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2 J. Theor. Phys.We assume a simple model of matter, onsisting of mobile partiles with harge −e and mass
m, moving in a rigid neutralizing bakground, and subjeted to ertain fores. Suh a model isreminisent of the well-known jellium model of eletron plasma, though it is generalized here tosome extent. In the presene of the eletromagneti �eld matter polarizes. We leave aside themagnetization (we onsider only non-magneti matter) and relativisti e�ets. We represent thesmall disturbane in the density of the mobile harges as δn = −ndivu, where n is the (onstant)onentration of the harges and u is a displaement �eld in the positions of these harges. Theharge disturbane is therefore ρ = endivu. This representation is valid for Ku(K) ≪ 1, where
K is the wavevetor and u(K) is the Fourier transform of the displaement �eld.For homogeneous and isotropi matter the displaement �eld obeys an equation of motion whihan be taken of the form

mü = −eE− eE0 −mω2
0u−mγu̇ , (1)where E is the (internal) eletri �eld, E0 is an external eletri �eld, ω0 is a frequeny parameterorresponding to an elasti fore and γ is a dissipation parameter. Making use of the temporalFourier transform we get

u(ω) =
e

m

1

ω2 − ω2
0 + iωγ

(E + E0) (2)(where we dropped out the argument ω of the eletri �elds). On the other hand, from Maxwell'sequation divE = 4πendivu, we get the (internal) eletri �eld E = 4πneu (equal to −4πP, where
P is the polarization). Making use of equation (2) we get the dieletri funtion

ε(ω) = 1−
ω2

p

ω2 − ω2
0 + iωγ

(3)from its de�nitionE0 = ε(E+E0), where ωp, given by ω2
p = 4πne2/m, is the plasma frequeny. Thedieletri funtion given by equation (3) is well known in the elementary theory of dispersion.[21℄It proves to be a fairly adequate representation for matter polarization in various bodies. We anview ωp,ω0 and γ as free parameters, thus being able to simulate various models of matter. For

ω0 = γ = 0 we get the well-known dieletri funtion of an ideal plasma; if ω0 = 0 we have thedieletri funtion of the optial properties of simple metals for ω ≫ γ (Drude model), and thedieletri funtion orresponding to the stati (or quasi-stati) urrents in metals for ω ≪ γ; for
ω0 ≫ ωp we have a dieletri funtion of dieletris with loss; and so on.In addition, making use of equation (2), we an ompute also the eletri ondutivity σ, fromits de�nition j = σ(E + E0), where j = −enu̇ is the urrent density. We get the well-knownondutivity

σ(ω) =
ω2

p

4π

iω

ω2 − ω2
0 + iωγ

, (4)whene, for instane, the stati ondutivity for metals σ = ω2
p/4πγ; parameter γ an be viewedas the reiproal of a damping time τ (or relaxation time, or lifetime), γ = 1/τ , and we get thewell-known stati ondutivity σ = ne2τ/mγ.Therefore, the equation of motion (1) turns out to be an adequate starting point for representingthe matter polarization. However, we must note that for dieletris, whih may imply osillationsin loalized atoms (in our model through the frequeny ω0), the lassial dynamis assumed hereturns out to be inadequate in the retarded regime, and a quantum treatment is then required.In the non-retarded limit the eletri �eld E in equation (1) is given by the Coulomb law, i.e.

E = −gradΦ, where Φ is the stati Coulomb potential arising in matter. The latter dependson the harge disturbane ρ = −eδn, therefore on u. Then, it is easy to see that the equation



J. Theor. Phys. 3of motion (1) leads to an integral equation for the displaement �eld u. Its eigenvalues give theplasmon modes. For retarded interation, the eletri �eld E in equation (1) is given by the vetorpotential A and the salar potential Φ trough E = −1
c

