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ients1 Introdu
tionAfter the dis
overy of bulk plasmons in an in�nite ele
tron plasma,[1℄-[3℄ there was a great dealof interest in plasmons o

urring in stru
tures with spe
ial geometries, like a half-spa
e (semi-in�nite) plasma, a plasma slab of �nite thi
kness, a two-plasmas interfa
e (two plasmas boundingea
h other), a two-dimesional sheet with an aperture, a slab with a 
ilindri
al hole, stru
tures withsurfa
e gratings or regular holes patterns, layered �lms, 
ilindri
al rods and spheri
al parti
les,et
. There is a vast literature on various stru
tures with spe
ial geometries exhibiting plasmonmodes. These studies were aimed mainly at identifying new plasmon modes, like the surfa
e
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ounting for the ele
tron energy loss experiments and exploring the intera
-tion of the ele
tron plasma with ele
tromagneti
 radiation (polariton ex
itations).[12℄-[24℄ Morere
ently, a possible enhan
ement of the ele
tromagneti
 radiation s
attered on ele
tron plasmaswith spe
ial geometries enjoyed a parti
ular interest.[25℄-[27℄ In all these studies the plasmon andpolariton modes are of fundamental importan
e.[28℄-[32℄ The methods used in deriving su
h resultsare of great diversity, resorting often to parti
ular assumptions, su
h that the basi
 underlyingme
hanism of plasmons or polaritons' o

urren
e is often obs
ured. The need is therefore felt ofhaving a general, unifying pro
edure for deriving plasmon and polariton modes in stru
tures withspe
ial geometries, as based on the equation of motion of the 
harge density, Maxwell's equationsand the 
orresponding boundary 
onditions. Su
h a pro
edure is presented in this paper for anideal semi-in�nite plasma and an ideal plasma slab.We represent the 
harge disturban
es as δn = −ndivu, where n is the (
onstant, uniform) 
harge
on
entration and u is a displa
ement �eld of the mobile 
harges (ele
trons). This representationis valid for Ku(K) ≪ 1, where K is the waveve
tor and u(K) is the Fourier 
omponent of thedispla
ement �eld. We assume a rigid neutralizing ba
kground of positive 
harge, as in the well-known jellium model. In the stati
 limit, i.e. for Coulomb intera
tion, the lagrangian of theele
trons 
an be written as
L =

∫

dr
[

1

2
mnu̇2 − 1

2

∫

dr′U(|r − r′|)δn(r)δn(r′)
]

+ e
∫

drΦ(r)δn(r) , (1)where m is the ele
tron mass, U(r) = e2/r is the Coulomb energy, −e is the ele
tron 
harge and
Φ(r) is an external s
alar potential. Equation (1) leads to the equation of motion

mü = ngrad
∫

dr′U(|r − r′|)divu(r′) + egradΦ, (2)whi
h is the starting equation of our approa
h. We leave aside the dissipation e�e
ts (whi
h 
aneasily be in
luded in equation (2)).By using the Fourier transform for an in�nite plasma it is easy to see that the eigenmode of thehomogeneous equation (2) is the well-known bulk plasmon mode given by ω2
p = 4πne2/m. On theother side, equation δn = −ndivu is equivalent with Maxwell's equation divEi = −4πeδn, where

Ei = 4πneu is the internal ele
tri
 �eld (equal to −4πP, where P is the polarization). Making useof the ele
tri
 displa
ement D = −gradΦ = ε(D + Ei), we get the well-known diele
tri
 fun
tion
ε = 1 − ω2

p/ω
2 in the long-wavelength limit from the solution of the inhomogeneous equation (2).Similarly, sin
e the 
urrent density is j = −enu̇, we get the well-known ele
tri
al 
ondu
tivity

σ = iω2
p/4πω.We apply this approa
h to a semi-in�nite plasma and a plasma slab. First, we derive the surfa
eand bulk plasmon modes and obtain the diele
tri
 response and the ele
tron energy loss for a semi-in�nite plasma. The surfa
e 
ontribution to the energy loss exhibits an os
illatory behaviour inthe transient regime near the surfa
e. Further on, we 
onsider the intera
tion of the semi-in�niteplasma with the ele
tromagneti
 �eld, as des
ribed by the usual term (1/c)

