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tionThe Casimir for
e was originally derived by estimating the zero-point energy (va
uum �u
tu-ations) of the ele
tromagneti
 �eld 
omprised in-between two ideal, perfe
tly re�e
ting, semi-in�nite metals (two halves of spa
e) separated by distan
e d.[1℄ As it is well-known, it goes like
d−4 for distan
es greater than the 
hara
teristi
 ele
tromagneti
 wavelengths of the bodies (plas-mon "wavelengths"). Further on, the 
al
ulations have been 
ast in a di�erent form, by resortingto the �u
tuations theory,[2, 3℄ and a d−3-for
e has been obtained for the non-retarded (Coulomb)intera
tion, whi
h 
orresponds to the van der Waals-London for
e. The matter polarization isusually represented in this 
ase by a diele
tri
 fun
tion. Re
ently, there is a renewed interest inthis subje
t, motivated, on one hand, by the role played by plasmons, polaritons and other sur-fa
e e�e
ts arising from the intera
tion between the ele
tromagneti
 �eld and matter and, on theother hand, by the querries related to the appli
ability of a diele
tri
 fun
tion for dis
ontinuousbodies.[4℄-[20℄ We report here on a di�erent investigation of these for
es, based on the 
al
ulationof the eigenfrequen
ies of the ele
tromagneti
 �eld intera
ting with matter.



2 J. Theor. Phys.We assume a simple model of matter, 
onsisting of mobile parti
les with 
harge −e and mass
m, moving in a rigid neutralizing ba
kground, and subje
ted to 
ertain for
es. Su
h a model isreminis
ent of the well-known jellium model of ele
tron plasma, though it is generalized here tosome extent. In the presen
e of the ele
tromagneti
 �eld matter polarizes. We leave aside themagnetization (we 
onsider only non-magneti
 matter) and relativisti
 e�e
ts. We represent thesmall disturban
e in the density of the mobile 
harges as δn = −ndivu, where n is the (
onstant)
on
entration of the 
harges and u is a displa
ement �eld in the positions of these 
harges. The
harge disturban
e is therefore ρ = endivu. This representation is valid for Ku(K) ≪ 1, where
K is the waveve
tor and u(K) is the Fourier transform of the displa
ement �eld.For homogeneous and isotropi
 matter the displa
ement �eld obeys an equation of motion whi
h
an be taken of the form

mü = −eE− eE0 −mω2
0u−mγu̇ , (1)where E is the (internal) ele
tri
 �eld, E0 is an external ele
tri
 �eld, ω0 is a frequen
y parameter
orresponding to an elasti
 for
e and γ is a dissipation parameter. Making use of the temporalFourier transform we get

u(ω) =
e

m

1

ω2 − ω2
0 + iωγ

(E + E0) (2)(where we dropped out the argument ω of the ele
tri
 �elds). On the other hand, from Maxwell'sequation divE = 4πendivu, we get the (internal) ele
tri
 �eld E = 4πneu (equal to −4πP, where
P is the polarization). Making use of equation (2) we get the diele
tri
 fun
tion

ε(ω) = 1−
ω2

p

ω2 − ω2
0 + iωγ

(3)from its de�nitionE0 = ε(E+E0), where ωp, given by ω2
p = 4πne2/m, is the plasma frequen
y. Thediele
tri
 fun
tion given by equation (3) is well known in the elementary theory of dispersion.[21℄It proves to be a fairly adequate representation for matter polarization in various bodies. We 
anview ωp,ω0 and γ as free parameters, thus being able to simulate various models of matter. For

ω0 = γ = 0 we get the well-known diele
tri
 fun
tion of an ideal plasma; if ω0 = 0 we have thediele
tri
 fun
tion of the opti
al properties of simple metals for ω ≫ γ (Drude model), and thediele
tri
 fun
tion 
orresponding to the stati
 (or quasi-stati
) 
urrents in metals for ω ≪ γ; for
ω0 ≫ ωp we have a diele
tri
 fun
tion of diele
tri
s with loss; and so on.In addition, making use of equation (2), we 
an 
ompute also the ele
tri
 
ondu
tivity σ, fromits de�nition j = σ(E + E0), where j = −enu̇ is the 
urrent density. We get the well-known
ondu
tivity