∂A

∂t
− gradΦ. Making use of the radiation(Kirhho�) formulae, these potentials an be expressed as integrals ontaining the displaement�eld u (through the harge and urrent densities), and we get again an integral equation for u. Itseigenvalues give polariton-like modes. The use of integral equations in treating the eletromagneti�eld interating with matter was previously indiated in onnetion with the so-alled Ewald-Oseenextintion theorem.[22℄ We have applied this approah to a semi-in�nite (half-spae) body, as wellas to a slab of �nite thikness.[23℄ In this ase, beside the bulk displaement �eld, there appearsa surfae displaement �eld also, and the integral equations ouple these degrees of freedom.We have solved these oupled integral equations and omputed bulk and surfae plasmons andpolaritons, dieletri response, re�eted, refrated and transmitted �elds, and derived generalizedFresnel relations. We employ the same proedure here for two semi-in�nite bodies (two halves ofthe spae) separated by distane d, in order to get the eletromagneti eigenfrequenies and toderive van der Waals-London and Casimir fores. We do it in two steps: �rst, for stati Coulomb(non-retarded) interation (valid for wavelengths muh longer than the harateristi size of thebodies) and, seond, for retarded interation.2 Surfae plasmons. van der Waals-London foresWe onsider two semi-in�nite bodies (two halves of spae) with parallel surfaes in the (x, y)-plane,separated by distane d. The bodies oupy the regions z < −d/2 and, respetively, z > d/2. Wetake two displaement �elds u1,2, giving rise to two harge disturbanes δn1,2 = −n1,2divu1,2. Weonsider �rst the equation of motion for an ideal plasma. In general, we leave aside the dissipation(parameter γ in equation (1)), whih is irrelevant for our disussion. The equation of motion reads

mü1 = grad

∫

dR
′

U(
∣

∣

∣
R−R

′
∣

∣

∣
)
[

n1divu1(R
′

) + n2divu2(R
′

)
]

, (5)and a similar equation for u2, whih an be obtained from equation (5) by interhanging thelabels 1 and 2 (1 ←→ 2); U(R) = e2/R in equation (5) is the Coulomb interation. Sine weare interested in the eigenmodes, we leave aside the external �eld E0. We use R = (r, z) for theposition vetor R, where r = (x, y), and the representation
u1,2 = (v1,2, w1,2)θ(±z − d/2) (6)for the displaement �elds, where θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step funtion;the ± sign is assoiated with labels 1 and 2, respetively. The divergene in equation (5) an nowbe written as

divu1,2 =

(

divv1,2 +
∂w1,2

∂z

)

θ(±z − d/2) + w1,2(±d/2)δ(±z − d/2) , (7)where w1,2(±d/2) means w1,2(r, z = ±d/2). We notie in equation (7) the (de)polarization hargearising at the surfaes z = ±d/2. We employ Fourier representations of the form
v1,2(r, z; t) =

∑

k

∫

dωv1,2(k, z; ω)eikre−iωt (8)



4 J. Theor. Phys.and similar ones for w1,2, and use the Fourier transform
1√

r2 + z2
=

∑

k

2π

k
e−k|z|eikr (9)for the Coulomb potential. Then, we notie that equation (5) implies that v1,2 are parallel with thewavevetor k (in-plane "longitudinal" modes), and ikw1,2 =

∂v1,2

∂z
. We use this latter relation toeliminate w1,2 from the equations of motion. In addition, we introdue the notation v1,2 = kv1,2/k.Then, it is easy to see that equation (5) yields two oupled integral equations

ω2v1 =
ω2

1
k

2

∫ ∞
d/2

dz
′

e−k|z−z′|v1 +
ω2

1

2k

∫ ∞
d/2

dz
′ ∂
∂z′

e−k|z−z′| ∂v1

∂z′
+

+
ω2

2
k

2

∫ −d/2

−∞ dz
′

e−k(z−z′)v2 +
ω2

2

2

∫ −d/2

−∞ dz
′

e−k(z−z′) ∂v2

∂z′
, z > d/2 ,

ω2v2 =
ω2

1
k

2

∫ ∞
d/2

dz
′

ek(z−z′)v1 − ω2

1

2

∫ ∞
d/2

dz
′

ek(z−z′) ∂v1

∂z′
+

+
ω2

2
k

2

∫ −d/2

−∞ dz
′

e−k|z−z′|v2 +
ω2

2

2k

∫ −d/2

−∞ dz
′ ∂
∂z′

e−k|z−z′| ∂v2

∂z′
, z < −d/2 ,

(10)
where ω2

1,2 = 4πn1,2e
2/m and we dropped out the arguments ω,k. Integrating by parts in equations(10) we obtain a system of two algebrai equations