∫

drjA− ∫ drρΦ in thelagrangian, where A is the ve
tor potential, ρ = endivu is the 
harge density and Φ is the s
alarpotential. We limit ourselves to the intera
tion with the ele
tri
 �eld, and 
ompute the re�e
tedand refra
ted waves, as well as the re�e
tion 
oe�
ient. Generalized Fresnel's relations are ob-tained for any in
iden
e angle and polarization. We �nd it more 
onvenient to use the radiationformulae for the retarded potentials, instead of using dire
tly the Maxwell's equations, and theresulting integral equations are solved. Bulk and surfa
e plasmon-polariton modes are identi�ed.The �eld inside the plasma is either damped (evanes
ent) or propagating (transparen
y regime),and the re�e
tion 
oe�
ient exhibits an abrupt enhan
ement on passing from the propagating to
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tion). Finally, we give similar results for a plasma slab, wherewe 
ompute also the transmitted �eld and the transmission 
oe�
ient. Apart from 
hara
teristi
os
illations, the re�e
tion and transmission 
oe�
ients for a plasma slab exhibit an appre
iableenhan
ement in the damped regime. The present approa
h 
an be extended to various otherplasma stru
tures with spe
ial geometries.2 Plasma eigenmodesWe 
onsider an ideal semi-in�nite plasma extending over the half-spa
e z > 0 (and bounded bythe va
uum for z < 0). The displa
ement �eld u is then represented as (v, u3)θ(z), where vis the displa
ement 
omponent in the (x, y)-plane, u3 is the displa
ement 
omponent along the
z-dire
tion and θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step fun
tion. In equation ofmotion (2) divu is then repla
ed by

divu =

(

divv +
∂u3

∂z

)

θ(z) + u3(0)δ(z) , (3)where u3(0) = u3(r, z = 0), r being the in-plane (x, y) position ve
tor. Equation (2) be
omes
mü = ne2grad

∫

dr′dz′ 1√
(r−r′)2+(z−z′)2

[

divv(r′.z′) + ∂u3(r′,z′)
∂z′

]

+

+ne2grad
∫

dr′ 1√
(r−r′)2+z2

u3(r
′, 0) + egradΦ

(4)for z > 0. One 
an see the (de)-polarizing �eld o

urring at the free surfa
e z = 0 (the se
ondintegral in equation (4)).We use Fourier transforms of the type
u(r, z; t) =

∑

k

∫

dωu(k, z; ω)eikre−iωt (5)(for in-plane unit area), as well as the Fourier representation
1√

r2 + z2
=
∑

k

2π

k
e−k|z|eikr (6)for the Coulomb potential. Then, it is easy to see that equation (4) leads to the integral equation

ω2v =
1

2
kω2

p

∫ ∞

0
dz′ve−k|z−z′| +

1

2k
ω2

p

∫ ∞

0
dz′

∂v

∂z′

∂

∂z′ e
−k|z−z′| − iek

m
Φ (7)and iku3 = ∂v

∂z
, where we have dropped out for simpli
ity the arguments k, z and ω. The v-
omponent of the displa
ement �eld is dire
ted along the waveve
tor k (in-plane longitudinalwaves). This integral equation 
an easily be solved. Integrating by parts in its rhs we get

ω2v = ω2
pv − 1

2
ω2

pv0e
−kz − iek

m
Φ , (8)hen
e

v =
iekω2

p

m
Φ0

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − iek

m
Φ

ω2−ω2
p

u3 = −ekω2
p

m
Φ0

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − e

m
Φ

′

ω2−ω2
p

(9)
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′
= ∂Φ

∂z
. One 
an see the surfa
e 
ontributions (termsproportional to Φ0e

−kz) and bulk 
ontributions (Φ, Φ
′-terms).The solutions given by equations (9) exhibit two eigenmodes, the bulk plasmon ωb = ωp and thesurfa
e plasmon ωs = ωp/

√
2, as it is well known. Indeed, the homogeneous equation (8) (Φ = 0)has two solutions: the surfa
e plasmon v = v0e

−kz for ω2 = ω2
p/2 and the bulk plasmon v0 = 0 for

ω2 = ω2
p. Making use of this observation we 
an represent the general solution as an eigenmodesseries

v(k, z) =
√

2kv0(k)e−kz +
∑

κ

√

2k2

κ2 + k2
v(k, κ) sinκz , (10)for z > 0, where v(k,−κ) = −v(k, κ), and iku3(k, z) = ∂v(k,z)

∂z
. Then, it is easy to see that thehamiltonian H = T +U 
orresponding to the lagrangian L = T −U given by equation (1) be
omes

T = nm
∑

k v̇∗
0(k)v̇0(k) + nm

∑

kκ v̇∗(k, κ)v̇(k, κ)

U = 2πn2e2∑

k v∗
0(k)v0(k) + 4πn2e2∑

kκ v∗(k, κ)v(k, κ) ,
(11)where T is the kineti
 energy and U is the potential energy. We 
an see that this hamiltonian
orresponds to harmoni
 os
illators with frequen
ies ωs = ωp/

√
2 and ωb = ωp.Making use of Ei = 4πneu and equations (9) we 
an write down the internal �eld (polarization)as

E⊥(k, z; ω) =
ikω4

pΦ(k,0;ω)

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − ikω2

pΦ(k,z;ω)

ω2−ω2
p

E‖(k, z; ω) = − kω4
pΦ(k,0;ω)

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − ω2

pΦ
′
(k,z;ω)

