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l/(2l + 1), where ωpis the (bulk) plasma frequeny and l = 1, 2, .... When retardation is inluded, for an inidentplane wave, we ompute the �eld inside and outside the sphere (the sattered �eld), theorresponding energy stored by these �elds, the Poynting vetor and the sattering ross-setion. The results agree with the so-alled theory of "e�etive medium permittivity",although we do not start the alulations with the dieletri funtion. In turn, we reover inour results the well-known dieletri funtion of metals. We have heked the ontinuity ofthe tangential omponents of the eletri �eld and the ontinuity of the normal omponentof the eletri displaement at the sphere surfae, as well as the onservation of the energy�ow and re-derived the "optial theorem". In the limit of small radii (in omparison with theeletromagneti wavelength) the sphere exhibits a series of resonant absorptions at frequenieslose to the plasmon frequenies given above. For large radii these resonanes disappear.Keywords: di�ration; metalli sphere; Mie's theory; "spherial" plasmonsOCIS odes: 050.1940; 260.2065; 260.1960; 260.3910PACS : 42.25.Fx; 42.25.Gy; 78.67.Bf1 IntrodutionThe di�ration of an eletromagneti plane wave by metalli spheres has been thoroughly inves-tigated long time ago by Mie[1℄. The main result of this investigation is a seletive absorptionof light by small partiles, for some frequenies whih, thereafter, were assoiated with the fre-quenies of the "spherial" plasmons[2℄-[4℄. Reently, the subjet enjoys a great deal of interest,in onnetion with plasmons and polaritons in strutures with restrited geometry, their role in



2 J. Theor. Phys.the di�ration of the eletromagneti wave and a possible enhanement of the sattered �eld[5℄-[15℄. The physis underlying suh phenomena is rather obsured in the original Mie's results,due to the mathematial omplexity of the problem. Though this degree of omplexity is un-avoidable, we attempt herein to investigate the problem by a new method, whih, we hope, anbe more enlightening. We ompute the "spherial" plasmons frequenies given by ω2 = ω2
p

l
2l+1in the non-retarded (Coulomb) limit, where ωp is the (bulk) plasma frequeny and l = 1, 2, ....Inluding retardation, for an inident plane wave, we ompute the �elds inside and outside thesphere (the sattered �eld), the energy stored by these �elds, the Poynting vetor, the satteringross-setion, and, in general, we try to haraterize as ompletely as possible the interation ofthe eletromagneti plane wave with the metalli sphere. We put in evidene both the osillatingregime and the damped regime for the �eld inside the sphere, identify the polaritoni exitationsand make onnetion with the so-alled theory of "e�etive medium permittivity". We provideompat formulae for suh various quantities, whih, essentially, are represented as series of partialwaves of (total) angular momentum l = 1, 2, .... These formulae an readily be adapted to variouspartiular ases. Suh a partiular ase is the small radius of the sphere (in omparison with theeletromagneti wavelength), where the sphere interating with the eletromagneti �eld exhibitsa series of resonanes for frequenies lose to the frequenies of the "spherial" plasmons. Forlarge radii theses resonanes disappear.The method we use herein is based on representing the polarization by a displaement �eld in thepositions of the mobile harges (eletrons) and using the equation of motion for this displaement�eld together with the eletromagneti potentials. The method turns out to be pretty general,and we employed it reently in studying the surfae plasmons, the re�eted and refrated �eldsand the re�etion oe�ient for a semi-in�nite metalli plasma[16℄. The method does not requirethe introdution from the beginning of the dieletri funtion of the medium, but we reover itin our �nal results. Our proedure leads to oupled integral equations, whih seem to have beenenvisaged long ago in treating the interation of the eletromagneti �eld with matter[17℄. Byusing adequate sets of orthogonal funtions we are able to solve these equations, and get �nal,ompat results.We assume a generi model of metals, onsisting of mobile harges −e and mass m, moving in arigid neutralizing bakground. We an reognize here the well-known jellium-like plasma, whihis an adequate representation of an ideal metal in the range of optial frequenies. We assumeslight disturbanes δn in the density of the harges, given by δn = −ndivu, where n (onstant)is the partiles onentration and u is a displaement �eld in the partiles positions. Suh arepresentation is valid for displaements u muh smaller than the wavelengths. These densitydisturbanes give rise to harge and urrent densities

ρ = endivu , j = −neu̇ . (1)We ompute the eletri �eld through E = −1
c

∂A

∂t
−gradΦ, where the well-known vetor and salarpotentials are given by

A =
1

c

∫

dr′
j (r′, t − |r − r′| /c)

|r − r′| , Φ =
∫

dr′
ρ (r′, t − |r − r′| /c)

|r − r′| . (2)The displaement �eld u is subjeted to the equation of motion
mü = −e (E + E0) , (3)where E0 is an external �eld, or, by using a temporal Fourier transform,
ω2u =

e

m
(E + E0) . (4)



J. Theor. Phys. 3It is easy to see, by making use of the Maxwell equation divE = 4πρ, that equation (3) gives thewell-known dieletri funtion ε = 1 − ω2
p/ω