(ω2 − ω2
1) v1 = −1

2
e−kz

[

ω2
1e

kd/2v1(d/2)− ω2
2e

−kd/2v2(−d/2)
]

, z > d/2 ,

(ω2 − ω2
2) v2 = 1

2
ekz

[

ω2
1e

−kd/2v1(d/2)− ω2
2e

kd/2v2(−d/2)
]

, z < −d/2 .
(11)We an see that in this non-retarded limit the two bodies are oupled only through their surfaes.For v1(d/2) = v2(−d/2) = 0 in equations (11) we get the bulk plasmons ω = ω1,2. Making z =

±d/2 in equations (11) we get the system of equations for the surfae modes. The orrespondingdispersion equation is given by
(

ω2 − 1

2
ω2

1

) (

ω2 − 1

2
ω2

2

)

− 1

4
ω2

1ω
2
2e

−2kd = 0 . (12)For d = 0 we obtain the surfae plasmon of a metalli interfae given by ω2 = 1
2
(ω2

1 + ω2
2), whilefor d → ∞ we get the surfae plasmons ω = ω1,2/

√
2 for free (unoupled) surfaes. If the bodylabelled by 2 for instane is a dieletri, then ω2 in the seond equation (11) is replaed by ω2−ω2

0 .In the limit ω0 ≫ ω2 and for d = 0 we get the surfae plasmon ω = ω1/
√

1 + ε2, orresponding toa dieletri-metal interfae, where ε2 = 1 + ω2
2/ω

2
0. For two idential metals ω1 = ω2 = ωp we getthe surfae plasmons given by

ω2 =
1

2
ω2

p

(

1± e−kd
)

. (13)They are idential with the surfae plasmons of a plasma slab of thikness d. These are well-knownresults.[24℄-[31℄Let us label by α all the eigenvalues Ωα of the system of equations (11). We ompute the foreating between the two bodies by
F =

∂

∂d

∑

α

1

2
~Ωα , (14)where we reognize the zero-point energy of harmoni osillators. Although it an be inludedstraightforwardly, it is easy to see that the temperature plays no signi�ant role, so we may neglet



J. Theor. Phys. 5the temperature e�ets, as usually. We may also leave aside the bulk plasmons, sine they do notdepend on the distane d. We are left with the two surfae modes Ω1,2 given by equation (12),labeled by wavevetor k. We an see that these eigenvalues are funtion of kd, so the fore dependson distane d as F ∼ 1/d3. As it is well-known, suh a fore between two bodies implies an inter-atomi interation ∼ 1/R6 , where R is the distane between two atoms. This is the well-knownvan der Waals-London interation.[32℄We ompute here the fore F for the eigenvalues given by equation (13), i.e. for two identialplasmas (metals). Equation (14) gives a fore
F =

~ωp

8π
√

2d3

∫ ∞

0

dx · x2e−x

(

1√
1− e−x

− 1√
1 + e−x

) (15)per unit area. The integral in equation (15) is ≃ 4, so we get F ≃ ~ωp/2π
√

2d3. In like mannerwe an ompute the fore between two (idential) dieletris, by replaing ω2 in equation (13) by
ω2−ω2

0 and taking the limit ω0 ≫ ωp. The result is a muh weaker fore F = ~ω4
p/128ω3

0d
3. It analso be written as F = ~ω0(ε− 1)2/128d3, where ε ≃ 1 + ω2

p/ω
2
0 is the (stati) dieletri funtionin the limit ω ≪ ω0. The same result is obtained by making use of the formulae given in Ref. [32℄for non-retarded interation within the framework of the �utuations theory (equation 82.3 p. 343in Ref. [32℄). Making use of the eigenvalues given by the roots of the dispersion equation (12), wean ompute in the same manner the fore ating between two distint bodies. For instane, wean onsider a dieletri-metal pair and get straightforwardly the fore F = ~ω1ω

2
2/32π

√
2ω2

0d
3,where ω1 belongs to the metal and ω2, ω0 represent the dieletri.3 Surfae plasmon-polariton modes. Casimir foreWe pass now to the retarded interation. The eletri �eld in equation (1) is given by E =

−1
c

∂A

∂t
− gradΦ, where A is the vetor potential and Φ is the salar potential. These potentialsare given by

A(r, z; t) =
1

c

∫

dr′
∫

dz′
j(r′, z′; t−R/c)