σ(ω) =
ω2

p

4π

iω

ω2 − ω2
0 + iωγ

, (4)when
e, for instan
e, the stati
 
ondu
tivity for metals σ = ω2
p/4πγ; parameter γ 
an be viewedas the re
ipro
al of a damping time τ (or relaxation time, or lifetime), γ = 1/τ , and we get thewell-known stati
 
ondu
tivity σ = ne2τ/mγ.Therefore, the equation of motion (1) turns out to be an adequate starting point for representingthe matter polarization. However, we must note that for diele
tri
s, whi
h may imply os
illationsin lo
alized atoms (in our model through the frequen
y ω0), the 
lassi
al dynami
s assumed hereturns out to be inadequate in the retarded regime, and a quantum treatment is then required.In the non-retarded limit the ele
tri
 �eld E in equation (1) is given by the Coulomb law, i.e.

E = −gradΦ, where Φ is the stati
 Coulomb potential arising in matter. The latter dependson the 
harge disturban
e ρ = −eδn, therefore on u. Then, it is easy to see that the equation



J. Theor. Phys. 3of motion (1) leads to an integral equation for the displa
ement �eld u. Its eigenvalues give theplasmon modes. For retarded intera
tion, the ele
tri
 �eld E in equation (1) is given by the ve
torpotential A and the s
alar potential Φ trough E = −1
c

∂A

∂t
− gradΦ. Making use of the radiation(Kir
hho�) formulae, these potentials 
an be expressed as integrals 
ontaining the displa
ement�eld u (through the 
harge and 
urrent densities), and we get again an integral equation for u. Itseigenvalues give polariton-like modes. The use of integral equations in treating the ele
tromagneti
�eld intera
ting with matter was previously indi
ated in 
onne
tion with the so-
alled Ewald-Oseenextin
tion theorem.[22℄ We have applied this approa
h to a semi-in�nite (half-spa
e) body, as wellas to a slab of �nite thi
kness.[23℄ In this 
ase, beside the bulk displa
ement �eld, there appearsa surfa
e displa
ement �eld also, and the integral equations 
ouple these degrees of freedom.We have solved these 
oupled integral equations and 
omputed bulk and surfa
e plasmons andpolaritons, diele
tri
 response, re�e
ted, refra
ted and transmitted �elds, and derived generalizedFresnel relations. We employ the same pro
edure here for two semi-in�nite bodies (two halves ofthe spa
e) separated by distan
e d, in order to get the ele
tromagneti
 eigenfrequen
ies and toderive van der Waals-London and Casimir for
es. We do it in two steps: �rst, for stati
 Coulomb(non-retarded) intera
tion (valid for wavelengths mu
h longer than the 
hara
teristi
 size of thebodies) and, se
ond, for retarded intera
tion.2 Surfa
e plasmons. van der Waals-London for
esWe 
onsider two semi-in�nite bodies (two halves of spa
e) with parallel surfa
es in the (x, y)-plane,separated by distan
e d. The bodies o

upy the regions z < −d/2 and, respe
tively, z > d/2. Wetake two displa
ement �elds u1,2, giving rise to two 
harge disturban
es δn1,2 = −n1,2divu1,2. We
onsider �rst the equation of motion for an ideal plasma. In general, we leave aside the dissipation(parameter γ in equation (1)), whi
h is irrelevant for our dis
ussion. The equation of motion reads

mü1 = grad

∫

dR
′

U(
∣

∣

∣
R−R

′
∣

∣

∣
)
[

n1divu1(R
′

) + n2divu2(R
′

)
]

, (5)and a similar equation for u2, whi
h 
an be obtained from equation (5) by inter
hanging thelabels 1 and 2 (1 ←→ 2); U(R) = e2/R in equation (5) is the Coulomb intera
tion. Sin
e weare interested in the eigenmodes, we leave aside the external �eld E0. We use R = (r, z) for theposition ve
tor R, where r = (x, y), and the representation
u1,2 = (v1,2, w1,2)θ(±z − d/2) (6)for the displa
ement �elds, where θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step fun
tion;the ± sign is asso
iated with labels 1 and 2, respe
tively. The divergen
e in equation (5) 
an nowbe written as

divu1,2 =

(

divv1,2 +
∂w1,2

∂z

)