2 for a bulk plasma, where ωp =
√

4πne2/m is theplasma frequeny. The internal (polarizing) �eld is given by E = 4πneu. Similarly, the equationof motion (3) and the Maxwell equation given above lead to the well-known ondutivity σ =
ine2/mω. In this treatment we leave aside the magnetization, relativisti e�ets and dissipation.The general idea of our proedure an be desribed as folows. We ompute the eletri �eld byequations (2) and get it as an integral ontaining the displaement �eld u. Then, we expressthis eletri �eld through u by using equation (3) and get an integral equation for u, whihwe solve. It is suh an integral-equation proedure that seems to have been suggested long agoin investigating the eletromagneti �eld interating with matter[17℄, in onnetion with the so-alled Ewald-Oseen extintion theorem. At the same time, we an reognize the elementarytheory of lassial dispersion in our using of the equation of motion (3) together with Maxwell'sequations[18℄. Making use of this theory, it is easy to see that the equation of motion (3) aneasily be extended to simulate also the behaviour of a simple, lassial dieletri, or to inludethe dissipation. Beside having applied this proedure to a semi-in�nite body (half spae)[16℄, weused it also for a slab of �nite thikness[19℄, where we have alulated the dieletri response,the surfae plasmons, the refrated, re�eted and transmitted waves, surfae plasmon-polaritonmodes, re�etion and transmision oe�ients, and derived generalized Fresnel relations. Forsuh bodies with �nite boundaries, we get oupled integral equations for the omponents of thedisplaement vetor, whih we solve by using suitable sets of orthogonal funtions. In addition,we have also alulated the eigenmodes of suh equations and derived van der Waals-London andCasimir fores ating between a pair of semi-in�nite bodies[20℄. We apply herein this treatment toan ideal spherial metalli partile, and ompute the �eld everywhere in spae, as was the originalaim of Mie theory.2 Coulomb interationWe do the alulations in two steps. First, we onsider the non-retarded (Coulomb interation),therafter we inlude the retardation. In the former ase, the equation of motion (4) reads

ω2u = − 1

4π
ω2

pgrad
∫

dr′
divu(r′)

|r − r′| +
e

m
E0 . (5)For a sphere of radius a, the displaement �eld u beomes

u → uθ(a − r) , (6)where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0 is the step funtion. We get
divu → divuθ(a − r) + ur(a)δ(r − a) , (7)where ur(a) = ur(r = a) is the radial omponent of the �eld u at r = a. We an see the ourreneof the (de)polarizing �eld assoiated with ur(a). We use the well-known deomposition
1

|r − r′| = 4π
∑

lm

1

2l + 1

rl
<

rl+1
>

Y ∗
lm(θ′, ϕ′)Ylm(θ, ϕ) (8)of the Coulomb potential in spherial harmonis, where r< = min(r, r′) and r> = max(r, r′). Themain ingredient of our alulations is the expansion

u(r) =
∑

lm

[

u0
lm(r)Yllm(θ, ϕ) + u−

lm(r)Yll−1m(θ, ϕ) + u+
lm(r)Yll+1m(θ, ϕ)

] (9)



4 J. Theor. Phys.of the displaement �eld in vetor spherial harmonis[21, 22℄. We make an extensive use of theproperties of these funtions, as given in Ref. [21℄. Some of the formulae used here are inludedin Appendix A. In partiular, we reall that their divergene, involved in equation (5), is relatedto (salar) spherial harmonis, so that, by using the expansion (8) and the orthogonality of thespherial harmonis, we express the integral in equation (5) in terms of spherial harmonis. Thenwe reall that the gradient of the latter funtions is related to vetor spherial harmonis, so wereover these funtions in the rhs of equation (5). Doing so, we are left with integral equationswhih imply integrations only with respet to the radial variable. We get u0
lm = 0 and

ω2

ω2
p
u−

lm = l
2l+1

u−
lm −

√
l(l+1)

2l+1
u+

lm +
√

l(l + 1)rl−1
∫ a
r dr′ 1

r′l
u+

lm(r′)−

− 1
4πne

√

l
2l+1

(

d
dr

Φlm + l+1
r

Φlm

)

,

ω2

ω2
p
u+

lm = l+1
2l+1

u+
lm −

√
l(l+1)

2l+1
u−

lm +
√

l(l + 1) 1
rl+2

∫ r
0 dr′r′l+1u−

lm(r′)+

+ 1
4πne

√

l+1
2l+1

(

d
dr

Φlm − l
r
Φlm

)

,

(10)
where we have introdued the external potential Φ (expanded in spherial harmonis) through
E0 = −gradΦ.The solutions of these oupled equations an be found as series of powers rn, for n = 0, 1, 2..., ofthe form

u±
lm =

∑

n=0

u±
lm(n)rn . (11)We get u+

lm(n) = 0, the eigenfrequenies
ω = ωp

√

l

2l + 1
(12)and

u−
lm(n) = − 1

4πne

√

l(2l + 1)
Φlm(l)

ω2

ω2
p
− l

2l+1

δn,l−1 , (13)whih represents the dieletri response of the sphere. It is worth noting that for a desendingseries in powers of rn (negative integers n) in equation (11) we get the eigenfrequenies
ω = ωp

√

l + 1

2l + 1
, (14)whih orrespond to a metalli void of radius a. Both these modes are surfae, or "spherial"plasmons.Making use of equation (13) we �nd the displaement u and the internal (depolarizing) �eld

E =
ω2

ω2 − ω2
p/3

E0 (15)for an external �eld E0 oriented along the z-axis. One an see that 1 − ω2
p/3ω2 an be viewed asthe dieletri funtion for the l = 1- partial wave.



J. Theor. Phys. 53 External plane wave. The �eld inside the sphereWe pass now to the retarded ase. In equation (4) we onsider a plane wave E0 = E0exe
ikz forthe external �eld, with frequeny ω = ck, propagating along the z-axis; ex is the unit vetor alongthe x-axis. We ompute the eletri �eld E from the eletromagneti potentials A and Φ givenby equation (2), by making use of the harge and urrent densities given by equation (1). Weassume the same deomposition given by equation (9) for the displaement �eld as a series ofvetor spherial harmonis.It is very onvenient to introdue the funtions