R
(16)and

Φ(r, z; t) =

∫

dr′
∫

dz′
ρ(r′, z′; t−R/c)

R
, (17)where

j = −en1(v̇1, ẇ1)θ(z − d/2)− en2(v̇2, ẇ2)θ(−z − d/2) (18)is the urrent density,
ρ = en1

(

divv1 + ∂w1

∂z

)

θ(z − d/2) + w1(d/2)δ(z − d/2)+

+en2

(

divv2 + ∂w2

∂z

)

θ(−z − d/2) + w2(−d/2)δ(z + d/2)
(19)is the harge density and R =

√

(r− r′)2 + (z − z′)2. We use the Fourier representations givenby equation (8) and the Fourier transform[33℄
ei ω

c

√
r2+z2

√
r2 + z2

=
∑

k

2πi

κ
eikreiκ|z| , (20)



6 J. Theor. Phys.where κ =
√

ω2

c2
− k2. Then we ompute the eletri �eld from the potentials given by equations(16) and (17) and use equation (1) for ω0 = 0, γ = 0, E0 = 0 in order to get integral equationsfor v1,2, w1,2. We de�ne the wavevetor k⊥ of magnitude k and perpendiular to the wavevevtor

k, and introdue the notations v1,2 = kv1,2/k, v⊥
1,2 = k⊥v1,2/k. Doing so, we get the �rst set ofintegral equations

v⊥
1 = − iω2

1

2c2κ

∫ ∞
d/2

dz′eiκ|z−z′|v⊥
1 (z′)− iω2

2

2c2κ

∫ −d/2

−∞ dz′eiκ(z−z′)v⊥
2 (z′) , z > d/2 ,

v⊥
2 = − iω2

1

2c2κ

∫ ∞
d/2

dz′e−iκ(z−z′)v⊥
1 (z′)− iω2

2

2c2κ

∫ −d/2

−∞ dz′eiκ|z−z′|v⊥
2 (z′) , z < −d/2 ,

(21)where we dropped out the arguments ω,k.Then, from the integral equations for v1,2 and w1,2 we notie the relationship
w1,2 =

ik

κ2 − ω2
1,2/c

2

∂v1,2

∂z
, (22)whih we use to eliminate w1,2 from these equations; so, we are left with the seond set of twointegral equations in v1,2:for z > d/2

c2κ2(ω2−ω2

1
)

c2κ2−ω2

1

v1 = − iκω2

1
(ω2−ω2

1
)

2(c2κ2−ω2

1
)

∫ ∞
d/2

dz′eiκ|z−z′|v1(z
′)−

− iκω2

2
(ω2−ω2

2
)

2(c2κ2−ω2

2
)

∫ −d/2

−∞ dz′eiκ(z−z′)v2(z
′)+

+
c2k2ω2

1

2(c2κ2−ω2

1
)
eiκ(z−d/2)v1(d/2)− c2k2ω2

2

2(c2κ2−ω2

2
)
eiκ(z+d/2)v2(−d/2)

(23)and
c2κ2(ω2−ω2

2
)

c2κ2−ω2

2

v2 = − iκω2

1
(ω2−ω2

1
)

2(c2κ2−ω2

1
)

∫ ∞
d/2

dz′e−iκ(z−z′)v1(z
′)−

− iκω2

2
(ω2−ω2

2
)

2(c2κ2−ω2

2
)

∫ −d/2

−∞ dz′eiκ|z−z′|v2(z
′)−

− c2k2ω2

1

2(c2κ2−ω2

1
)
e−iκ(z−d/2)v1(d/2) +

c2k2ω2

2

2(c2κ2−ω2

2
)
e−iκ(z+d/2)v2(−d/2)

(24)for z < −d/2. It is worth observing in deriving these equations the non-intervertibility of thederivatives and the integrals, aording to the identity
∂

∂z

∫ ∞

d/2

dz
′

f(z
′

)
∂

∂z′ e
iκ

˛

˛

˛
z−z

′
˛

˛

˛

= κ2

∫ ∞

d/2

dz
′

f(z
′

)e
iκ

˛

˛

˛
z−z

′
˛

˛

˛ − 2iκf(z) (25)for any funtion f(z), z > d/2; a similar identity holds for z, z′ < −d/2. It is due to thedisontinuity in the derivative of the funtion e
iκ