θ(±z − d/2) + w1,2(±d/2)δ(±z − d/2) , (7)where w1,2(±d/2) means w1,2(r, z = ±d/2). We noti
e in equation (7) the (de)polarization 
hargearising at the surfa
es z = ±d/2. We employ Fourier representations of the form
v1,2(r, z; t) =

∑

k

∫

dωv1,2(k, z; ω)eikre−iωt (8)



4 J. Theor. Phys.and similar ones for w1,2, and use the Fourier transform
1√

r2 + z2
=

∑

k

2π

k
e−k|z|eikr (9)for the Coulomb potential. Then, we noti
e that equation (5) implies that v1,2 are parallel with thewaveve
tor k (in-plane "longitudinal" modes), and ikw1,2 =

∂v1,2

∂z
. We use this latter relation toeliminate w1,2 from the equations of motion. In addition, we introdu
e the notation v1,2 = kv1,2/k.Then, it is easy to see that equation (5) yields two 
oupled integral equations

ω2v1 =
ω2

1
k

2

∫ ∞
d/2

dz
′

e−k|z−z′|v1 +
ω2

1

2k

∫ ∞
d/2

dz
′ ∂
∂z′

e−k|z−z′| ∂v1

∂z′
+

+
ω2

2
k

2

∫ −d/2

−∞ dz
′

e−k(z−z′)v2 +
ω2

2

2

∫ −d/2

−∞ dz
′

e−k(z−z′) ∂v2

∂z′
, z > d/2 ,

ω2v2 =
ω2

1
k

2

∫ ∞
d/2

dz
′

ek(z−z′)v1 − ω2

1

2

∫ ∞
d/2

dz
′

ek(z−z′) ∂v1

∂z′
+

+
ω2

2
k

2

∫ −d/2

−∞ dz
′

e−k|z−z′|v2 +
ω2

2

2k

∫ −d/2

−∞ dz
′ ∂
∂z′

e−k|z−z′| ∂v2

∂z′
, z < −d/2 ,

(10)
where ω2

1,2 = 4πn1,2e
2/m and we dropped out the arguments ω,k. Integrating by parts in equations(10) we obtain a system of two algebrai
 equations

(ω2 − ω2
1) v1 = −1

2
e−kz

[

ω2
1e

kd/2v1(d/2)− ω2
2e

−kd/2v2(−d/2)
]

, z > d/2 ,

(ω2 − ω2
2) v2 = 1

2
ekz

[

ω2
1e

−kd/2v1(d/2)− ω2
2e

kd/2v2(−d/2)
]

, z < −d/2 .
(11)We 
an see that in this non-retarded limit the two bodies are 
oupled only through their surfa
es.For v1(d/2) = v2(−d/2) = 0 in equations (11) we get the bulk plasmons ω = ω1,2. Making z =

±d/2 in equations (11) we get the system of equations for the surfa
e modes. The 
orrespondingdispersion equation is given by
(

ω2 − 1

2
ω2

1

) (

ω2 − 1

2
ω2

2

)

− 1

4
ω2

1ω
2
2e

−2kd = 0 . (12)For d = 0 we obtain the surfa
e plasmon of a metalli
 interfa
e given by ω2 = 1
2
(ω2

1 + ω2
2), whilefor d → ∞ we get the surfa
e plasmons ω = ω1,2/

√
2 for free (un
oupled) surfa
es. If the bodylabelled by 2 for instan
e is a diele
tri
, then ω2 in the se
ond equation (11) is repla
ed by ω2−ω2

0 .In the limit ω0 ≫ ω2 and for d = 0 we get the surfa
e plasmon ω = ω1/
√

1 + ε2, 
orresponding toa diele
tri
-metal interfa
e, where ε2 = 1 + ω2
2/ω

2
0. For two identi
al metals ω1 = ω2 = ωp we getthe surfa
e plasmons given by

ω2 =
1

2
ω2

p

(

1± e−kd
)

. (13)They are identi
al with the surfa
e plasmons of a plasma slab of thi
kness d. These are well-knownresults.[24℄-[31℄Let us label by α all the eigenvalues Ωα of the system of equations (11). We 
ompute the for
ea
ting between the two bodies by
F =

