
1Journal of Theoreti
al Physi
sFounded and Edited by M. Apostol 179 (2009)ISSN 1453-4428Di�ra
tion of an ele
tromagneti
 plane wave by a metalli
 sphere. Mie's theoryrevisitedM. Apostol and G. VamanDepartment of Theoreti
al Physi
s, Institute of Atomi
 Physi
s,Magurele-Bu
harest MG-6, POBox MG-35, Romaniaemail: apoma�theory.nipne.roAbstra
tThe di�ra
tion of a plane ele
tromagneti
 wave by an ideal metalli
 sphere (Mie's theory)is investigated by a new method. The method 
onsists in representing the 
harge disturban
es(polarization) by a displa
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tromagneti
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tionThe di�ra
tion of an ele
tromagneti
 plane wave by metalli
 spheres has been thoroughly inves-tigated long time ago by Mie[1℄. The main result of this investigation is a sele
tive absorptionof light by small parti
les, for some frequen
ies whi
h, thereafter, were asso
iated with the fre-quen
ies of the "spheri
al" plasmons[2℄-[4℄. Re
ently, the subje
t enjoys a great deal of interest,in 
onne
tion with plasmons and polaritons in stru
tures with restri
ted geometry, their role in
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tion of the ele
tromagneti
 wave and a possible enhan
ement of the s
attered �eld[5℄-[15℄. The physi
s underlying su
h phenomena is rather obs
ured in the original Mie's results,due to the mathemati
al 
omplexity of the problem. Though this degree of 
omplexity is un-avoidable, we attempt herein to investigate the problem by a new method, whi
h, we hope, 
anbe more enlightening. We 
ompute the "spheri
al" plasmons frequen
ies given by ω2 = ω2
p

l
2l+1in the non-retarded (Coulomb) limit, where ωp is the (bulk) plasma frequen
y and l = 1, 2, ....In
luding retardation, for an in
ident plane wave, we 
ompute the �elds inside and outside thesphere (the s
attered �eld), the energy stored by these �elds, the Poynting ve
tor, the s
attering
ross-se
tion, and, in general, we try to 
hara
terize as 
ompletely as possible the intera
tion ofthe ele
tromagneti
 plane wave with the metalli
 sphere. We put in eviden
e both the os
illatingregime and the damped regime for the �eld inside the sphere, identify the polaritoni
 ex
itationsand make 
onne
tion with the so-
alled theory of "e�e
tive medium permittivity". We provide
ompa
t formulae for su
h various quantities, whi
h, essentially, are represented as series of partialwaves of (total) angular momentum l = 1, 2, .... These formulae 
an readily be adapted to variousparti
ular 
ases. Su
h a parti
ular 
ase is the small radius of the sphere (in 
omparison with theele
tromagneti
 wavelength), where the sphere intera
ting with the ele
tromagneti
 �eld exhibitsa series of resonan
es for frequen
ies 
lose to the frequen
ies of the "spheri
al" plasmons. Forlarge radii theses resonan
es disappear.The method we use herein is based on representing the polarization by a displa
ement �eld in thepositions of the mobile 
harges (ele
trons) and using the equation of motion for this displa
ement�eld together with the ele
tromagneti
 potentials. The method turns out to be pretty general,and we employed it re
ently in studying the surfa
e plasmons, the re�e
ted and refra
ted �eldsand the re�e
tion 
oe�
ient for a semi-in�nite metalli
 plasma[16℄. The method does not requirethe introdu
tion from the beginning of the diele
tri
 fun
tion of the medium, but we re
over itin our �nal results. Our pro
edure leads to 
oupled integral equations, whi
h seem to have beenenvisaged long ago in treating the intera
tion of the ele
tromagneti
 �eld with matter[17℄. Byusing adequate sets of orthogonal fun
tions we are able to solve these equations, and get �nal,
ompa
t results.We assume a generi
 model of metals, 
onsisting of mobile 
harges −e and mass m, moving in arigid neutralizing ba
kground. We 
an re
ognize here the well-known jellium-like plasma, whi
his an adequate representation of an ideal metal in the range of opti
al frequen
ies. We assumeslight disturban
es δn in the density of the 
harges, given by δn = −ndivu, where n (
onstant)is the parti
les 
on
entration and u is a displa
ement �eld in the parti
les positions. Su
h arepresentation is valid for displa
ements u mu
h smaller than the wavelengths. These densitydisturban
es give rise to 
harge and 
urrent densities