˛

˛

˛
z−z

′
˛

˛

˛ for z = z
′ . We an see that these equationsbeome equations (10) in the non-retarded limit by taking formally the limit c → ∞. However,this is not so for their dispersion equations, as we shall see below. One an also see from equations(21), (23) and (24) that the oupling between the two bodies is performed through both bulk andsurfae degrees of freedom, in ontrast to the non-retarded situation, where this oupling oursonly through surfaes (equations (11)).We turn now to equations (21). Taking the seond derivative with respet to z in these equationswe get

∂2v⊥
1,2

∂z2
+

(

κ2 −
ω2

1,2

c2

)

v⊥
1,2 = 0 , (26)



J. Theor. Phys. 7whih tells that v⊥
1,2 are a superposition of two waves e±iκ1,2z, where

κ1,2 =

√

κ2 −
ω2

1,2

c2
. (27)We note that suh modes are polaritoni modes, sine ω2 = c2 (k2 + κ2) = c2

(

k2 + κ2
1,2

)

+ ω2
1,2 =

c2K2
1,2 + ω2

1,2, where K1,2 = (k, κ1,2), whih is the well-kown dispersion relation for the polaritonimodes. It an also be written as ω2ε1,2 = c2K2
1,2, where ε1,2 = 1−ω2

1,2/ω
2 is the dieletri funtionfor metals. This relation is well-known in the so-alled thery of "e�etive medium permittivity".We take v⊥

1,2 = A1,2e
iκ1,2z, where A1,2 are amplitudes to be determined. Then, equations (21) havenon-trivial solutions for frequenies ω given by the roots of the dispersion equation

e2iκd =
(κ1 + κ)(κ2 − κ)

(κ1 − κ)(κ2 + κ)
. (28)Equation (28) has a branh of roots for the damped regime (evanesent modes) κ1 = iα1, κ2 =

−iα2, given by
tanκd =

κ (α1 + α2)

κ2 − α1α2
, (29)where

α1,2 =

√

ω2
1,2

c2
− κ2 , ω1,2 > cκ , (30)and κ real. Sine these modes are damped inside the bodies and propagating in-between the bodiesthey may be alled surfae plasmon-polariton modes. It is worth noting the orret hoie of thesign of the square root in this ase, in order to get the orret behaviour at in�nity, v⊥

1 = A⊥
1 e−α1zfor z > d/2 and v⊥

2 = A⊥
2 eα2z for z < −d/2. The roots of equation (29) an be written as

Ω1 = c

√

k2 +
π2x2

n

d2
, (31)where x0 = 0 and n− 1/2 < xn < n + 1/2, n = 1, 2, 3, ... for xn < min (ω1, ω2) d/πc. For identialbodies the roots are given by

Ω = c

√

k2 +
π2n2

d2
(32)for any integer n = 0, 1, 2.... They orrespond to propagating (polariton) modes (κ1 = κ2 and

κ all real numbers) and arise from equation (28) for e2iκd = 1. Equation (29) may have anothersolution in the viinity of the vertial asymptote of the funtion in its rhs, whih, however, isirrelevant for our disussion.Similarly, v1,2 from equations (23) and (24) obey the same equation (26). We look again forsolutions of the form v1,2 = A1,2e
iκ1,2z, where A1,2 are amplitudes to be determined. Aording toequations (22) these modes are transverse modes, as they should be (for κ1,2 real). The relevantdispersion equation is given by

e2iκd =
(κ1 + κ)(κ2 − κ)(κκ1 + k2)(κκ2 − k2)

(κ1 − κ)(κ2 + κ)(κκ1 − k2)(κκ2 + k2)
. (33)We note that this dispersion equation does not beome the non-retarded dispersion equation (28)by taking formally the limit c→∞.