∂

∂d

∑

α

1

2
~Ωα , (14)where we re
ognize the zero-point energy of harmoni
 os
illators. Although it 
an be in
ludedstraightforwardly, it is easy to see that the temperature plays no signi�
ant role, so we may negle
t
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ts, as usually. We may also leave aside the bulk plasmons, sin
e they do notdepend on the distan
e d. We are left with the two surfa
e modes Ω1,2 given by equation (12),labeled by waveve
tor k. We 
an see that these eigenvalues are fun
tion of kd, so the for
e dependson distan
e d as F ∼ 1/d3. As it is well-known, su
h a for
e between two bodies implies an inter-atomi
 intera
tion ∼ 1/R6 , where R is the distan
e between two atoms. This is the well-knownvan der Waals-London intera
tion.[32℄We 
ompute here the for
e F for the eigenvalues given by equation (13), i.e. for two identi
alplasmas (metals). Equation (14) gives a for
e
F =

~ωp

8π
√

2d3

∫ ∞

0

dx · x2e−x

(

1√
1− e−x

− 1√
1 + e−x

) (15)per unit area. The integral in equation (15) is ≃ 4, so we get F ≃ ~ωp/2π
√

2d3. In like mannerwe 
an 
ompute the for
e between two (identi
al) diele
tri
s, by repla
ing ω2 in equation (13) by
ω2−ω2

0 and taking the limit ω0 ≫ ωp. The result is a mu
h weaker for
e F = ~ω4
p/128ω3

0d
3. It 
analso be written as F = ~ω0(ε− 1)2/128d3, where ε ≃ 1 + ω2

p/ω
2
0 is the (stati
) diele
tri
 fun
tionin the limit ω ≪ ω0. The same result is obtained by making use of the formulae given in Ref. [32℄for non-retarded intera
tion within the framework of the �u
tuations theory (equation 82.3 p. 343in Ref. [32℄). Making use of the eigenvalues given by the roots of the dispersion equation (12), we
an 
ompute in the same manner the for
e a
ting between two distin
t bodies. For instan
e, we
an 
onsider a diele
tri
-metal pair and get straightforwardly the for
e F = ~ω1ω

2
2/32π

√
2ω2

0d
3,where ω1 belongs to the metal and ω2, ω0 represent the diele
tri
.3 Surfa
e plasmon-polariton modes. Casimir for
eWe pass now to the retarded intera
tion. The ele
tri
 �eld in equation (1) is given by E =

−1
c

∂A

∂t
− gradΦ, where A is the ve
tor potential and Φ is the s
alar potential. These potentialsare given by

A(r, z; t) =
1

c

∫

dr′
∫

dz′
j(r′, z′; t−R/c)

R
(16)and

Φ(r, z; t) =

∫

dr′
∫

dz′
ρ(r′, z′; t−R/c)

R
, (17)where

j = −en1(v̇1, ẇ1)θ(z − d/2)− en2(v̇2, ẇ2)θ(−z − d/2) (18)is the 
urrent density,
ρ = en1

(

divv1 + ∂w1

∂z

)

θ(z − d/2) + w1(d/2)δ(z − d/2)+

+en2

(

divv2 + ∂w2

∂z

)

θ(−z − d/2) + w2(−d/2)δ(z + d/2)
(19)is the 
harge density and R =

√

(r− r′)2 + (z − z′)2. We use the Fourier representations givenby equation (8) and the Fourier transform[33℄
ei ω

c

√
r2+z2

√
r2 + z2

=
∑

k

2πi

κ
eikreiκ|z| , (20)
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√

ω2

c2
− k2. Then we 
ompute the ele
tri
 �eld from the potentials given by equations(16) and (17) and use equation (1) for ω0 = 0, γ = 0, E0 = 0 in order to get integral equationsfor v1,2, w1,2. We de�ne the waveve
tor k⊥ of magnitude k and perpendi
ular to the wavevev
tor

k, and introdu
e the notations v1,2 = kv1,2/k, v⊥
1,2 = k⊥v1,2/k. Doing so, we get the �rst set ofintegral equations