ρ = endivu , j = −neu̇ . (1)We 
ompute the ele
tri
 �eld through E = −1
c

∂A

∂t
−gradΦ, where the well-known ve
tor and s
alarpotentials are given by

A =
1

c

∫

dr′
j (r′, t − |r − r′| /c)

|r − r′| , Φ =
∫

dr′
ρ (r′, t − |r − r′| /c)

|r − r′| . (2)The displa
ement �eld u is subje
ted to the equation of motion
mü = −e (E + E0) , (3)where E0 is an external �eld, or, by using a temporal Fourier transform,
ω2u =

e

m
(E + E0) . (4)



J. Theor. Phys. 3It is easy to see, by making use of the Maxwell equation divE = 4πρ, that equation (3) gives thewell-known diele
tri
 fun
tion ε = 1 − ω2
p/ω

2 for a bulk plasma, where ωp =
√

4πne2/m is theplasma frequen
y. The internal (polarizing) �eld is given by E = 4πneu. Similarly, the equationof motion (3) and the Maxwell equation given above lead to the well-known 
ondu
tivity σ =
ine2/mω. In this treatment we leave aside the magnetization, relativisti
 e�e
ts and dissipation.The general idea of our pro
edure 
an be des
ribed as folows. We 
ompute the ele
tri
 �eld byequations (2) and get it as an integral 
ontaining the displa
ement �eld u. Then, we expressthis ele
tri
 �eld through u by using equation (3) and get an integral equation for u, whi
hwe solve. It is su
h an integral-equation pro
edure that seems to have been suggested long agoin investigating the ele
tromagneti
 �eld intera
ting with matter[17℄, in 
onne
tion with the so-
alled Ewald-Oseen extin
tion theorem. At the same time, we 
an re
ognize the elementarytheory of 
lassi
al dispersion in our using of the equation of motion (3) together with Maxwell'sequations[18℄. Making use of this theory, it is easy to see that the equation of motion (3) 
aneasily be extended to simulate also the behaviour of a simple, 
lassi
al diele
tri
, or to in
ludethe dissipation. Beside having applied this pro
edure to a semi-in�nite body (half spa
e)[16℄, weused it also for a slab of �nite thi
kness[19℄, where we have 
al
ulated the diele
tri
 response,the surfa
e plasmons, the refra
ted, re�e
ted and transmitted waves, surfa
e plasmon-polaritonmodes, re�e
tion and transmision 
oe�
ients, and derived generalized Fresnel relations. Forsu
h bodies with �nite boundaries, we get 
oupled integral equations for the 
omponents of thedispla
ement ve
tor, whi
h we solve by using suitable sets of orthogonal fun
tions. In addition,we have also 
al
ulated the eigenmodes of su
h equations and derived van der Waals-London andCasimir for
es a
ting between a pair of semi-in�nite bodies[20℄. We apply herein this treatment toan ideal spheri
al metalli
 parti
le, and 
ompute the �eld everywhere in spa
e, as was the originalaim of Mie theory.2 Coulomb intera
tionWe do the 
al
ulations in two steps. First, we 
onsider the non-retarded (Coulomb intera
tion),therafter we in
lude the retardation. In the former 
ase, the equation of motion (4) reads

ω2u = − 1

4π
ω2

pgrad
∫

dr′
divu(r′)

|r − r′| +
e

m
E0 . (5)For a sphere of radius a, the displa
ement �eld u be
omes

u → uθ(a − r) , (6)where θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0 is the step fun
tion. We get
divu → divuθ(a − r) + ur(a)δ(r − a) , (7)where ur(a) = ur(r = a) is the radial 
omponent of the �eld u at r = a. We 
an see the o

urren
eof the (de)polarizing �eld asso
iated with ur(a). We use the well-known de
omposition
1

|r − r′| = 4π
∑

lm

1

2l + 1

rl
<

rl+1
>

Y ∗
lm(θ′, ϕ′)Ylm(θ, ϕ) (8)of the Coulomb potential in spheri
al harmoni
s, where r< = min(r, r′) and r> = max(r, r′). Themain ingredient of our 
al
ulations is the expansion

u(r) =
∑

lm

[

u0
lm(r)Yllm(θ, ϕ) + u−

lm(r)Yll−1m(θ, ϕ) + u+
lm(r)Yll+1m(θ, ϕ)