8 J. Theor. Phys.An analysis similar to the one performed above for equation (28) shows that equation (33) has abranh of roots
Ω2 = c

√

k2 +
π2y2

n

d2
, (34)where y0 = 0 and yn < min (ω1, ω2) d/πc. They orrespond to surfae plasmon-polariton modes

κ1 = iα1, κ2 = −iα2 and κ real. We note that yn may di�er from xn. For idential bodiesthese roots are those given by equation (32). Some other isolated roots may appear, as forinstane the one orresponding to an overall damping, i.e. κ1 = iα1, κ2 = −iα2, κ = iα, where
α =

√

k2 − ω2/c2, ω < ck. It is given by
Ω0 = c

√

k2 − π2z2
0

d2
, (35)where min (ω1, ω2) < π

√
2cz0/d < max (ω1, ω2). Suh an isolated mode does not ontributesigni�antly to the energy, so we may neglet it in our subsequent analysis.We an take the limit d→∞ in equation (33). It an be shown that this limit amounts formallyto put e2iκd = 0.[23℄ We get in this ase the surfae plasmon-polariton modes orresponding to asemi-in�nite body, given by αα1,2 = k2, i.e.

ω2 =
2ω2

1,2c
2k2

ω2
1,2 + 2c2k2 +

√

ω4
1,2 + 4c4k4

, (36)as derived previously.[23℄ In general, there are problems with taking formally the limits d→ 0 or
d→∞ in the above equations, as expeted.It is also worth interesting to look for solutions of the type

v1,2 = A1,2

[

eiκ1,2z − e±iκ1,2(d∓z)
] (37)for equations (23) and (24), whih are vanishing on the surfaes, v1,2(±d/2) ("�xed surfaes"boundary onditions). In this ase, we get again the resonane modes Ω given by equation (32),irrespetive of the bodies being distint or idential. In addition, we may get speial modes

ω = ω1,2, ω2 = c2k2 + ω2
1,2 (κ1,2 = 0) or ω = ck (κ = 0), whih do not depend on distane d.Other boundary onditions an be put on surfaes z = ±d/2, and we an get the orrespondingeigenmodes.We note that the dispersion equations (28) and (33) appear, though in a disguised form, invarious formulations of the �utuations theory.[2℄,[3℄,[5℄,[32℄ Within the framework of this theorythe dieletri funtion is inluded from the beginning. On the ontrary, we reover the dieletrifuntion in the �nal results of the present approah, whih shows that our approah is equivalentwith the so-alled "e�etive medium permittivity" theory.We pass now to the zero-point energy orresponding to the Ω1,2-eigenmodes given by equations(31) and (34), or the Ω-branh given by equation (32) (for idential bodies or "�xed surfaes"),in the limit min (ω1, ω2) d/πc≫ 1. These are the only eigenfrequenies whih depend on distane

d. In the limit min (ω1, ω2) d/πc ≫ 1 these modes are dense sets, and it is easy to see that theirontributions to the zero-point energy are equal (orresponding to the two polarizations), so wean write the total zero-point energy as
E = ~c

∑

kn=0

√

k2 +
π2x2

n

d2
, (38)



J. Theor. Phys. 9where xn are de�ned above; for idential bodies (or for " �xed surfaes") xn = n. We follow thestandard regularization proedure by removing the ultraviolet divergenies and using the Euler-MaLaurin formula.[34℄ As it is well-known, the energy thus regularized reads
E =

~c

2π

∑

k=1

B2k

(2k)!
f (2k−1)(x0) , (39)where B2k are Bernoulli's numbers and

f(x) =

∫

0

dk · k
√

k2 +
π2x2

d2
=

1

2

∫

π2x2/d2

du ·
√

u . (40)Sine x0 = 0 (and y0 = 0), we get the well-known energy E = −π2
~cB4/4!d3 = −π2

~c/720d3and Casimir fore F = π2
~c/240d4 per unit area. The same result is obtained for the Ω-modesgiven by equation (32) with n = 0, 1, 2..., orrresponding to idential bodies or the "�xed surfaes"boundary onditions v1,2(±d/2). It is easy to see that for dereasing min (ω1, ω2) d/πc the numberof xn-roots ontributing to energy dereases, the numerial oe�ient of the Casimir fore dereasesgradually, and the d−4-dependene deteriorates, untill a ross-over may our to the non-retardedvan der Waals-London d−3-fore.The dispersion equations (28) and (33) hold also for dieletris, providing the wavevetors κ1,2 arehanged aording to

κ2
1,2 → κ2 −

ω2
1,2

c2

ω2

ω2 − ω2
01,2

. (41)We an get a usual model of dieletri for ω01,2 ≫ ω1,2. In this ase, the wavevetors κ1,2 beome
κ1,2 =