v⊥
1 = − iω2

1

2c2κ

∫ ∞
d/2

dz′eiκ|z−z′|v⊥
1 (z′)− iω2

2

2c2κ

∫ −d/2

−∞ dz′eiκ(z−z′)v⊥
2 (z′) , z > d/2 ,

v⊥
2 = − iω2

1

2c2κ

∫ ∞
d/2

dz′e−iκ(z−z′)v⊥
1 (z′)− iω2

2

2c2κ

∫ −d/2

−∞ dz′eiκ|z−z′|v⊥
2 (z′) , z < −d/2 ,

(21)where we dropped out the arguments ω,k.Then, from the integral equations for v1,2 and w1,2 we noti
e the relationship
w1,2 =

ik

κ2 − ω2
1,2/c

2

∂v1,2

∂z
, (22)whi
h we use to eliminate w1,2 from these equations; so, we are left with the se
ond set of twointegral equations in v1,2:for z > d/2

c2κ2(ω2−ω2

1
)

c2κ2−ω2

1

v1 = − iκω2

1
(ω2−ω2

1
)

2(c2κ2−ω2

1
)

∫ ∞
d/2

dz′eiκ|z−z′|v1(z
′)−

− iκω2

2
(ω2−ω2

2
)

2(c2κ2−ω2

2
)

∫ −d/2

−∞ dz′eiκ(z−z′)v2(z
′)+

+
c2k2ω2

1

2(c2κ2−ω2

1
)
eiκ(z−d/2)v1(d/2)− c2k2ω2

2

2(c2κ2−ω2

2
)
eiκ(z+d/2)v2(−d/2)

(23)and
c2κ2(ω2−ω2

2
)

c2κ2−ω2

2

v2 = − iκω2

1
(ω2−ω2

1
)

2(c2κ2−ω2

1
)

∫ ∞
d/2

dz′e−iκ(z−z′)v1(z
′)−

− iκω2

2
(ω2−ω2

2
)

2(c2κ2−ω2

2
)

∫ −d/2

−∞ dz′eiκ|z−z′|v2(z
′)−

− c2k2ω2

1

2(c2κ2−ω2

1
)
e−iκ(z−d/2)v1(d/2) +

c2k2ω2

2

2(c2κ2−ω2

2
)
e−iκ(z+d/2)v2(−d/2)

(24)for z < −d/2. It is worth observing in deriving these equations the non-intervertibility of thederivatives and the integrals, a

ording to the identity
∂

∂z

∫ ∞

d/2

dz
′

f(z
′

)
∂

∂z′ e
iκ

˛

˛

˛
z−z

′
˛

˛

˛

= κ2

∫ ∞

d/2

dz
′

f(z
′

)e
iκ

˛

˛

˛
z−z

′
˛

˛

˛ − 2iκf(z) (25)for any fun
tion f(z), z > d/2; a similar identity holds for z, z′ < −d/2. It is due to thedis
ontinuity in the derivative of the fun
tion e
iκ

˛

˛

˛
z−z

′
˛

˛

˛ for z = z
′ . We 
an see that these equationsbe
ome equations (10) in the non-retarded limit by taking formally the limit c → ∞. However,this is not so for their dispersion equations, as we shall see below. One 
an also see from equations(21), (23) and (24) that the 
oupling between the two bodies is performed through both bulk andsurfa
e degrees of freedom, in 
ontrast to the non-retarded situation, where this 
oupling o

ursonly through surfa
es (equations (11)).We turn now to equations (21). Taking the se
ond derivative with respe
t to z in these equationswe get

∂2v⊥
1,2

∂z2
+

(

κ2 −
ω2

1,2

c2

)

v⊥
1,2 = 0 , (26)
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h tells that v⊥
1,2 are a superposition of two waves e±iκ1,2z, where

κ1,2 =

√

κ2 −
ω2

1,2

c2
. (27)We note that su
h modes are polaritoni
 modes, sin
e ω2 = c2 (k2 + κ2) = c2

(

k2 + κ2
1,2

)

+ ω2
1,2 =

c2K2
1,2 + ω2

1,2, where K1,2 = (k, κ1,2), whi
h is the well-kown dispersion relation for the polaritoni
modes. It 
an also be written as ω2ε1,2 = c2K2
1,2, where ε1,2 = 1−ω2

1,2/ω
2 is the diele
tri
 fun
tionfor metals. This relation is well-known in the so-
alled thery of "e�e
tive medium permittivity".We take v⊥

