ω2

p

2ω2 sin 2α
)

e−iκz

(29)
radiated in the region z < 0. We 
an see that this �eld represents the re�e
ted plane wave(κ → −κ), and we may 
he
k easily the orthogonality of the bulk 
ontribution to the waveve
tor.We give here for 
onvenien
e the bulk 
ontribution to the radiated �eld:
Eb = (ω2

p/4ω2 cos2 α)(cos β cos ϕ,− cos β sin ϕ, sin β)e−iκz. The remaining 
ontribution with re-spe
t to equations (29) is the surfa
e 
ontribution (whi
h is not transversal to the propagationve
tor), arising both from the 
urent and 
harge densities. It is worth noting that this 
ontributiongoes like 1/ω2 in the high-frequen
y limit, as does the bulk 
ontribution. The re�e
tion 
oe�
ient
R in R2 = |E|2 /E2

0 is given by
R2 =

(

ω2
p

4ω2 cos2 α

)2






cos2 β sin2 ϕ +
sin2 β

sin2 α



cos2 2α +

(

ω2
p

2ω2 − ω2
p

)2

sin2 2α











. (30)One 
an see that it exhibits a singularity at the surfa
e plasmons frequen
y, whi
h, as we see inthe next se
tion, is unphysi
al.1I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Produ
ts, A
ademi
 Press (2000), pp. 714-715,6.677; 1,2.



J. Theor. Phys. 75 PolaritonsIn the presen
e of an ele
tromagneti
 wave we use the equation of motion
ω2u =

e

m
E +

e

m
E0e

iκz , (31)where we have preseved expli
itly only the z-dependen
e (i.e. we leave aside the fa
tors eikre−iωt).We �nd it 
onvenient to employ the retarded potentials given by equations (26) and (27), insteadof Maxwell's equations, where j=-neu̇ and ρ = nedivu = ne
(

iku + ∂u3

∂z

)

θ(z) + neu3(0)δ(z).Obviously, these potentials are equivalent with Maxwell's equations. We preserve the geometryof the in
ident wave E0 given in the pre
eding se
tion, and use the 
oordinates v1,2 given there,as well as the 
omponents E1 = kE/k, E2 = k⊥E/k and similar ones for the external �eld E0.Under these 
ir
umstan
es we get the ele
tri
 �eld
E1 = −2πineκ

∫

0 dz′u1(z
′)eiκ|z−z′| − 2πnek

κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′|

E2 = −2πine ω2

c2κ

∫

0 dz′u2(z
′)eiκ|z−z′|

E3 = 2πnek
κ

∫

0 dz′u1(z
′) ∂

∂z
eiκ|z−z′| − 2πinek2

κ

∫

0 dz′u3(z
′)eiκ|z−z′|

(32)from the retarded potentials, where we have used equation (28) and ω2 = c2K2. Now, we employequation of motion (31) and get the integral equations
ω2v1 = − iω2

p
κ

2

∫

0 dz′v1(z
′)eiκ|z−z′| − ω2

p
k

2κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′| + e

m
E0 cos β cos ϕeiκz

ω2v2 = − iω2
p
ω2

2c2κ

∫

0 dz′v2(z
′)eiκ|z−z′| − e

m
E0 cos β sin ϕeiκz

ω2u3 =
ω2

p
k

2κ

∫

0 dz′v1(z
′) ∂

∂z
eiκ|z−z′| − iω2

p
k2

2κ

∫

0 dz′u3(z
′)eiκ|z−z′| − e

m
E0 sin βeiκz

(33)for the 
oordinates v1,2 and u3 in the region z > 0.The se
ond equation (33) 
an be solved by noti
ing that
∂2

∂z2

∫

0
dz′v2(z

′)eiκ|z−z′| = −κ2
∫

0
dz′v2(z

′)eiκ|z−z′| + 2iκv2 . (34)We get
∂2v2

∂z2
+ (κ2 − ω2

p/c
2)v2 = 0 (35)The solution of this equation is

v2 =
eE0 cos β sin ϕ

mω2
p

·
2c2κ

(

κ
′

2 − κ
)

ω2
eiκ

′

2
z , (36)where

κ
′

2 =
√

κ2 − ω2
p/c

2 . (37)For κ2 < ω2
p/c

2 this wave does not propagate. For κ2 > ω2
p/c

2 it represents a refra
ted wave withthe refra
tion angle α
′

2 given by
sin α

′

2

sin α
=

1
√

1 − ω2
p/ω

2
= 1/

√
ε . (38)



8 J. Theor. Phys.The polariton frequen
y 
orresponding to this mode is given by
ω2

2 = c2K2 = ω2
p + c2K

′2 , (39)as it is well known, where K
′2 = κ

′2
2 + k2. In the limit c → ∞ equation (36) redu
es to equation(23), as expe
ted.The �rst and the third equations (33) 
an be solved by using the same equation (34) and bynoti
ing that they imply κ2u3 = ik ∂v1