√

κ2 +
ω2

1,2

ω2
01,2

ω2

c2
, (42)and we annot have anymore surfae plasmon-polariton modes (evanesent modes). In general,under these irumstanes, the dispersion equations (28) and (33) have no solutions, exept foridential bodies when we may have the Ω-modes given by equation (32) (e2iκd = 1) for n = 0, 1, 2....These modes orrespond to propagating polaritons and give again the lassial result for theCasimir fore F = π2

~c/240d4 per unit area. Similarly, for a dieletri-metal pair there is nofore, exept for boundary onditions v1,2(±d/2) when the resonant Ω-modes given by equation(32) for n = 0, 1, 2... are present. The latter result holds for any pair of bodies. It is, however,worth stressing that suh results depend on our model of dieletri funtion for dieletris, and,in general, it is neessary to have a quantum-mehanial treatment for the internal dynamis ofthe dieletris.4 Disussion and onlusionsIn onlusion, we may say that we have derived here van der Waals-London and Casimir foresating between two semi-in�nite bodies with parallel surfaes by alulating the eletromagnetieigenmodes in matter and estimating their zero-point energy (vauum �utuations). We haveadopted well-known, simple, usual models for matter polarization in metals and dieletris andmade use of the equation of motion for the polarization in order to get oupled integral equations.The eigenfrequenies of these equations have been identi�ed and used in alulating the zero-point



10 J. Theor. Phys.energy. In the non-retarded (Coulomb) limit we get the well-known van der Waals-London d−3-fore, arising from the surfae plasmons, where d is the distane between the two bodies. Thenumerial oe�ient of this fore aquires various values, depending on the nature of the bodiesand on their being distint or idential. When retardation is inluded we get the Casimir d−4-fore arising from surfae plasmon-polariton modes (evanesent modes) for a pair of metals. Thelassial numerial oe�ient of this fore (π2/240) is obtained for distanes muh larger than theharateristi wavelengths (∼ c/ω1,2, where ω1,2 are the plasmon frequenies) of the bodies, and itdiminishes gradually for shorter distanes, while the fore loses its harateristi d−4-dependene.For a pair of idential dieletris we get the lassial Casimir result arising from propagatingpolariton modes. The same result holds for any pair of bodies with "�xed surfaes" boundaryonditions.As it is well-known, the �utuations theory[32℄ predits Casimir fores between any pair of bodies,in ontrast with our results, whih give a vanishing fore for two distint dieletris, for instane.The di�erene originates in the irumstane, usually overlooked, that the equivalent of our dis-persion equations (28) and (33) in the �utuations theory have no solutions in some ases, as, forinstane, for distint dieletris. The usual theorem of meromorphi funtions, applied within theframework of the �utuations theory,[4℄-[6℄ gives then a �nite result, but it does not represent theenergy of the eigenmodes. The problem does not appear in the non-retarded regime, where ourresults oinide with those of the �utuations theory. On the other hand, we must stress againupon the fat that our model for the dieletri funtion may not be perfetly adequate for desrib-ing the internal polarization of dieletri matter. Again, this is immaterial in the non-retardedregime, and we sueeded to ompute a d−4-van der Waals-London fore between a lassial modelof polarizable point-like partile and a semi-in�nite body. But our approah fails in this ase in theretarded regime, where a quantum mehanial treatment is neessary, as in the original attemptin Ref. [35℄).Finally, it is worth noting that the dispersion equations (28) and (33) an also be obtained byalulating the re�eted �eld in-between the bodies (�elds for semi-in�nite bodies).[23℄ If r1,2 arethe amplitudes of these �elds (for a given polarization), then the dispersion equations (28) and(33) are obtained from r1 = r2e
2iκd. We note that |r1,2|2 are the re�etion oe�ients, and for twoperfetly re�eting bodies |r1| = |r2| = 1. If we neglet the phases of the oe�ients r1,2, and put

r1 = r2 = 1, we get the Casimir dispersion equation e2iκd = 1 (Ω-modes given by equation (32)).However, it is preisely these phases that give the damped surfae plasmon-polariton regime, aswe have shown in the present paper, and these phases are not equal in the damped regime, noteven for idential bodies. This is related to the orret hoie of the sign of the square root in
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