1,2 = A1,2e
iκ1,2z, where A1,2 are amplitudes to be determined. Then, equations (21) havenon-trivial solutions for frequen
ies ω given by the roots of the dispersion equation

e2iκd =
(κ1 + κ)(κ2 − κ)

(κ1 − κ)(κ2 + κ)
. (28)Equation (28) has a bran
h of roots for the damped regime (evanes
ent modes) κ1 = iα1, κ2 =

−iα2, given by
tanκd =

κ (α1 + α2)

κ2 − α1α2
, (29)where

α1,2 =

√

ω2
1,2

c2
− κ2 , ω1,2 > cκ , (30)and κ real. Sin
e these modes are damped inside the bodies and propagating in-between the bodiesthey may be 
alled surfa
e plasmon-polariton modes. It is worth noting the 
orre
t 
hoi
e of thesign of the square root in this 
ase, in order to get the 
orre
t behaviour at in�nity, v⊥

1 = A⊥
1 e−α1zfor z > d/2 and v⊥

2 = A⊥
2 eα2z for z < −d/2. The roots of equation (29) 
an be written as

Ω1 = c

√

k2 +
π2x2

n

d2
, (31)where x0 = 0 and n− 1/2 < xn < n + 1/2, n = 1, 2, 3, ... for xn < min (ω1, ω2) d/πc. For identi
albodies the roots are given by

Ω = c

√

k2 +
π2n2

d2
(32)for any integer n = 0, 1, 2.... They 
orrespond to propagating (polariton) modes (κ1 = κ2 and

κ all real numbers) and arise from equation (28) for e2iκd = 1. Equation (29) may have anothersolution in the vi
inity of the verti
al asymptote of the fun
tion in its rhs, whi
h, however, isirrelevant for our dis
ussion.Similarly, v1,2 from equations (23) and (24) obey the same equation (26). We look again forsolutions of the form v1,2 = A1,2e
iκ1,2z, where A1,2 are amplitudes to be determined. A

ording toequations (22) these modes are transverse modes, as they should be (for κ1,2 real). The relevantdispersion equation is given by

e2iκd =
(κ1 + κ)(κ2 − κ)(κκ1 + k2)(κκ2 − k2)

(κ1 − κ)(κ2 + κ)(κκ1 − k2)(κκ2 + k2)
. (33)We note that this dispersion equation does not be
ome the non-retarded dispersion equation (28)by taking formally the limit c→∞.



8 J. Theor. Phys.An analysis similar to the one performed above for equation (28) shows that equation (33) has abran
h of roots
Ω2 = c

√

k2 +
π2y2

n

d2
, (34)where y0 = 0 and yn < min (ω1, ω2) d/πc. They 
orrespond to surfa
e plasmon-polariton modes

κ1 = iα1, κ2 = −iα2 and κ real. We note that yn may di�er from xn. For identi
al bodiesthese roots are those given by equation (32). Some other isolated roots may appear, as forinstan
e the one 
orresponding to an overall damping, i.e. κ1 = iα1, κ2 = −iα2, κ = iα, where
α =

√

k2 − ω2/c2, ω < ck. It is given by
Ω0 = c

√

k2 − π2z2
0

d2
, (35)where min (ω1, ω2) < π

√
2cz0/d < max (ω1, ω2). Su
h an isolated mode does not 
ontributesigni�
antly to the energy, so we may negle
t it in our subsequent analysis.We 
an take the limit d→∞ in equation (33). It 
an be shown that this limit amounts formallyto put e2iκd = 0.[23℄ We get in this 
ase the surfa
e plasmon-polariton modes 
orresponding to asemi-in�nite body, given by αα1,2 = k2, i.e.