ω2−ω2
p

(12)where E⊥ is dire
ted along the in-plane waveve
tor k and E‖ is parallel with the z-axis (perpen-di
ular to the surfa
e z = 0). This is the diele
tri
 response of the semi-in�nite plasma to anexternal potential.We take an external potential of the form Φ(k, z) = Φ0(k)eiκz (leaving aside the frequen
y argu-ment ω), and get the ele
tri
 displa
ement D⊥(k, z) = −ikΦ0(k)eiκz and D‖(k, z) = −iκΦ0(k)eiκzfrom D = −gradΦ. We 
an see that the surfa
e terms do not 
ontribute to this response, asexpe
ted, sin
e these terms are lo
alized. Making use of Ei = (1/ε− 1)D, we get the well-knowndiele
tri
 fun
tion ε(κ, ω) = 1 − ω2
p/ω

2 in the long-wavelength limit.3 Ele
tron energy lossIt is well known that the energy loss per unit time (stopping power) is given by
P =

d

dt

(

mv2

2

)

= −evEi , (13)for an ele
tron moving with velo
ity v = (v⊥, v‖), where the �eld Ei is taken at r = v⊥t and
z = v‖t for t > 0 (z > 0). It is assumed that the ele
tron energy is su�
iently large and theenergy loss is small enough to use a 
onstant v in estimating the rhs of equation (13). Thepotential 
reated by the ele
tron is given by the Poisson equation ∆Φ = 4πeδ(r− v⊥t)δ(z − v‖t),when
e, by making use of the Fourier representation (6), we get

Φ(k, z; ω) = − 2ev‖
(ω − kv⊥)2 + k2v2

‖

e−i(kv⊥−ω)z/v‖ . (14)
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Figure 1: Ele
tromagneti
 plane wave E0, with waveve
tor K, in
ident on the surfa
e z = 0.We introdu
e this potential in equations (12) and 
ompute the energy loss given by equation (13).It 
ontains two 
ontributions, one asso
iated with the bulk plasmons,
Pb = e2ω2

p

∑

k

∫

dω
iω

ω2
p − ω2

· 2v‖
(ω − kv⊥)2 + k2v2

‖

, (15)and another arising from surfa
e e�e
ts,
Ps = e2ω4

p

∑

k

∫

dω 1
(ω2−ω2

p/2)(ω2−ω2
p)
· v‖(ikv⊥−kv‖)

(ω−kv⊥)2+k2v2

‖

×

×e−kv‖tei(kv⊥−ω)t .

(16)In performing the ω-integrations in equations (15) and (16) we retain only the plasmon 
ontribu-tions arising from the poles ω = ωp and ω = ωp/
√

2. For normal in
iden
e (v⊥ = 0, v‖ = v) we geteasily the well-known bulk 
ontribution Pb =
(

−e2ω2
p/v

)

ln(vk0/ωp), where k0 is an upper 
ut-o�(asso
iated, as usually, with the ionization energy, or with the inverse of the mean inter-parti
lespa
ing, et
), and the surfa
e 
ontribution
Ps = −e2ωp

vt

(√
2 sin ωpt/

√
2 − sin ωpt

)

. (17)We 
an see in equation (17) the os
illatory behaviour of the stopping power arising from thesurfa
e e�e
ts in the transient regime near the surfa
e.4 Intera
tion with the ele
tromagneti
 �eld. PolaritonsWe assume a plane wave in
ident on the plasma surfa
e under angle α. Its frequen
y is given by
ω = cK, where c is the velo
ity of light and the waveve
tor K = (k, κ) has the in-plane 
omponent
k and the perpendi
ular-to-plane 
omponent κ, su
h as k = K sin α and κ = K cos α. In addition,
k = k(cos ϕ, sin ϕ). The ele
tri
 �eld is taken as E0 = E0(cos β, 0,− sinβ)
×eikreiκze−iωt, and we impose the 
ondition cos β sin α cos ϕ − sin β cos α = 0 (transversality 
on-dition KE0 = 0). The angle β de�nes the dire
tion of the polarization of the in
ident �eld. Thegeometry of the in
ident wave is shown in Fig. 1.In the presen
e of an ele
tromagneti
 wave we use the equation of motion

ω2u =
e

m
E +

e

m
E0e

iκz , (18)



6 J. Theor. Phys.for z > 0, where E is the polarizing �eld; in equation (18) we have preseved expli
itly only the
z-dependen
e (i.e. we leave aside the fa
tors eikre−iωt). We �nd it 
onvenient to employ the ve
torpotential

A(r, z; t) =
1

c

∫

dr′
∫

dz′
j(r′, z′; t − R/c)

R
(19)and the s
alar potential

Φ(r, z; t) =
∫

dr′
∫

dz′
ρ(r′, z′; t − R/c)

R
, (20)where j = −neu̇θ(z)eikre−iωt is the 
urrent density,

ρ = nedivu = ne
(

ikv + ∂u3

∂z

)