] (9)
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ement �eld in ve
tor spheri
al harmoni
s[21, 22℄. We make an extensive use of theproperties of these fun
tions, as given in Ref. [21℄. Some of the formulae used here are in
ludedin Appendix A. In parti
ular, we re
all that their divergen
e, involved in equation (5), is relatedto (s
alar) spheri
al harmoni
s, so that, by using the expansion (8) and the orthogonality of thespheri
al harmoni
s, we express the integral in equation (5) in terms of spheri
al harmoni
s. Thenwe re
all that the gradient of the latter fun
tions is related to ve
tor spheri
al harmoni
s, so were
over these fun
tions in the rhs of equation (5). Doing so, we are left with integral equationswhi
h imply integrations only with respe
t to the radial variable. We get u0
lm = 0 and

ω2

ω2
p
u−

lm = l
2l+1

u−
lm −

√
l(l+1)

2l+1
u+

lm +
√

l(l + 1)rl−1
∫ a
r dr′ 1

r′l
u+

lm(r′)−

− 1
4πne

√

l
2l+1

(

d
dr

Φlm + l+1
r

Φlm

)

,

ω2

ω2
p
u+

lm = l+1
2l+1

u+
lm −

√
l(l+1)

2l+1
u−

lm +
√

l(l + 1) 1
rl+2

∫ r
0 dr′r′l+1u−

lm(r′)+

+ 1
4πne

√

l+1
2l+1

(

d
dr

Φlm − l
r
Φlm

)

,

(10)
where we have introdu
ed the external potential Φ (expanded in spheri
al harmoni
s) through
E0 = −gradΦ.The solutions of these 
oupled equations 
an be found as series of powers rn, for n = 0, 1, 2..., ofthe form

u±
lm =

∑

n=0

u±
lm(n)rn . (11)We get u+

lm(n) = 0, the eigenfrequen
ies
ω = ωp

√

l

2l + 1
(12)and

u−
lm(n) = − 1

4πne

√

l(2l + 1)
Φlm(l)

ω2

ω2
p
− l

2l+1

δn,l−1 , (13)whi
h represents the diele
tri
 response of the sphere. It is worth noting that for a des
endingseries in powers of rn (negative integers n) in equation (11) we get the eigenfrequen
ies
ω = ωp

√

l + 1

2l + 1
, (14)whi
h 
orrespond to a metalli
 void of radius a. Both these modes are surfa
e, or "spheri
al"plasmons.Making use of equation (13) we �nd the displa
ement u and the internal (depolarizing) �eld

E =
ω2

ω2 − ω2
p/3

E0 (15)for an external �eld E0 oriented along the z-axis. One 
an see that 1 − ω2
p/3ω2 
an be viewed asthe diele
tri
 fun
tion for the l = 1- partial wave.



J. Theor. Phys. 53 External plane wave. The �eld inside the sphereWe pass now to the retarded 
ase. In equation (4) we 
onsider a plane wave E0 = E0exe
ikz forthe external �eld, with frequen
y ω = ck, propagating along the z-axis; ex is the unit ve
tor alongthe x-axis. We 
ompute the ele
tri
 �eld E from the ele
tromagneti
 potentials A and Φ givenby equation (2), by making use of the 
harge and 
urrent densities given by equation (1). Weassume the same de
omposition given by equation (9) for the displa
ement �eld as a series ofve
tor spheri
al harmoni
s.It is very 
onvenient to introdu
e the fun
tions

Flmk(r) = jl(kr)Ylm(θ, ϕ) , Hlmk(r) = hl(kr)Ylm(θ, ϕ) , (16)where jl(kr) and hl(kr) are the spheri
al Bessel fun
tions of the �rst and, respe
tively, third rank(the Hankel fun
tions)[23, 24℄. Their de�nition, together with re
urren
e relations, asymptoti
behaviour and other formulae used in our 
al
ulations are in
luded inAppendix B. The followingde
omposition holds[25℄
eik|r−r′|

|r − r′| =
ik

4π

∑

lm

F ∗
lmk(r

′)Hlmk(r) , r > r′ (17)for the "retarded" Coulomb potential appearing in the ele
tromagneti
 potentials. We use thisde
omposition for 
omputing the s
alar potential Φ. We de�ne also the ve
tor fun
tions
F0

lmk(r) = jl(kr)Yllm(θ, ϕ) ,

F+
lmk(r) = 1√

2l+1

[√
ljl+1(kr)Yll+1m(θ, ϕ) +

√
l + 1jl−1(kr)Yll−1m(θ, ϕ)

]

,

F−
lmk(r) = 1√

2l+1

[√
ljl−1(kr)Yll−1m(θ, ϕ) −

√
l + 1jl+1(kr)Yll+1m(θ, ϕ)