ω2 =
2ω2

1,2c
2k2

ω2
1,2 + 2c2k2 +

√

ω4
1,2 + 4c4k4

, (36)as derived previously.[23℄ In general, there are problems with taking formally the limits d→ 0 or
d→∞ in the above equations, as expe
ted.It is also worth interesting to look for solutions of the type

v1,2 = A1,2

[

eiκ1,2z − e±iκ1,2(d∓z)
] (37)for equations (23) and (24), whi
h are vanishing on the surfa
es, v1,2(±d/2) ("�xed surfa
es"boundary 
onditions). In this 
ase, we get again the resonan
e modes Ω given by equation (32),irrespe
tive of the bodies being distin
t or identi
al. In addition, we may get spe
ial modes

ω = ω1,2, ω2 = c2k2 + ω2
1,2 (κ1,2 = 0) or ω = ck (κ = 0), whi
h do not depend on distan
e d.Other boundary 
onditions 
an be put on surfa
es z = ±d/2, and we 
an get the 
orrespondingeigenmodes.We note that the dispersion equations (28) and (33) appear, though in a disguised form, invarious formulations of the �u
tuations theory.[2℄,[3℄,[5℄,[32℄ Within the framework of this theorythe diele
tri
 fun
tion is in
luded from the beginning. On the 
ontrary, we re
over the diele
tri
fun
tion in the �nal results of the present approa
h, whi
h shows that our approa
h is equivalentwith the so-
alled "e�e
tive medium permittivity" theory.We pass now to the zero-point energy 
orresponding to the Ω1,2-eigenmodes given by equations(31) and (34), or the Ω-bran
h given by equation (32) (for identi
al bodies or "�xed surfa
es"),in the limit min (ω1, ω2) d/πc≫ 1. These are the only eigenfrequen
ies whi
h depend on distan
e

d. In the limit min (ω1, ω2) d/πc ≫ 1 these modes are dense sets, and it is easy to see that their
ontributions to the zero-point energy are equal (
orresponding to the two polarizations), so we
an write the total zero-point energy as
E = ~c

∑

kn=0

√

k2 +
π2x2

n

d2
, (38)
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al bodies (or for " �xed surfa
es") xn = n. We follow thestandard regularization pro
edure by removing the ultraviolet divergen
ies and using the Euler-Ma
Laurin formula.[34℄ As it is well-known, the energy thus regularized reads
E =

~c

2π

∑

k=1

B2k

(2k)!
f (2k−1)(x0) , (39)where B2k are Bernoulli's numbers and

f(x) =

∫

0

dk · k
√

k2 +
π2x2

d2
=

1

2

∫

π2x2/d2

du ·
√

u . (40)Sin
e x0 = 0 (and y0 = 0), we get the well-known energy E = −π2
~cB4/4!d3 = −π2

~c/720d3and Casimir for
e F = π2
~c/240d4 per unit area. The same result is obtained for the Ω-modesgiven by equation (32) with n = 0, 1, 2..., 
orrresponding to identi
al bodies or the "�xed surfa
es"boundary 
onditions v1,2(±d/2). It is easy to see that for de
reasing min (ω1, ω2) d/πc the numberof xn-roots 
ontributing to energy de
reases, the numeri
al 
oe�
ient of the Casimir for
e de
reasesgradually, and the d−4-dependen
e deteriorates, untill a 
ross-over may o

ur to the non-retardedvan der Waals-London d−3-for
e.The dispersion equations (28) and (33) hold also for diele
tri
s, providing the waveve
tors κ1,2 are
hanged a

ording to

κ2
1,2 → κ2 −

ω2
1,2

c2

ω2

ω2 − ω2
01,2

. (41)We 
an get a usual model of diele
tri
 for ω01,2 ≫ ω1,2. In this 
ase, the waveve
tors κ1,2 be
ome
κ1,2 =

√

κ2 +
ω2

1,2

ω2
01,2

ω2

c2
, (42)and we 
annot have anymore surfa
e plasmon-polariton modes (evanes
ent modes). In general,under these 
ir
umstan
es, the dispersion equations (28) and (33) have no solutions, ex
ept foridenti
al bodies when we may have the Ω-modes given by equation (32) (e2iκd = 1) for n = 0, 1, 2....These modes 
orrespond to propagating polaritons and give again the 
lassi
al result for theCasimir for
e F = π2