θ(z)eikre−iωt + neu3(0)δ(z)eikre−iωt is the 
harge density and R =
√

(r − r′)2 + (z − z′)2. The integrals in equations (19) and (20) implies the known integral[33℄
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (21)where J0 is the zeroth-order Bessel fun
tion of the �rst kind (and ω2/c2 = κ2 + k2). It is
onvenient to use the proje
tions of the in-plane displa
ement �eld v on the ve
tors k and

k⊥ = k(− sin ϕ, cos ϕ), k⊥k = 0. We denote these 
omponents by v1 = kv/k and v2 = k⊥v/k,and use also the 
omponents E1 = kE/k, E2 = k⊥E/k and similar ones for the external �eld E0.We give here the 
omponents of the external �eld
E01 = E0 cos β cos ϕ , E02 = −E0 cos β sin ϕ , E03 = −E0 sin β . (22)One 
an 
he
k immediately the transversality 
ondition E01k + E03κ = 0. Making use of E =

−1
c

∂A

∂t
− gradΦ, equations (19) and (20) give the ele
tri
 �eld

E1 = −2πineκ
∫

0 dz′v1(z
′)eiκ|z−z′| − 2πnek

κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′| ,

E2 = −2πine ω2

c2κ

∫

0 dz′v2(z
′)eiκ|z−z′| ,

E3 = 2πnek
κ

∫

0 dz′v1(z
′) ∂

∂z
eiκ|z−z′| − 2πinek2

κ

∫

0 dz′u3(z
′)eiκ|z−z′|+

+4πneu3

(23)
for z > 0. It is worth observing in deriving these equations the non-intervertibility of the deriva-tives and the integrals, a

ording to the identity

∂

∂z

∫

0
dz

′

f(z
′

)
∂

∂z′ e
iκ

∣

∣

∣

z−z
′
∣

∣

∣

= κ2
∫

0
dz

′

f(z
′

)e
iκ

∣

∣

∣

z−z
′
∣

∣

∣ − 2iκf(z) (24)for any fun
tion f(z), z > 0; it is due to the dis
ontinuity in the derivative of the fun
tion e
iκ

∣

∣

∣
z−z

′
∣

∣

∣for z = z
′ . Now, we employ equation of motion (18) in equations (23) and get the integralequations

ω2v1 = − iω2
pκ

2

∫

0 dz′v1(z
′)eiκ|z−z′| − ω2

pk

2κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′|+

e
m

E01e
iκz ,

ω2v2 = − iω2
pω2

2c2κ

∫

0 dz′v2(z
′)eiκ|z−z′| + e

m
E02e

iκz ,

ω2u3 =
ω2

pk

2κ

∫

0 dz′v1(z
′) ∂

∂z
eiκ|z−z′| − iω2

pk2

2κ

∫

0 dz′u3(z
′)eiκ|z−z′|+

+ω2
pu3 + e

m
E03e

iκz

(25)
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oordinates v1,2 and u3 in the region z > 0.The se
ond equation (25) 
an be solved straightforwardly by noti
ing that
∂2

∂z2

∫

0
dz′v2(z

′)eiκ|z−z′| = −κ2
∫

0
dz′v2(z

′)eiκ|z−z′| + 2iκv2 . (26)We get
∂2v2

∂z2
+ (κ2 − ω2

p/c
2)v2 = 0 . (27)The solution of this equation is

v2 =
2eE02

mω2
p

·
κ
(

κ − κ
′
)

K2
eiκ

′
z , (28)where

κ
′

=
√

κ2 − ω2
p/c

2 =
1

c

√

ω2 cos2 α − ω2
p . (29)The waveve
tor κ

′
an also be written in a more familiar form
κ

′
= (ω/c)

√
ε − sin2 α, where ε = 1− ω2

p/ω
2 is the diele
tri
 fun
tion. The 
orresponding 
ompo-nent of the (total) ele
tri
 �eld (the refra
ted �eld), 
an be obtained from equation (18); it is givenby (mω2/e) v2. For κ2 < ω2

p/c
2 (ω cos α < ωp) this �eld does not propagate. For κ2 > ω2

p/c
2 (ωgreater than the transparen
y edge ωp/ cosα) it represents a refra
ted wave (transparen
y regime)with the refra
tion angle α

′ given by Snell's law
sin α

′

sin α
=

1
√

1 − ω2
p/ω

2
= 1/

√
ε . (30)The polariton frequen
y is given by

ω2 = c2K2 = ω2
p + c2K

′2 , (31)as it is well known, where K
′2 = κ

′2 + k2.The �rst and the third equations (25) 
an be solved by using an equation similar with equation(26) and by noti
ing that they imply
κ

′2u3 = ik
∂v1

∂z
. (32)We get

v1 =
2eE01

mω2
p

·
κ

′
(

κ − κ
′
)

κκ′ + k2
eiκ

′
z (33)and

u3 =
2eE03

mω2
p

·
κ
(

κ − κ
′
)

κκ′ + k2
eiκ

′
z . (34)Similarly, the 
orresponding 
omponents of the refra
ted �eld are given by equation (18). It iseasy to 
he
k the transversality 
ondition v1k + u3κ

′
= 0 (and the vanishing of the bulk 
harge

ne
(

ikv + ∂u3

∂z

)