Flmk(r) = jl(kr)Ylm(θ, ϕ) , Hlmk(r) = hl(kr)Ylm(θ, ϕ) , (16)where jl(kr) and hl(kr) are the spherial Bessel funtions of the �rst and, respetively, third rank(the Hankel funtions)[23, 24℄. Their de�nition, together with reurrene relations, asymptotibehaviour and other formulae used in our alulations are inluded inAppendix B. The followingdeomposition holds[25℄
eik|r−r′|

|r − r′| =
ik

4π

∑

lm

F ∗
lmk(r

′)Hlmk(r) , r > r′ (17)for the "retarded" Coulomb potential appearing in the eletromagneti potentials. We use thisdeomposition for omputing the salar potential Φ. We de�ne also the vetor funtions
F0

lmk(r) = jl(kr)Yllm(θ, ϕ) ,

F+
lmk(r) = 1√

2l+1

[√
ljl+1(kr)Yll+1m(θ, ϕ) +

√
l + 1jl−1(kr)Yll−1m(θ, ϕ)

]

,

F−
lmk(r) = 1√

2l+1

[√
ljl−1(kr)Yll−1m(θ, ϕ) −

√
l + 1jl+1(kr)Yll+1m(θ, ϕ)

]

(18)and a similar set of vetor funtions H
q
lmk, q = 0,±, by replaing jl by hl in equations (18). Wehave the deomposition

eik|r−r′|

|r − r′| =
ik

4π

∑

lmq

F
q∗
lmk(r

′)Hq
lmk(r) , r > r′ , (19)whih we use in omputing the vetor potential A. The funtions Flmk are orthogonal, ompleteand regular in the origin, while Hlmk are not regular in the origin and, together with Flmk, forma omplete set for any region exluding the origin.We insert the representation given by equation (17) in the salar potential Φ, use the orthogo-nality of the spherial harmonis, perform the integrations by parts for the radial derivatives ofthe funtions u±

lm, redue the boundary terms, and use equations (77) for the derivatives of theBessel funtions. Thereafter we ompute the orresponding eletri �eld, arising from the salarpotential, by using the gradient formula given in equation (65), and reover the vetor spherialharmonis. We do similar alulations for the vetor poential A, by using equation (19), and getthe orresponding eletri �eld. In this alulation equations (77) and (78) are very useful.Thereafter, we introdue the eletri �eld E, obtained aording to the above desription, in theequation of motion (4), and use the deomposition of the external �eld E0 in vetor spherialharmonis as given in Appendix C. We identify the oe�ients of the vetor spherial harmonis



6 J. Theor. Phys.in this equation and get two sets of integral equations for the amplitudes u0,±
lm . The �rst set onsistsof one equation

i(−1)l16π2c2

ω2
pk

u0
lm(r) = hl(kr)

∫ r
0 dr′r′2jl(kr′)u0

lm(r′)+

+jl(kr)
∫ a
r dr′r′2hl(kr′)u0

lm(r′) + i(−1)l
√

π
nek3 E0

√
2l + 1jl(kr) (δm,1 + δm,−1) .

(20)The seond set onsists of two oupled integral equations. The �rst is
(−1)l16π2c2

ω2
p

u−
lm(r) = (−1)l16π2

(2l+1)k2

[

lu−
lm(r) −

√

l(l + 1)u+
lm(r)

]

+

+ik
√

l+1
2l+1

hl−1(kr)
∫ r
0 dr′r′2

[√
l + 1jl−1(kr′)u−

lm(r′) +
√

ljl+1(kr′)u+
lm(r′)

]

+

+ik
√

l+1
2l+1

jl−1(kr)
∫ a
r dr′r′2

[√
l + 1hl−1(kr′)u−

lm(r′) +
√

lhl+1(kr′)u+
lm(r′)

]

+

+ (−1)l
√

π
nek2 E0

√
l + 1jl−1(kr) (−δm,1 + δm,−1)

(21)
and the seond equation is given by

(−1)l16π2c2

ω2
p

u+
lm(r) = (−1)l16π2

(2l+1)k2

[

(l + 1)u+
lm(r) −

√

l(l + 1)u−
lm(r)

]

+

+ik
√

l
2l+1

hl+1(kr)
∫ r
0 dr′r′2

[√
l + 1jl−1(kr′)u−

lm(r′) +
√

ljl+1(kr′)u+
lm(r′)

]

+

+ik
√

l
2l+1

jl+1(kr)
∫ a
r dr′r′2

[√
l + 1hl−1(kr′)u−

lm(r′) +
√

lhl+1(kr′)u+
lm(r′)

]

+

+ (−1)l√π
nek2 E0

√
ljl+1(kr) (−δm,1 + δm,−1) .

(22)
We pass now to solving these equations. We take the seond derivative in equation (20) withrespet to r and eliminate the intervening integrals by using equation (20) and its �rst derivativewith respet to r. Then, we use equations (77) and (78) to get

r2 d2

dr2
u0

lm + 2r
d

dr
u0

lm +
[

k2
1r

2 − l(l + 1)
]

u0
lm = 0 , (23)whih is the Bessel equation for jl(k1r), where

k1 =
1

c

√

ω2 − ω2
p . (24)We have therefore u0

lm ∼ jl(k1r), where the oe�ient is determined from equation (20). Makinguse of equation (73) we get
u0

lm = Almjl(k1r) , (25)where
Alm =

(−1)l+1
√

π(2l + 1)cω2
pE0

nea2ω3
· (δm,1 + δm,−1)

k1hl(ka)jl+1(k1a) − khl+1(ka)jl(k1a)
. (26)In order to solve the system of equations (21) and (22) we introdue two new funtions de�ned by

Ulm =
√

lu−
lm −

√
l + 1u+

lm ,

rVlm =
√

l(l − 1)u−
lm +

√
l + 1(l + 2)u+

lm .