~c/240d4 per unit area. Similarly, for a diele
tri
-metal pair there is nofor
e, ex
ept for boundary 
onditions v1,2(±d/2) when the resonant Ω-modes given by equation(32) for n = 0, 1, 2... are present. The latter result holds for any pair of bodies. It is, however,worth stressing that su
h results depend on our model of diele
tri
 fun
tion for diele
tri
s, and,in general, it is ne
essary to have a quantum-me
hani
al treatment for the internal dynami
s ofthe diele
tri
s.4 Dis
ussion and 
on
lusionsIn 
on
lusion, we may say that we have derived here van der Waals-London and Casimir for
esa
ting between two semi-in�nite bodies with parallel surfa
es by 
al
ulating the ele
tromagneti
eigenmodes in matter and estimating their zero-point energy (va
uum �u
tuations). We haveadopted well-known, simple, usual models for matter polarization in metals and diele
tri
s andmade use of the equation of motion for the polarization in order to get 
oupled integral equations.The eigenfrequen
ies of these equations have been identi�ed and used in 
al
ulating the zero-point



10 J. Theor. Phys.energy. In the non-retarded (Coulomb) limit we get the well-known van der Waals-London d−3-for
e, arising from the surfa
e plasmons, where d is the distan
e between the two bodies. Thenumeri
al 
oe�
ient of this for
e a
quires various values, depending on the nature of the bodiesand on their being distin
t or identi
al. When retardation is in
luded we get the Casimir d−4-for
e arising from surfa
e plasmon-polariton modes (evanes
ent modes) for a pair of metals. The
lassi
al numeri
al 
oe�
ient of this for
e (π2/240) is obtained for distan
es mu
h larger than the
hara
teristi
 wavelengths (∼ c/ω1,2, where ω1,2 are the plasmon frequen
ies) of the bodies, and itdiminishes gradually for shorter distan
es, while the for
e loses its 
hara
teristi
 d−4-dependen
e.For a pair of identi
al diele
tri
s we get the 
lassi
al Casimir result arising from propagatingpolariton modes. The same result holds for any pair of bodies with "�xed surfa
es" boundary
onditions.As it is well-known, the �u
tuations theory[32℄ predi
ts Casimir for
es between any pair of bodies,in 
ontrast with our results, whi
h give a vanishing for
e for two distin
t diele
tri
s, for instan
e.The di�eren
e originates in the 
ir
umstan
e, usually overlooked, that the equivalent of our dis-persion equations (28) and (33) in the �u
tuations theory have no solutions in some 
ases, as, forinstan
e, for distin
t diele
tri
s. The usual theorem of meromorphi
 fun
tions, applied within theframework of the �u
tuations theory,[4℄-[6℄ gives then a �nite result, but it does not represent theenergy of the eigenmodes. The problem does not appear in the non-retarded regime, where ourresults 
oin
ide with those of the �u
tuations theory. On the other hand, we must stress againupon the fa
t that our model for the diele
tri
 fun
tion may not be perfe
tly adequate for des
rib-ing the internal polarization of diele
tri
 matter. Again, this is immaterial in the non-retardedregime, and we su

eeded to 
ompute a d−4-van der Waals-London for
e between a 
lassi
al modelof polarizable point-like parti
le and a semi-in�nite body. But our approa
h fails in this 
ase in theretarded regime, where a quantum me
hani
al treatment is ne
essary, as in the original attemptin Ref. [35℄).Finally, it is worth noting that the dispersion equations (28) and (33) 
an also be obtained by
al
ulating the re�e
ted �eld in-between the bodies (�elds for semi-in�nite bodies).[23℄ If r1,2 arethe amplitudes of these �elds (for a given polarization), then the dispersion equations (28) and(33) are obtained from r1 = r2e
2iκd. We note that |r1,2|2 are the re�e
tion 
oe�
ients, and for twoperfe
tly re�e
ting bodies |r1| = |r2| = 1. If we negle
t the phases of the 
oe�
ients r1,2, and put

r1 = r2 = 1, we get the Casimir dispersion equation e2iκd = 1 (Ω-modes given by equation (32)).However, it is pre
isely these phases that give the damped surfa
e plasmon-polariton regime, aswe have shown in the present paper, and these phases are not equal in the damped regime, noteven for identi
al bodies. This is related to the 
orre
t 
hoi
e of the sign of the square root in
κ1,2, whi
h, as we have shown here, is κ1 = iα1 and κ2 = −iα2 (equations (29) and (30)). For thepropagating regime (vanishing phases) and identi
al bodies (r1 = r2) we get again the Casimirdispersion equation e2iκd = 1, as we do for "�xed surfa
es" boundary 
onditions (in the latter 
aseirrespe
tive of the bodies).A
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