]

(18)and a similar set of ve
tor fun
tions H
q
lmk, q = 0,±, by repla
ing jl by hl in equations (18). Wehave the de
omposition

eik|r−r′|

|r − r′| =
ik

4π

∑

lmq

F
q∗
lmk(r

′)Hq
lmk(r) , r > r′ , (19)whi
h we use in 
omputing the ve
tor potential A. The fun
tions Flmk are orthogonal, 
ompleteand regular in the origin, while Hlmk are not regular in the origin and, together with Flmk, forma 
omplete set for any region ex
luding the origin.We insert the representation given by equation (17) in the s
alar potential Φ, use the orthogo-nality of the spheri
al harmoni
s, perform the integrations by parts for the radial derivatives ofthe fun
tions u±

lm, redu
e the boundary terms, and use equations (77) for the derivatives of theBessel fun
tions. Thereafter we 
ompute the 
orresponding ele
tri
 �eld, arising from the s
alarpotential, by using the gradient formula given in equation (65), and re
over the ve
tor spheri
alharmoni
s. We do similar 
al
ulations for the ve
tor poential A, by using equation (19), and getthe 
orresponding ele
tri
 �eld. In this 
al
ulation equations (77) and (78) are very useful.Thereafter, we introdu
e the ele
tri
 �eld E, obtained a

ording to the above des
ription, in theequation of motion (4), and use the de
omposition of the external �eld E0 in ve
tor spheri
alharmoni
s as given in Appendix C. We identify the 
oe�
ients of the ve
tor spheri
al harmoni
s



6 J. Theor. Phys.in this equation and get two sets of integral equations for the amplitudes u0,±
lm . The �rst set 
onsistsof one equation

i(−1)l16π2c2

ω2
pk

u0
lm(r) = hl(kr)

∫ r
0 dr′r′2jl(kr′)u0

lm(r′)+

+jl(kr)
∫ a
r dr′r′2hl(kr′)u0

lm(r′) + i(−1)l
√

π
nek3 E0

√
2l + 1jl(kr) (δm,1 + δm,−1) .

(20)The se
ond set 
onsists of two 
oupled integral equations. The �rst is
(−1)l16π2c2

ω2
p

u−
lm(r) = (−1)l16π2

(2l+1)k2

[

lu−
lm(r) −

√

l(l + 1)u+
lm(r)

]

+

+ik
√

l+1
2l+1

hl−1(kr)
∫ r
0 dr′r′2

[√
l + 1jl−1(kr′)u−

lm(r′) +
√

ljl+1(kr′)u+
lm(r′)

]

+

+ik
√

l+1
2l+1

jl−1(kr)
∫ a
r dr′r′2

[√
l + 1hl−1(kr′)u−

lm(r′) +
√

lhl+1(kr′)u+
lm(r′)

]

+

+ (−1)l
√

π
nek2 E0

√
l + 1jl−1(kr) (−δm,1 + δm,−1)

(21)
and the se
ond equation is given by

(−1)l16π2c2

ω2
p

u+
lm(r) = (−1)l16π2

(2l+1)k2

[

(l + 1)u+
lm(r) −

√

l(l + 1)u−
lm(r)

]

+

+ik
√

l
2l+1

hl+1(kr)
∫ r
0 dr′r′2

[√
l + 1jl−1(kr′)u−

lm(r′) +
√

ljl+1(kr′)u+
lm(r′)

]

+

+ik
√

l
2l+1

jl+1(kr)
∫ a
r dr′r′2

[√
l + 1hl−1(kr′)u−

lm(r′) +
√

lhl+1(kr′)u+
lm(r′)

]

+

+ (−1)l√π
nek2 E0

√
ljl+1(kr) (−δm,1 + δm,−1) .

(22)
We pass now to solving these equations. We take the se
ond derivative in equation (20) withrespe
t to r and eliminate the intervening integrals by using equation (20) and its �rst derivativewith respe
t to r. Then, we use equations (77) and (78) to get

r2 d2

dr2
u0

lm + 2r
d

dr
u0

lm +
[

k2
1r

2 − l(l + 1)
]

u0
lm = 0 , (23)whi
h is the Bessel equation for jl(k1r), where

k1 =
1

c

√

ω2 − ω2
p . (24)We have therefore u0

lm ∼ jl(k1r), where the 
oe�
ient is determined from equation (20). Makinguse of equation (73) we get
u0

lm = Almjl(k1r) , (25)where
Alm =

(−1)l+1
√

π(2l + 1)cω2
pE0

nea2ω3
· (δm,1 + δm,−1)

k1hl(ka)jl+1(k1a) − khl+1(ka)jl(k1a)
. (26)In order to solve the system of equations (21) and (22) we introdu
e two new fun
tions de�ned by

Ulm =
√

lu−
lm −

√
l + 1u+

lm ,

rVlm =
√

l(l − 1)u−
lm +

√
l + 1(l + 2)u+

lm .