(27)



J. Theor. Phys. 7These ombinations of amplitudes appear in divuθ(a − r), equation (7), and we �nd easily, byequations (21) and (22), the relation ∂Ulm

∂r
= Vlm. This relation expresses the vanishing of thevolume harge, as expeted for a transverse �eld. Making use of this relation, we redue thesystem of equations (21) and (22) to only one equation for Ulm, whih we solve following the samemethod as the one desribed above for the funtion u0

lm. We get
r2 d2

dr2
Ulm + 4r

d

dr
Ulm +

[

k2
1r

2 − l(l + 1) + 2
]

Ulm = 0 , (28)whose solution is Ulm ∼ jl(k1r)/r. We determine the amplitude of this solution from the integralequation for Ulm and then, making use of equations (27), we get the �elds u±
lm. These �elds aregiven by

u+
lm(r) =

Blm√
l + 1

jl+1(k1r) , u−
lm(r) =

Blm√
l
jl−1(k1r) , (29)where

Blm =
(−1)l+1

√
πl(l+1)c3k1E0

nea2ω3 ·

· (−δm,1+δm,−1)
[(

−ω2

ω2
p
+ l

2l+1

)

hl+1(ka)+ l+1

2l+1
hl−1(ka)

]

jl(k1a)+
ω2k1

ω2
pk

hl(ka)jl+1(k1a)
.

(30)We put these results in a more ompat and symmetrial form by introduing the notations
Alm =

e

mω2
E0Alalm , Blm =

e

mω2
E0

√

l(l + 1)

2l + 1
Blblm , (31)where alm and blm are the amplitudes of the plane wave given by equation (82),

Al =
16π2(−1)l+1c

ωa2
· 1

k1hl(ka)jl+1(k1a) − khl+1(ka)jl(k1a)
(32)and

Bl = 16π2(−1)l+1c3k1

ω2
pωa2 ·

· 1
[(

−ω2

ω2
p
+ l

2l+1

)

hl+1(ka)+ l+1

2l+1
hl−1(ka)

]

jl(k1a)+
ω2k1

ω2
pk

hl(ka)jl+1(k1a)
.

(33)With these notations the displaement �eld an be written as
u(r) =

e

mω2
E0

∞
∑

l=1m

[

AlalmF0
lmk1

(r) + BlblmF+
lmk1

(r)
] (34)and the �eld inside the sphere is given by

Ei(r) =
mω2

e
u(r) = E0

∞
∑

l=1m

[

AlalmF0
lmk1

(r) + BlblmF+
lmk1

(r)
]

. (35)We an see from the above equations that the external �eld E0 is modi�ed inside the sphere,by the oe�ients Al and Bl, and replaed by the total �eld Ei = E + E0, whih goes like thespherial Bessel funtions jl,l±1(k1r), where the "wave number" k1 = 1
c

√

ω2 − ω2
p is di�erent than

k = ω/c. This is an illustration of the so-alled Ewald-Oseen extintion theorem[17℄. In addition,the �eld inside the sphere is either osillating, for k1 real (ω > ωp), or damped, for k1 purelyimaginary (ω < ωp); in the latter ase there will appear the modi�ed Bessel funtions in the above



8 J. Theor. Phys.formulae. We note also that equation (24) whih gives the "wave number" k1, an also be writtenas c2k2
1 = εω2, where ε = 1−ω2

p/ω
2 is the dieletri funtion of a metal. We get ω2 = c2k2

1+ω2
p fromthis equation, whih is the dispersion relation of polaritons in metals. The dispersion relationship

c2k2
1 = εω2 is well-known in the theory of "e�etive medium permittivity".Making use of Hi = (−i/k)curlEi and equations (66) we get the magneti �eld inside the sphere

Hi(r) = iE0

∞
∑

l=1m

[

AlalmF+
lmk1

(r) + BlblmF0
lmk1

(r)
]

, (36)whih allows the alulation of the energy
Wi =

1

16π

∫ a

0
dr · r2

∫

dΩ
(

|Ei|2 + |Hi|2
) (37)stored inside the sphere. Using the orthogonality of the vetor spherial harmonis this energyan be written as

Wi = 1
16π

E2
0

∑∞
l=1m

(

|Alalm|2 + |Blblm|2
)

·

·
[

∫ a
0 dr · r2

(

|jl(k1r)|2 + l
2l+1

|jl+1(k1r)|2 + l+1
2l+1

|jl−1(k1r)|2
)]

,

(38)where the integrals an be omputed with the aid of formula (74).We an ompute also the Poynting vetor de�ned as the real part of Si = (c/8π) (Ei × H∗
i ). Welimit ourselves to the radial omponent (Si)r, whih gives the radial �ow

Qi =
∫

dΩ (Si)r , (39)where the integration is performed over the solid angle Ω. It an be alulated easily by usingequations (70) and (71) and the orthogonality of the vetor spherial harmonis. We get
Qi = c

8π
E2

0

∑∞
l=1m

(

|Alalm|2 + |Blblm|2
)

·

·jl(k1r)
[

l
2l+1

j∗l+1(k1r) + l+1
2l+1

j∗l−1(k1r)
]

.

(40)It is easy to see that this expression is purely imaginary, i.e. the net radial �ow through thesphere is vanishing, as expeted for suh an ideal (non-dissipative) plasma. It is easy to ompareequation (40) with the radial �ow Q0 of the plane wave (obtained by putting formally Al = Bl = 1in equation (40)), whih is also vanishing.4 The sattered �eldHaving known the displaement �eld u given by equation (34) we an ompute the satteredeletri �eld, i.e. the �eld reated outside the sphere by harges and urrents, via equations (1)and (2). In the eletromagneti potentials we use again the deompositions given by equations(17) and (19), employ the orthogonality of the spherial harmonis and integrals given by equation(73) for the Bessel funtions, together with reurrene relations of the type (77) and (78). We getthe sattered �eld
Es(r) =

ka2

16π2
E0

∞
∑

l=1m

[

Alalmf 0
l H

0
lmk(r) + Blblmf+

l H+
lmk(r)

]

, (41)
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f 0

l = (−1)l [k1jl(ka)jl+1(k1a) − kjl+1(ka)jl(k1a)] (42)and
f+

l = (−1)l

[

kjl(ka)jl+1(k1a) − k1jl+1(ka)jl(k1a) − iω2
p(l + 1)

c2kk1a
jl(ka)jl(k1a)

]

. (43)We note again the modi�ation of the inident plane wave in the sattered �eld, through theoe�ients Al, Bl and f 0,+
l . The sattered �eld ontains the propagating funtions hl,l±1 (Hankelfuntions), with the wavevetor k = ω/c.We have heked that the sattered �eld obtained above is the same as the sattered �eld fromMie's theory, as given in Ref. [17℄. The oe�ients eBl and mBl in Mie's theory are related to ouroe�ients Al, Bl and f 0,+
l through

mBl = − il+1(2l+1)
16π2l(l+1)

ka2Alf
0
l ,

eBl = − il+1(2l+1)
16π2l(l+1)

ka2Blf
+
l .