= 0).We 
an see that the polarization �eld E in equation (18) 
an
els out the original in
ident �eld
E0 and gives the total, refra
ted �eld mω2u/e inside the plasma. This is an illustration of theso-
alled Ewald-Oseen extin
tion theorem.[17, 34℄
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Figure 2: Re�e
tion 
oe�
ient for a semi-in�nite plasma for β = π/6 and various in
iden
e angles
α. One 
an see the shoulder o

urring at the transparen
y edge ωp/ cosα and the zero o

urringat ω2 = ω2

p/ (1 − tan2 α) for α = β = π/6 (R2 = 0,ϕ = 0).It is worth investigating the eigenvalues of the homogeneous system of integral equations (25), forparameter κ given by κ =
√

ω2/c2 − k2. Su
h eigenvalues are given by the roots of the vanishingdenominator in equations (33) and (34), i.e. by equation κκ
′
+ k2 = 0. This equation has realroots for ω only for the damped regime, i.e. for κ = i |κ| and κ

′
= i

∣

∣

∣κ
′
∣

∣

∣. Providing these 
onditionsare satis�ed, there is only one a

eptable bran
h of ex
itations, given by
ω2 =

2ω2
pc

2k2

ω2
p + 2c2k2 +

√

ω4
p + 4c4k4

. (35)We 
an see that ω ∼ ck in the long wavelength limit and it approa
hes the surfa
e-plasmonfrequen
y ω ∼ ωp/
√

2 in the non-retarded limit (ck → ∞). These ex
itations are surfa
eplasmon-polariton modes. We note that they imply v2 = 0 and v1, u3 ∼ e−|κ′|z. In addition,a 
areful analysis of the homogeneous system of equations (25) reveals another bran
h of ex
i-tations, given by ω = ωp, whi
h, o

urring in this 
ontext, may be termed the bulk plasmon-polariton modes. They are 
hara
terized by v2 = 0 and v1(k, 0) = 0. For all these modes we have
u3 =

[

ic2k/
(

ω2 − c2k2 − ω2
p

)]

∂v1

∂z
.In order to get the re�e
ted wave (the region z < 0) we turn to equations (23) and use therein thesolutions given above for v1,2 and u3. It is worth noting here that the dis
ontinuity term ω2

pu3 doesnot appear anymore in these equations (be
ause z
′
> 0 and z < 0 and we 
annot have z = z

′).The integrations in equations (23) are straightforward and we get the �eld
E1 = E01

κ − κ
′

κ + κ′ ·
κκ

′ − k2

κκ′ + k2
e−iκz , (36)

E2 = E02
κ − κ

′

κ + κ′ e
−iκz (37)
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E3 = −E03

κ − κ
′

κ + κ′ ·
κκ

′ − k2

κκ′ + k2
e−iκz . (38)We 
an see that this �eld represents the re�e
ted wave (κ → −κ), and we 
an 
he
k its transver-sality to the propagation waveve
tor. Making use of the re�e
ted �eld Erefl given by equations(36)-(38) and the refra
ted �eld Erefr obtained from equations (18) and (23) (Erefr = E + E0 =

mω2u/e) one 
an 
he
k the 
ontinuity of the ele
tri
 �eld and ele
tri
 displa
ement at the surfa
e(z = 0) in the form E1,2refl +E01,2 = E1,2refr, E3refl +E03 = εE3refr, where ε = 1−ω2
p/ω

2. The an-gle of total polarization (Brewster's angle) is given by κκ
′ −k2 = 0, or tan2 α = 1−ω2

p/ω
2 = ε (for

α < π/4). The above equations provide generalized Fresnel's relations between the amplitudes ofthe re�e
ted, refra
ted and in
ident waves at the surfa
e for any in
iden
e angle and polarization.They 
an also be written by using ω2 = ω2
p/ (1 − ε), where ε is the diele
tri
 fun
tion.The re�e
tion 
oe�
ient R = |Erefl|2 / |E0|2 
an be obtained straightforwardly from the re�e
ted�elds given by equations (36)-(38). It 
an be written as

R = R1

[

cos2 β sin2 ϕ + R2

(

cos2 β cos2 ϕ + sin2 β
)]

, (39)where
R1 =

∣

∣

∣

∣

∣

∣

√

ω2 cos2 α − ω2
p − ω cos α

√

ω2 cos2 α − ω2
p + ω cos α

∣

∣

∣

∣

∣

∣

2 (40)and
R2 =

∣

∣

∣

∣

∣

∣

cos α
√

ω2 cos2 α − ω2
p − ω sin2 α

cos α
√

ω2 cos2 α − ω2
p + ω sin2 α

∣

∣

∣

∣

∣

∣

2

. (41)The �rst term in the rhs of equation (39) 
orresponds to β = 0 (ϕ = π/2; s-wave, ele
tri
 �eldperpendi
ular to the plane of in
iden
e, while the se
ond term 
orresponds to β = α (ϕ = 0;
p-wave, ele
tri
 �eld in the plane of in
iden
e). It is easy to see that there exists a 
usp (shoulder)in the behaviour of the fun
tion R(ω), o

urring at the transparen
y edge ω = ωp/ cos α, wherethe re�e
tion 
oe�
ient exhibits a sudden enhan
ement on passing from the propagating regimeto the damped one, as expe
ted (total re�e
tion). The 
ondition for total re�e
tion 
an also bewritten as sin α =