(27)



J. Theor. Phys. 7These 
ombinations of amplitudes appear in divuθ(a − r), equation (7), and we �nd easily, byequations (21) and (22), the relation ∂Ulm

∂r
= Vlm. This relation expresses the vanishing of thevolume 
harge, as expe
ted for a transverse �eld. Making use of this relation, we redu
e thesystem of equations (21) and (22) to only one equation for Ulm, whi
h we solve following the samemethod as the one des
ribed above for the fun
tion u0

lm. We get
r2 d2

dr2
Ulm + 4r

d

dr
Ulm +

[

k2
1r

2 − l(l + 1) + 2
]

Ulm = 0 , (28)whose solution is Ulm ∼ jl(k1r)/r. We determine the amplitude of this solution from the integralequation for Ulm and then, making use of equations (27), we get the �elds u±
lm. These �elds aregiven by

u+
lm(r) =

Blm√
l + 1

jl+1(k1r) , u−
lm(r) =

Blm√
l
jl−1(k1r) , (29)where

Blm =
(−1)l+1

√
πl(l+1)c3k1E0

nea2ω3 ·

· (−δm,1+δm,−1)
[(

−ω2

ω2
p
+ l

2l+1

)

hl+1(ka)+ l+1

2l+1
hl−1(ka)

]

jl(k1a)+
ω2k1

ω2
pk

hl(ka)jl+1(k1a)
.

(30)We put these results in a more 
ompa
t and symmetri
al form by introdu
ing the notations
Alm =

e

mω2
E0Alalm , Blm =

e

mω2
E0

√

l(l + 1)

2l + 1
Blblm , (31)where alm and blm are the amplitudes of the plane wave given by equation (82),

Al =
16π2(−1)l+1c

ωa2
· 1

k1hl(ka)jl+1(k1a) − khl+1(ka)jl(k1a)
(32)and

Bl = 16π2(−1)l+1c3k1

ω2
pωa2 ·

· 1
[(

−ω2

ω2
p
+ l

2l+1

)

hl+1(ka)+ l+1

2l+1
hl−1(ka)

]

jl(k1a)+
ω2k1

ω2
pk

hl(ka)jl+1(k1a)
.

(33)With these notations the displa
ement �eld 
an be written as
u(r) =

e

mω2
E0

∞
∑

l=1m

[

AlalmF0
lmk1

(r) + BlblmF+
lmk1

(r)
] (34)and the �eld inside the sphere is given by

Ei(r) =
mω2

e
u(r) = E0

∞
∑

l=1m

[

AlalmF0
lmk1

(r) + BlblmF+
lmk1

(r)
]

. (35)We 
an see from the above equations that the external �eld E0 is modi�ed inside the sphere,by the 
oe�
ients Al and Bl, and repla
ed by the total �eld Ei = E + E0, whi
h goes like thespheri
al Bessel fun
tions jl,l±1(k1r), where the "wave number" k1 = 1
c

√

ω2 − ω2
p is di�erent than

k = ω/c. This is an illustration of the so-
alled Ewald-Oseen extin
tion theorem[17℄. In addition,the �eld inside the sphere is either os
illating, for k1 real (ω > ωp), or damped, for k1 purelyimaginary (ω < ωp); in the latter 
ase there will appear the modi�ed Bessel fun
tions in the above



8 J. Theor. Phys.formulae. We note also that equation (24) whi
h gives the "wave number" k1, 
an also be writtenas c2k2
1 = εω2, where ε = 1−ω2

p/ω
2 is the diele
tri
 fun
tion of a metal. We get ω2 = c2k2

1+ω2
p fromthis equation, whi
h is the dispersion relation of polaritons in metals. The dispersion relationship

c2k2
1 = εω2 is well-known in the theory of "e�e
tive medium permittivity".Making use of Hi = (−i/k)curlEi and equations (66) we get the magneti
 �eld inside the sphere

Hi(r) = iE0

∞
∑

l=1m

[

AlalmF+
lmk1

(r) + BlblmF0
lmk1

(r)
]