(44)Making use of the relations (70) and (71) it is easy to prove the ontinuity of the tangentialspherial omponents of the eletri �eld at the sphere surfae, i.e.
(Ei)θ,ϕ |r=a = (E0 + Es)θ,ϕ |r=a . (45)Similarly, using relations (68) and (69) it is easy to get the ontinuity of the eletri displaement

(

1 − ω2
p

ω2

)

(Ei)r |r=a = (E0 + Es)r |r=a , (46)where we reognize the dieletri funtion ε = 1−ω2
p/ω

2. This result emphasizes again the validityof the theory of "e�etive medium permittivity".Making use of the same equations (68)-(71) and the asymptoti behaviour of the funtion hl(kr)given by equation (76), it is easy to show that the radial omponent of the sattered �eld goes like
∼ 1/r2 at large distanes, while the tangential omponents go like∼ 1/r. Indeed, at large distanesthe sattered �eld is pratially a transverse �eld. It is also easy to hek that (Es)ϕ ∼ sin ϕ and
(Es)θ ∼ cos ϕ, whih give the degree of polarization for an arbitrary azimuthal angle ϕ.In the same manner as for the �eld inside the sphere we an ompute the sattered magneti �eld,the energy stored by this �eld and the Poynting vetor. The sattered magneti �eld is given by

Hs(r) =
ika2

16π2
E0

∞
∑

l=1m

[

Alalmf 0
l H

+
lmk(r) + Blblmf+

l H0
lmk(r)

] (47)and the stored energy an be written as
Ws = 1

16π

(

ka2

16π2

)2
E2

0

∑∞
l=1m

(

|Alalmf 0
l |

2
+
∣

∣

∣Blblmf+
l

∣

∣

∣

2
)

·

·
[

∫∞
a dr · r2

(

|hl(kr)|2 + l
2l+1

|hl+1(kr)|2 + l+1
2l+1

|hl−1(kr)|2
)]

.

(48)The radial �ow of energy is given by the real part of
Qs =

∫

dΩ (Ss)r = c
8π

(

ka2

16π2

)2
E2

0

∑∞
l=1m

(

|Alalmf 0
l |

2
+
∣

∣

∣Blblmf+
l

∣

∣

∣

2
)

·

·hl(kr)
[

l
2l+1

h∗
l+1(kr) + l+1

2l+1
h∗

l−1(kr)
]

.

(49)



10 J. Theor. Phys.This quantity is not vanishing anymore. In fat it de�nes the satterring ross-setion (or therelative satterred intensity)
σ = Re

[

r2 Qs

|S0|
|r→∞

]

=
a4

16π2

∞
∑

l=1m

(

∣

∣

∣Alalmf 0
l

∣

∣

∣

2
+
∣

∣

∣Blblmf+
l

∣

∣

∣

2
)

, (50)where |S0| = 1
8π

E2
0 is the modulus of the Poynting vetor of the inident wave. It an be hekedstraightforwardly, by diret alulations, that (the real part of) the ross-produt ontribution tothe �ow

Q
′

s =
∫

dΩ (E0 × H∗
s + Es ×H∗

0)r =

= c
8π

(

ka2

8π2

) (

E2
0

16π

)

∑∞
l=1{

(

Alf
0
l + Blf

+
l

)

hl(kr)
[

lj∗l+1(kr) + (l + 1)j∗l−1(kr)
]

+

+
(

A∗
l f

0∗
l + B∗

l f
+∗
l

)

jl(kr)
[

lh∗
l+1(kr) + (l + 1)h∗

l−1(kr)
]

}

(51)
anels out exatly the ontribution ReQs given above for the sattering �eld, i.e. ReQ

′

s+ReQs =
0, leading thereby to a vanishing total net �ow outside the sphere, in agreement with the vanishing�ow of the external �eld and the �eld inside the sphere.Moreover, for large distanes the �ow Q

′

s given above an be written as
Q

′

s ∼r→∞
c

8π

E2
0a

2

8πkr2

∞
∑

l=1

(2l + 1)
[

Re
(

Alf
0
l + Blf

+
l

)

+ iIm
(

Alf
0
l + Blf

+
l

)

e2i(kr−lπ/2)
]

, (52)while the forward sattered �eld beomes
[Es(θ = 0)]x ∼r→∞ −iE0a

2

32π2

eikr

r

∞
∑

l=1

(2l + 1)
(

Alf
0
l + Blf

+
l

)

; (53)if we denote by Ef the amplitude of the spherial wave in this equation, and ompare the twoequations (52) and (53), we get
r2ReQ

′

s = −E0
c

2k
ImEf , (54)or, making use of equation (50) and the �ow balane ReQ

′

s + ReQs = 0,
σ =

4π

kE0
ImEf , (55)whih is the well-known "optial theorem"[17℄.5 Disussion and onlusionsThe results presented in this paper are ast in the form of well-known series of partial waves, withrespet to the angular momentum number l = 1, 2, .... We emphasize that this is the total angularmomentum, arising from the oupling of the orbital momentum to the angular momentum 1. Thelatter re�ets the vetorial harater of the eletromagneti �eld, and the e�et of the oupling anbe seen, for instane, from the ourrene of the l±1-partial waves and from the lowest value l = 1aquired by this label. The partial-waves expansions (whih essentially are multipole expansions)