√
ε, where R = 1 (R1,2 = 1), as it is well known. For illustration, the re�e
tion
oe�
ient is shown in Fig. 2 for β = π/6 and various in
iden
e angles. The re�e
tion 
oe�
ientis vanishing at ω2 = ω2

p/ (1 − tan2 α) for α = β < π/4 (R2 = 0, ϕ = 0).5 Plasma slabWe 
onsider an ideal plasma slab of thi
kness d, extending over the region 0 < z < d and boundedby the va
uum. The displa
ement �eld u 
an be represented as (v, u3) [θ(z) − θ(z − d)], where vis the displa
ement 
omponent in the (x, y)-plane and u3 is the displa
ement 
omponent along the
z-dire
tion. The approa
h presented above for a semi-in�nite plasma 
an easily be extended tothis 
ase. The analogous of the equation of motion (4) exhibits now two polarization 
ontributions,arising from the two surfa
es. The diele
tri
 response similar to equation (9) is given by

v =
iekω2

p

m
· (2ω2−ω2

p)Φ0−ω2
pΦde−kd

(ω2−ω2
p)[2ω2−ω2

p(1−e−kd)][2ω2−ω2
p(1+e−kd)]

e−kz+

+
iekω2

p

m
· (2ω2−ω2

p)Φd−ω2
pΦ0e−kd

(ω2−ω2
p)[2ω2−ω2

p(1−e−kd)][2ω2−ω2
p(1+e−kd)]

ekz−kd − iek
m

Φ
ω2−ω2

p

(42)
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Figure 3: Re�e
tion 
oe�
ient for a slab of thi
kness d (dωp/c = 1) for β = 0, ϕ = π/2 (s-wave)and a few in
iden
e angles α. Its slope is 
ontinuous at the transparen
y edge (ω cos α = ωp).The os
illations o

urring in the transparen
y regime are too small to be visible in Figure.and iku3 = ∂v
∂z
, where Φ0 = Φ(z = 0), Φd = Φ(z = d), 0 < z < d. The ele
tri
 �eld is givenby E⊥ = 4πnev and E‖ = 4πneu3. One 
an see that, beside the bulk plasmon mode ω2

p, thereappears two surfa
e modes given by ω2
p

(

1 ± e−kd
)

/2, as it is well known. For d → ∞ equation(42) be
omes the �rst equation (9) for the semi-in�nite plasma. For d → 0 we get the well-knownplasma frequen
y √(2πnse2/m) k for a sheet with surfa
e ele
tron density ns = nd.The bulk 
ontribution to the energy loss is the same as for the semi-in�nite plasma. We 
omputethe surfa
e 
ontrbution to the ele
tron energy loss for kd ≫ ωpd/v ≫ 1, i.e. for a fast ele
tronmoving with velo
ity v, whi
h, however, spends enough time in the sample to ex
ite plasmons.For normal in
iden
e the surfa
e 
ontribution 
onsists of two os
illatory terms
Ps = −e2ωp

vt

(√
2 sin ωpt/

√
2 − sin ωpt

)

−

− e2ωp

d−vt

[√
2 sin ωp (d/v − t) /

√
2 − sin ωp (d/v − t)

]

,

(43)
orresponding to the two surfa
es, for 0 < t < d/v. The total energy loss during the passagethrough the slab is given by
∫ d/v

0
dtPs ≃

∫ ∞

0
dtPs = −π

(√
2 − 1

) e2ωp

v
. (44)We use again the equation of motion (18) and the retarded potentials given by equations (19) and(20) in order to get the refra
ted �eld (�eld inside the slab), re�e
ted (z < 0) and transmitted(z > d) �elds. The polarization �eld is given by the same equations (23), where the z-integrationis limited to the region 0 < z < d. The same holds for the equations of motion (25). We solvethese equations by the same method used above. Within the slab we have two waves of the form

e±iκ
′
z, one being the refra
ted wave through the �rst surfa
e (z = 0), the other being the re�e
ted
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Figure 4: Re�e
tion 
oe�
ient for a slab of thi
kness d (dωp/c = 1) for α = β, ϕ = 0 (p-wave) anda few in
iden
e angles α. It exhibits a lo
al maximum (R = 1) for ω = ωp and small os
illationsin the transparen
y region ω cos α > ωp (too small to be visible in Figure). In addition, it isvanishing for ω2 = ω2
p/ (1 − tan2 α), α < π/4, as one 
an see in Figure for α = π/6 (
urve a).wave on the se
ond surfa
e (z = d). The waveve
tor κ