∂z
, whi
h is the transversality 
ondition. We get

v1 = −eE0 cos β cos ϕ

mω2
p

·
2c2κ2

(

κ
′

1 − κ
)

ω2κ + c2k2
(

κ
′

1 − κ
)eiκ

′

1
z (40)and

u3 =
eE0 cos β cos ϕ

mω2
p

·
2c2kκ

′

1

(

κ
′

1 − κ
)

ω2κ + c2k2
(

κ
′

1 − κ
)eiκ

′

1
z , (41)where

κ
′

1 = κ2

√

√

√

√

ω2 − ω2
p

ω2κ2 + ω2
pk

2
. (42)For ω < ωp these waves do not propagate. For ω > ωp these displa
ement �elds represent anotherrefra
ted wave, with the refra
tion angle α

′

1 given by
sin α

′

1

sin α
=

(

1 − ω2
p

ω2 + ω2
p tan2 α

)−1/2

. (43)Similarly, the polariton frequen
y 
orresponding to this mode is obtained from ω2
1 = c2(κ2 + k2),where equation (42) is used to get κ as a fun
tion of κ

′

1. This is a third-order equation
κ6 −

(

K
′2 cos 2α

′

1 + ω2
p/c

2
)

κ4 − 1

4
K

′4 sin2 2α
′

1

(

κ2 + 1
)

= 0 (44)in κ2, whi
h has only one solution. In the long-wavelength limit the polariton frequen
y is givenby ω2
1(K

′ → 0) ≃ ω2
p + c2κ

′2
1 , while in the short-wavelength limit it rea
hes the photon frequen
y,

ω1(K
′ → ∞) = cK

′, as expe
ted (and κ
′

1 → κ).The ele
tri
 �eld propagating in the semi-infnite plasma (z > 0) 
an be derived straightforwardlyfrom equation (31) and the displa
ement �eld given above. It is easy to see that it is not anymoretransversal to its waveve
tor, due to the 
hange κ → κ
′

1.In order to get the re�e
ted wave (the region z < 0) we turn to equation (32) and use therein thesolutions given above for v1,2 and u3. We get straightforwardly the �elds
E1 = E0 cos β cos ϕ · 1 − f tan2 α

1 + f tan2 α
· 1 − f

1 + f
e−iκz , (45)where

f =

√

√

√

√

ω2 − ω2
p

ω2 + ω2
p tan2 α

, (46)
E2 = E0 cos β sin ϕ ·

√

ω2 cos2 α − ω2
p − ω cos α

√

ω2 cos2 α − ω2
p + ω cos α

e−iκz (47)
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an see that these �elds represent the re�e
ted wave (κ → −κ), and we 
an
he
k its transversality to the propagation waveve
tor. The re�e
tion 
oe�
ient 
an be writtenas
R2 = cos2 β sin2 ϕ

∣

∣

∣

∣

∣

∣

√

ω2 cos2 α − ω2
p − ω cos α

√

ω2 cos2 α − ω2
p + ω cos α

∣

∣

∣

∣

∣

∣

2

+
sin2 β

sin2 α

∣

∣

∣

∣

∣

1 − f tan2 α

1 + f tan2 α
· 1 − f

1 + f

∣

∣

∣

∣

∣

2

. (48)We 
an see that there is no singularity in this fun
tion, but there are two 
usps in its behaviour,asso
iated with the transition from the propagating regime to the damping regime. They o

urrat ω2 = ω2
p and ω2 = ω2

p/ cos2 α where the re�e
tion 
oe�
ient exhibits a sudden enhan
ement onpassing from the propagating regime to the damping one, as expe
ted. For ω2 ≤ ω2
p the re�e
tion
oe�
ient is given by

R2 = cos2 β sin2 ϕ +
sin2 β

sin2 α
, (49)while

R2 = cos2 β sin2 ϕ +
sin2 β

sin2 α
· 1
(√

1 + sin2 α + sin α
)4 (50)for ω2 = ω2

p/ cos2 α. Slightly above ω2
p and ω2

p/ cos2 α the slope of the fun
tion R2(ω2) is −∞.6 Con
lusionsThe approa
h presented here is a quasi-
lassi
al one, valid for wavelengths mu
h longer than theamplitude of the Fourier 
omponents of the displa
ement �eld. This is not a parti
ularly restri
tive
ondition. When this 
ondition is violated, as, for instan
e, for wavelengths mu
h shorter than themean separation distan
e between ele
trons, there appear both higher-order terms in the equationsof motion and the 
oupling to the individual motion of the ele
trons. These 
ouplings a�e
t ingeneral the dispersion relations and introdu
e a �nite lifetime (damping) for the plasmon andpolaritons modes. Some of these questions are left for a forth
oming investigation. Several otherparti
ular issues, as the derivation of the van der Waals for
e from the �u
tuations of the surfa
eplasmons, surfa
e impedan
e, surfa
e plasmons radiative de
ay, response to point-like 
harges,et
, may get a new, more a

urate aspe
t by means of the results presented here.Referen
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