J. Theor. Phys. 11were attained by means of the orthonormal funtions F
0,±
lmk, supplemented by H

0,±
lmk, whih formtogether a omplete set. The �eld inside the sphere is regular in the origin, and is representedby funtions F

0,+
lmk, while the sattered �eld is propagating and is represented by funtions H

0,+
lmk.The funtions F−

lmk and H−
lmk do not appear, beause they are assoiated with a net harge. Theterms ontaining F0

lmk (H0
lmk) orrespond to magneti multipoles (TE), while those ontaining

F+
lmk (H+

lmk) orrespond to eletri multipoles (TM).We have omputed these �elds for a plane wave inident on an ideal metalli sphere and reover, ina di�erent form, the original results of Mie's theory. We have also omputed the energy stored bysuh �elds, their Poynting vetor, the sattering ross-setion (sattered intensity), and hekedthe well-known ontinuity onditions at the surfae of the sphere and the balane of the energy�ow. We re-derived also the well-known "optial theorem". We do not introdue the dieletrifuntion from the beginning in our alulations, but we reover the results of the so-alled theoryof "e�etive medium permittivity" in our �nal results. This is possible due to our di�erent methodof alulation, whih employs the equation of motion for the polarization and the eletromagnetipotentials. The harateristi feature of this method onsists in the fat that it leads to oupledintegral equations, whih we solved.We have presented the results, more or less, in a ompat form. Various partiular ases anbe derived from our results, by using well-known de�nitions and properties of, essentially, thespherial harmonis, the vetor spherial harmonis and the spherial Bessel funtions. It isworth noting that the �elds given by us exhibit the orresponding modi�ations of the inidentplane wave (deomposed in partial waves) through our oe�ients Al,Bl given by equations (32)and (33), and the oe�ients f 0,+
l given by equations (42) and (43).A ase of interest is the limit of small radii, i.e. ka ≪ 1. For realisti values of the bulkplasma frequeny ωp, the "wave number" k1 inside the sphere aquires purely imaginary values,i.e. k1 = iα1, where α1 = 1
c

√

ω2
p − ω2 ≃ ωp/c. The argument ak1 an then be written as

ak1 = iaα1 ≃ iaωp/c, whih, in general, may not be small. Making use of the asymptoti behaviourof the spherial Bessel funtions given by equations (75), we give here the leading ontributionsto the oe�ients Al, Bl, f 0,+
l in the limit ka ≪ 1 and for any value of the k1a:

Al = 4π(ika)l

(2l+1)!!jl(k1a)
,

Bl = 4π ck1ω
ω2

p
· (ika)l
(

ω2

ω2
p
− l

2l+1

)

(2l+1)!!jl(k1a)
,

f 0
l = 4πk1

(−ika)l

(2l+1)!!
jl+1(k1a) ,

f+
l = −4π

ω2
p

c2k1

(−ika)l−1(l+1)
(2l+1)!!

jl(k1a)

(56)
(where we have assumed jl(k1a) 6= 0). We an see that, in this limit, the leading ontributionsorrespond to l = 1 (so-alled dipolar ontributions).It is worth noting the resonanes ourring in the denominator of the oe�ient Bl for frequen-ies ω = ωp

√

l/(2l + 1), whih are the frequenies of the "spherial" plasmons. They appear assingularities in the �elds, but, if the dissipation is inluded, these singularities are smoothed out,the �elds exhibit an enhanement, and the absorption is very high. The dissipation an easily beinluded in the above formulae by hanging ω2 into ω(ω + iγ), where the dissipation parameter γis, in general, muh smaller than the relevant values of the frequenies ω. The absorption is then



12 J. Theor. Phys.related to the imaginary parts of the singularities given above, and one an see easily that it isvery high (∼ 1/γ) at resonane.It is worth investigating the dependene on radius of the resonanes found above. This an beahieved by taking the next-to-leading ontributions to the denominator of the oe�ient Bl. Weget
ω2 = ω2

p

l

2l + 1
· 1

1 + iak1
jl+1(k1a)

(2l+1)jl(k1a)

. (57)The resonane frequenies ω = ωp

√

l/(2l + 1) are of the same order of magnitude as ωp. It followsthat aωp/c an also be taken as being muh lesser than unity, i.e. aα1 ≪ 1 in ak1 = iaα1 ≃ iaωp/c.Then, equation (57) yields
ω2 ≃ ω2

p

l

2l + 1

[

1 − 1

(2l + 1)(2l + 3)
(aωp/c)

2

]

, (58)whih, within these limiting ase, gives the radius dependene of the resonane frequenies. How-ever, a word of aution must be inserted here, regarding suh series expansions. For pratialsituations the "small radius" onditon ka = aω/c ≪ 1 might not be ful�lled for resonane fre-quenies ω ∼ ωp

√

l/(2l + 1), so, atually, the series expansions are not valid, and the resonanesremain to be estimated numerially. In the opposite limit ka ≫ 1 these resonanes disappear.Finally, we give an illustration of the sattered intensity at large distanes (kr ≫ 1) for the mostinteresting ase ka ≪ 1. To this end, we use the sattered �eld Es given by equation (41), wherethe oe�ients Al, Bl as well as the oe�ients f 0,+
l are given by equations (56). We an seeeasily that the leading ontributions orrespond to l = 1 in this ase (dipolar approximation). For