′ is given by the same equation (29), andthe transparen
y edge is given by the same 
ondition ω cos α = ωp as for a semi-in�nite plasma.We get
v2 = A2

[

eiκ
′
z − κ − κ

′

κ + κ′ e
2iκ

′
d · e−iκ

′
z

]

, (45)where
A2 =

2eE02

mω2
p

·
κ
(

κ − κ
′
) (

κ + κ
′
)2

K2
[

(κ + κ′)2 − (κ − κ′)2 e2iκ′d
] , (46)and

v1 = A1

[

eiκ
′
z − κ − κ

′

κ + κ′ ·
κκ

′ − k2

κκ′ + k2
e2iκ

′
d · e−iκ

′
z

]

, (47)where
A1 =

2eE01

mω2
p

·
κ

′
(

κ − κ
′
) (

κ + κ
′
)2 (

κκ
′
+ k2

)

(κ + κ′)2 (κκ′ + k2)2 − (κ − κ′)2 (κκ′ − k2)2 e2iκ′d
; (48)the third 
omponent 
an be obtained from κ

′2u3 = ik (∂v1/∂z). One 
an 
he
k the transversalityof these waves and 
an 
ompute the dispersion relations for the eigenvalues (bulk and surfa
eplasmon-polaritons) in the like manner as for the semi-in�nite plasma.The re�e
ted �eld is given by
E1 = E01

(

1 − e2iκ
′
d

)

(

κ2−κ
′
2

)(

κ2κ
′
2−k4

)

(κ+κ′)
2

(κκ′+k2)
2

−(κ−κ′)
2

(κκ′−k2)
2

e2iκ
′
d
e−iκz ,

E2 = E02

(

1 − e2iκ
′
d

)

κ2−κ
′
2

(κ+κ′)
2

−(κ−κ′)
2

e2iκ
′
d
e−iκz

(49)
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Figure 5: Transmission 
oe�
ient for a slab of thi
kness d (dωp/c = 1) for β = 0, ϕ = π/2 (s-wave) and a few in
iden
e angles α. One 
an see the 
hara
teristi
 
usp at the transparen
y edge
ω cos α = ωp and the peak o
urring below this edge. The os
illations o

urring in the transparen
yregime are too small to be visible in Figure.and E3 = −E03 (E1/E01).From the above results one 
an 
he
k the 
ontinuity of the ele
tri
 �eld and ele
tri
 displa
ementas well as the angle of total polarization given by tan2 α = 1 − ω2

p/ω
2 = ε. If we take formally

e2iκ
′
d → 0 we re
over all the �elds for the semi-in�nite plasma. Indeed, for the semi-in�nite plasmaall the integrations to z → ∞ are taken by assuming a vanishing fa
tor e−µz, µ > 0, and letting

µ go to zero. If we preserve this fa
tor for the slab, it gives rise to fa
tors of the form e2iκ
′
de−µd,whi
h are vanishing for d → ∞. The limit d → 0 (plasma sheet) 
annot be taken dire
tly on theabove results (ωp ∼ 1/

√
d, κ

′ ∼ iωp/c), be
ause of the dis
ontinuities arising from the θ-fun
tion.The 
al
ulations for a plasma sheet with a �nite (super�
ial) 
harge density ns must be doneseparately. They are left, together with other related results, for a forth
oming publi
ation. Thelimit κ
′
d ≪ 1 (κd ≪ 1) 
an be taken dire
tly on the formulae given here. It 
orresponds towavelengths mu
h longer than the thi
kness of the slab.The re�e
tion 
oe�
ient for the plasma slab R = |Erefl|2 / |E0|2, where the re�e
ted �eld is givenby equations (49), has a di�erent stru
ture than the re�e
tion 
oe�
ient for the semi-in�niteplasma. It 
an be written as

R =
ω4

p

c4

∣

∣

∣

∣

1 − e2iκ
′
d

∣

∣

∣

∣

2 [

R1 cos2 β sin2 ϕ + R2

(

cos2 β cos2 ϕ + sin2 β
)]

, (50)where
R1 =

1
∣

∣

∣(κ + κ′)2 − (κ − κ′)2 e2iκ
′
d
∣

∣

∣

2 (51)and
R2 =

∣

∣

∣κ2κ
′2 − k4

∣

∣

∣

2

∣

∣

∣(κ + κ′)2 (κκ′ + k2)2 − (κ − κ′)2 (κκ′ − k2)2 e2iκ′d
∣

∣

∣

2 . (52)
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Figure 6: Transmission 
oe�
ient for a slab of thi
kness d (dωp/c = 1) for a few in
iden
e angles
α = β and ϕ = 0 (p-wave). One 
an see the two peaks o

urring below the transparen
y edge
ω cos α = ωp (the 
usp in Figure) and the zero for ω = ωp. The os
illations o

urring in thetransparen
y regime are too small to be visible in Figure.The re�e
tion 
oe�
ient given by equation (50) is shown in Figs. 3-4 for β = 0, ϕ = π/2 (s-wave) and, respe
tively, α = β, ϕ = 0 (p-wave) and dωp/c = 1. The re�e
tion 
oe�
ient exhibits
hara
teristi
 os
illations arising from the exponential fa
tor in equations (50)-(52) and has anabrupt enhan
ement in the damping regime. In addition, R2 is vanishing for ω2 = ω2

p/ (1 − tan2 α)(α < π/4) and R2 = 1 for ω = ωp.The transmitted �eld (region z > d) is given by
E1 = E01