ω < ωp/
√

2 we have the resonane regime, while for ω < ωp we have the damped regime (k1 purelyimaginary). In order to simplify the alulations we avoid these frequeny regions. Moreover, weassume ω ≫ ωp, suh that k1a ≃ ka ≪ 1. Although this is a rather unrealisti situation,orresponding to a small plasma frequeny ωp, we hoose it for the purpose of illustrating theangular dependene of the sattered radiation intensity, whih, in spite of all these simpli�ations,still exhibits a su�iently omplex behaviour. Under these irumstanes we �nd out the angularomponents of the sattered �eld
Esθ = 1

30
E0k

4a5 eikr

r
(1 + ε cos θ) cos ϕ ,

Esϕ = 1
30

E0k
4a5 eikr

r
(3ε − cos θ) sin ϕ

(59)where ε = 10ω2
p/3ω2(ka)2, so that we get the intensities

I‖ = |Esθ|2 = I0 (1 + ε cos θ)2 , I⊥ = |Esϕ|2 = I0 (3ε − cos θ)2 (60)with ustomary notations, for naturally polarized inident radiation ( ¯cos2ϕ = ¯sin2ϕ = 1/2), where
I0 = 1

2
(E0k

4a5/30r)
2. A plot of these intensities is shown in the polar diagram given in Fig. 1.We an see that these intensities are very sensitive to the parameter ε, whih is the ratio of twosmall parameters (ω2
p/ω

2 to (ka)2), thus illustrating the omplexity of the angular dependene ofthe satterring pattern.
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Figure 1: Polar diagram for the redued intensities I‖/ε
2I0 forε = 2 (solid line) and I⊥/I0 for

ε = 0.17 (dashed line), as given by equation (60). The inset shows the entral region enlarged.In onlusion, we may say that we omputed the di�ration of an eletromagneti plane wave byan ideal metalli sphere and reovered the results of Mie's theory. We did these alulations by amethod di�erent than Mie's method, whih uses the boundary onditions at the sphere surfae andthe dieletri funtion of the metal. By our method we reover these "e�etive medium theory"results. We have haraterized as fully as posible, in ompat formulae, the interation of theplane eletromagneti wave with the metalli sphere, and have given additional results, like the�eld inside the sphere, the energy stored by these �elds, their Poynting vetor, sattering ross-setion (sattered intensity) and have also heked the balane of the energy �ow. In addition,we have omputed by our method the "spherial" plasmons and put in evidene the di�rationresonanes ourring at frequenies lose to these plasmons frequenies in the limit of small radii.The method used in this paper is not restrited to metalli spheres. For dieletris we replae ω2in our formulae (inluding k1 given by equation (24)) by ω2
p/(1−ε) and use the dieletri funtion

ε for dieletris. Within our method (without loss) it is represented as ε = 1 + ω2
p/ω

2
0, where both

ωp and ω0 are parameters. Under these irumstanes, the resonanes found above for a metallisphere do not appear anymore. Instead, for a dieletri sphere, there exist small osillations inthe relevant oe�ients Al, Bl, f 0,±
l , arising by a di�erent mehanism whih originates in theosillatory behaviour of the Bessel funtions.Aknowledgments. The authors are indebted to the members of the Laboratory of TheoretialPhysis at Magurele-Buharest for enlightening disussions and to Dr. L. C. Cune for many usefulomments.Appendix A. Vetor spherial harmonisThe vetor spherial harmonis are de�ned by[21, 22℄

YJlM =
∑

mq

Cl1(JM ; mq)Ylmeq , (61)



14 J. Theor. Phys.where Cl1(JM ; mq) are the Clebsh-Gordan oe�ients for the oupling of the angular momenta
lm and 1q to the angular momentum JM , Ylm are (salar) spherial harmonis and eq, q = 0,±1,are de�ned by e± = ∓ 1√

2
(ex ± iey), e0 = ez; ex,y,z are unit vetors of the referene frame.Obviously, J = l, l ± 1. The salar spherial harmonis are de�ned as in Ref.[21℄

Ylm(θ, ϕ) = (−1)m

√

√

√

√

(2l + 1)(l − m)!

4π(l + m)!
P m

l (cos θ)eimϕ , (62)where the assoiated Legendre polynomials are given by
P m

l (x) =
(1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l . (63)The vetor spherial harmonis are orthogonal funtions over the sphere. We give here a fewuseful formulae used in the main text[21℄:

div (f(r)Yllm) = 0 ,

div (f(r)Yll−1m) =
√

l
2l+1

(

d
dr

− l−1
r

)

f(r)Ylm ,

div (f(r)Yll+1m) = −
√

l+1
2l+1

(

d
dr

+ l+2
r

)

f(r)Ylm

(64)and
grad (f(r)Ylm) = −

√

l + 1

2l + 1

(

d

dr
− l

r

)

f(r)Yll+1m +

√

l

2l + 1

(

d

dr
+

l + 1

r

)

f(r)Yll−1m . (65)for any arbitrary funtion f(r). We have also
curlF0

lmk = −kF+
lmk , curlF+

lmk = −kF0
lmk , curlF−

lmk = 0 (66)and similar relations for H
0,±
lmk, where F

0,±
lmk and H

0,±
lmk are de�ned in the main text. Another usefulformula is

erYlm =
1√

2l + 1

(√
lYll−1m −

√
l + 1Yll+1m

)

, . (67)where er is the radial unit vetor.Making use of their de�niton (61) and of the Clebsh-Gordan oe�ients we an ompute thespherial omponents the vetor spherial harmonis[21, 22℄. We give here a few useful formulaefor these spherial omponents. First we have
(Yllm)r = 0 , (Yll−1m)r =

√

l

2l + 1
Ylm , (Yll+1m)r = −

√

l + 1

2l + 1
Ylm (68)for the radial omponents, whene

(

F0
lmk

)

r
= 0 ,

(

F+
lmk

)

r
=

√

l(l + 1)

ikr
jl(kr)Ylm (69)and similar formulae for the funtions H0,+

lmk, replaing jl by hl. We have also
(Yll+1m)ϕ = −i

√

l

2l + 1
(Yllm)θ , (Yll−1m)ϕ = −i

√

l + 1

2l + 1
(Yllm)θ (70)and

(Yll+1m)θ = i

√

l

2l + 1
(Yllm)ϕ , (Yll−1m)θ = i

√

l + 1

2l + 1
(Yllm)ϕ , (71)whih we use to get the tangential spherial omponents of the funtions Flmk and Hlmk in termsof the orresponding omponents of Yllm.



J. Theor. Phys. 15Appendix B. Spherial Bessel funtionsWe use the following de�nitions for the spherial Bessel funtions
jl(z) = (2π)3/2il

Jl+1/2(z)√
z

,

nl(z) = (2π)3/2il
Nl+1/2(z)√

z
,

hl(z) = jl(z) + inl(z) = (2π)3/2il
Hl+1/2(z)√

z
,

(72)where Jl+1/2, Nl+1/2 and Hl+1/2 are (ylindrial) Bessel funtions of half-integer order and of the�rst, seond and, respetively, third rank (Hl+1/2 known also as the Hankel funtion)[23, 24℄. Wenote the "orthogonality" property
∫

dz · zwν(αz)Wν(βz) =
z

β2 − α2
[βWν+1(βz)wν(αz) − αWν(βz)wν+1(αz)] (73)for any pair wν , Wν of (ylindrial) Bessel funtions of the same rank. We have also the usefulintegral

∫

dz · z2j2
l (αz) =

z3

2

[

j2
l (αz) − j2

l+1(αz) − 2l + 1

iαz
jl(αz)jl+1(αz)

] (74)and a similar integral for hl(z).The asymtoti behaviour of the spherial Bessel funtions is given by
jl(z) ∼z→0 4πil zl

(2l+1)!!
, jl(z) ∼z→∞ 4πil sin(z−lπ/2)

z
,

nl(z) ∼z→0 −4πil (2l−1)!!
zl+1 , nl(z) ∼z→∞ −4πil cos(z−lπ/2)

z

(75)and
hl(z) ∼z→∞ −4πil+1 ei(z−lπ/2)

z
. (76)The following reurrene relations are used in the main text:

d
dz

jl(z) = i
2l+1

[ljl−1(z) + (l + 1)jl+1(z)] ,

jl(z) = iz
2l+1

[jl−1(z) − jl+1(z)]
(77)and

Jν(z)H
′

ν(z) − J
′

ν(z)Hν(z) = 2i
πz

,

Jν−1(z)Hν(z) − Jν(z)Hν−1(z) = 2
πiz

,

J
′

ν(z) = Jν−1(z) − ν
z
Jν(z) = −Jν+1(z) + ν

z
Jν(z) .

(78)
Appendix C. Plane waveBeside the well-known deomposition

E0(r) = E0ex

∞
∑

l=0

√

2l + 1

4π
jl(kr)Yl0(θ, ϕ) (79)



16 J. Theor. Phys.for the plane wave E0 = E0exe
ikz, we have also the deomposition

E0(r) = 1
2
√

4π
E0
∑∞

l=1{
√

2l + 1jl(kr)[Yll1(θ, ϕ) + Yll−1(θ, ϕ)]+

+
√

l + 1jl−1(kr)[Yll−1−1(θ, ϕ) −Yll−11(θ, ϕ)]+

+
√

ljl+1(kr)[Yll+1−1(θ, ϕ) − Yll+11(θ, ϕ)]}

(80)as a series of vetor spherial harmonis. It is very onvenient to write this equation in the moreompat form
E0(r) = E0

∞
∑

l=1m

(

almF0
lmk(r) + blmF+

lmk(r)
)

, (81)where
alm =

1

4

√

2l + 1

π
(δm1 + δm,−1) , blm =

1

4

√

2l + 1

π
(−δm1 + δm,−1) (82)and the funtions F

0,+
lmk are given by equation (18) in the main text. The magneti �eld is alulatedfrom H0 = (−i/k)curlE0, and, making use of equations (64), we get

H0 = iE0

∞
∑

l=1m

[

almF+
lmk(r) + blmF0

lmk(r)
]

. (83)Referenes[1℄ G. Mie, "Beitrage zur optik truber Medien, speziell kolloidaler Metallosungen," Ann. Physik25 377-445 (1908).[2℄ H. C. van de Hulst, "Light Sattering by Small Partiles," (Wiley, New York, 1957).[3℄ W. T. Doyle and A. Agarwal, "Optial extintion of metal spheres," J. Opt. So. Am. 55305-309 (1965).[4℄ J. Crowell and R. H. Rithie, "Radiation deay of Coulomb-stimulated plasmons in spheres,"Phys. Rev. 172 436-440 (1968).[5℄ A. Ashkin and J. M. Dziedzi, "Observation of resonanes in the radiation pressure on di-eletri spheres," Phy. Rev. Lett. 38 1351-1355 (1977).[6℄ P. Chylek, J. T. Kiehl and M. K. W. Ko, "Narrow resonane strutures in the Mie satteringharateristis," Appl. Optis, 17 3019-3021 (1978).[7℄ P. R. Conwell, P. W. Barber and C. K. Rushforth, "Resonant spetra of dieletri spheres,"J. Opt. So. Am. A1 62-67 (1984).[8℄ P. L. Marston and J. H. Crihton, "Radiation torque on a sphere aused by a irularly-polarized eletromagneti wave," Phys. Rev. A30 2508- 2516 (1984).[9℄ S. Chang, J. T. Kim, J. H. Jo and S. S. Lee, "Optial fore on a sphere aused by theevanesent �eld of a Gaussian beam; e�ets of multiple sattering," Optis Commun. 139252-261 (1997).[10℄ R. Ruppin, "Optial properties of small metalli spheres," Phys. Rev. B11 2871-2876 (1975).
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