4K2κκ
′
(

κ
′
2+k2

)

e
i

(

κ
′
−κ

)

d

(κ+κ′)
2

(κκ′+k2)
2

−(κ−κ′)
2

(κκ′−k2)
2

e2iκ
′
d
eiκz

E2 = E02
4κ

′
κe

i

(

κ
′
−κ

)

d

(κ+κ′)
2

−(κ−κ′)
2

e2iκ
′
d
eiκz

(53)
and E3 = E03 (E1/E01). One 
an 
he
k the 
ontinuity of the ele
tri
 �eld and ele
tri
 displa
ementat the surfa
e z = d. In the limit d → ∞ the transmitted �eld is vanishing. The transmission
oe�
ient given by T = |Etr|2 / |E0|2, where Etr is given by equations (53), 
an be written as

T = 16κ2
∣

∣

∣κ
′
∣

∣

∣

2
[R1 cos2 β sin2 ϕ+

+
K4

∣

∣

∣
κ
′
2+k2

∣

∣

∣

2

|κ2κ
′2−k4|2 R2

(

cos2 β cos2 ϕ + sin2 β
)

] ,

(54)where R1,2 are given by equations (51) and (52). This transmission 
oe�
ient is shown in Figs. 5-6for β = 0, ϕ = π/2 (s-wave) and, respe
tively, α = β, ϕ = 0 (p-wave) and dωp/c = 1. Beside the
hara
teristi
 
usp o

urring at the transparen
y edge (ω cos α = ωp), the transmission 
oe�
ient



14 J. Theor. Phys.exhibits an appre
iable enhan
ement below this edge. For α = β, ϕ = 0 (p-wave) and ω = ωp there�e
tion 
oe�
ient attains the value unity and the transmission 
oe�
ient vanishes. The �eldsderived above 
an be viewed as generalized Fresnel's relations for a plasma slab.6 Con
lusionsThe approa
h presented here is a quasi-
lassi
al one, valid for wavelengths mu
h longer thanthe amplitude of the Fourier 
omponents of the displa
ement �eld u. This is not a parti
ularlyrestri
tive 
ondition for the 
lassi
al dynami
s of the ele
tromagneti
 �eld intera
ting with matter.When this 
ondition is violated, as, for instan
e, for wavelengths mu
h shorter than the meanseparation distan
e between ele
trons, there appear both higher-order terms in the equations ofmotion and the 
oupling to the individual motion of the ele
trons. These 
ouplings a�e
t ingeneral the dispersion relations and introdu
e a �nite lifetime (damping) for the plasmon andpolariton modes.Making use of the equations of motion for the displa
ement �eld u and the radiation formulaefor the ele
tromagneti
 potentials, we have 
omputed herein the plasmon and polariton modes foran ideal semi-in�nite ele
tron plasma and an ideal plasma slab of �nite thi
kness, as well as thediele
tri
 response, the ele
tron energy loss, the re�e
ted and refra
ted waves and the re�e
tion
oe�
ient. For the semi-in�nite plasma we have identi�ed the bulk and surfa
e plasmon-polaritonmodes and for the plasma slab we have 
omputed also the transmitted wave and the transmission
oe�
ient. It was shown that the stopping power due to the surfa
e e�e
ts has a 
hara
teristi
os
illatory behaviour in the transient regime near the surfa
es. The �eld inside the plasma iseither damped (evanes
ent) or propagating, as it is well known, and the re�e
tion 
oe�
ient forthe semi-in�nite plasma exhibits a sudden enhan
ement on passing from the propagating to thedamped regime, as expe
ted. The transparen
y edge is given by ω cos α = ωp, where α is thein
iden
e angle, ω is the frequen
y of the in
ident wave and ωp is the plasma frequen
y. Apartfrom 
hara
teristi
 os
illations, the re�e
tion and transmission 
oe�
ients for the plasma slabexhibit an appre
iable enhan
ement below the transparen
y edge.Other e�e
ts related to the dynami
s of a semi-in�nite ele
tron plasma, or, in general, variousplasmas with re
tangular geometries, 
an be 
omputed similarly by using the method presentedhere. The method 
an also be applied to plasmas with other, more parti
ular, geometries. Thedissipation 
an be introdu
ed (as for metals) and a model 
an be formulated for diele
tri
s,amenable to the method presented here. This will allow the treatment of more realisti
 
asesas well as various interfa
es, in parti
ular plasmas (or metals) bounded by diele
tri
s. Theseinvestigations are left for forth
oming publi
ations.A
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