, (36)whi
h allows the 
al
ulation of the energy
Wi =

1

16π

∫ a

0
dr · r2

∫

dΩ
(

|Ei|2 + |Hi|2
) (37)stored inside the sphere. Using the orthogonality of the ve
tor spheri
al harmoni
s this energy
an be written as

Wi = 1
16π

E2
0

∑∞
l=1m

(

|Alalm|2 + |Blblm|2
)

·

·
[

∫ a
0 dr · r2

(

|jl(k1r)|2 + l
2l+1

|jl+1(k1r)|2 + l+1
2l+1

|jl−1(k1r)|2
)]

,

(38)where the integrals 
an be 
omputed with the aid of formula (74).We 
an 
ompute also the Poynting ve
tor de�ned as the real part of Si = (c/8π) (Ei × H∗
i ). Welimit ourselves to the radial 
omponent (Si)r, whi
h gives the radial �ow

Qi =
∫

dΩ (Si)r , (39)where the integration is performed over the solid angle Ω. It 
an be 
al
ulated easily by usingequations (70) and (71) and the orthogonality of the ve
tor spheri
al harmoni
s. We get
Qi = c

8π
E2

0

∑∞
l=1m

(

|Alalm|2 + |Blblm|2
)

·

·jl(k1r)
[

l
2l+1

j∗l+1(k1r) + l+1
2l+1

j∗l−1(k1r)
]

.

(40)It is easy to see that this expression is purely imaginary, i.e. the net radial �ow through thesphere is vanishing, as expe
ted for su
h an ideal (non-dissipative) plasma. It is easy to 
ompareequation (40) with the radial �ow Q0 of the plane wave (obtained by putting formally Al = Bl = 1in equation (40)), whi
h is also vanishing.4 The s
attered �eldHaving known the displa
ement �eld u given by equation (34) we 
an 
ompute the s
atteredele
tri
 �eld, i.e. the �eld 
reated outside the sphere by 
harges and 
urrents, via equations (1)and (2). In the ele
tromagneti
 potentials we use again the de
ompositions given by equations(17) and (19), employ the orthogonality of the spheri
al harmoni
s and integrals given by equation(73) for the Bessel fun
tions, together with re
urren
e relations of the type (77) and (78). We getthe s
attered �eld
Es(r) =

ka2

16π2
E0

∞
∑

l=1m

[

Alalmf 0
l H

0
lmk(r) + Blblmf+

l H+
lmk(r)

]

, (41)
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f 0

l = (−1)l [k1jl(ka)jl+1(k1a) − kjl+1(ka)jl(k1a)] (42)and
f+

l = (−1)l

[

kjl(ka)jl+1(k1a) − k1jl+1(ka)jl(k1a) − iω2
p(l + 1)

c2kk1a
jl(ka)jl(k1a)

]

. (43)We note again the modi�
ation of the in
ident plane wave in the s
attered �eld, through the
oe�
ients Al, Bl and f 0,+
l . The s
attered �eld 
ontains the propagating fun
tions hl,l±1 (Hankelfun
tions), with the waveve
tor k = ω/c.We have 
he
ked that the s
attered �eld obtained above is the same as the s
attered �eld fromMie's theory, as given in Ref. [17℄. The 
oe�
ients eBl and mBl in Mie's theory are related to our
oe�
ients Al, Bl and f 0,+
l through

mBl = − il+1(2l+1)
16π2l(l+1)

ka2Alf
0
l ,

eBl = − il+1(2l+1)
16π2l(l+1)

ka2Blf
+
l .

(44)Making use of the relations (70) and (71) it is easy to prove the 
ontinuity of the tangentialspheri
al 
omponents of the ele
tri
 �eld at the sphere surfa
e, i.e.
(Ei)θ,ϕ |r=a = (E0 + Es)θ,ϕ |r=a . (45)Similarly, using relations (68) and (69) it is easy to get the 
ontinuity of the ele
tri
 displa
ement

(

1 − ω2
p

ω2

)

(Ei)r |r=a = (E0 + Es)r |r=a , (46)where we re
ognize the diele
tri
 fun
tion ε = 1−ω2
p/ω

2. This result emphasizes again the validityof the theory of "e�e
tive medium permittivity".Making use of the same equations (68)-(71) and the asymptoti
 behaviour of the fun
tion hl(kr)given by equation (76), it is easy to show that the radial 
omponent of the s
attered �eld goes like
∼ 1/r2 at large distan
es, while the tangential 
omponents go like∼ 1/r. Indeed, at large distan
esthe s
attered �eld is pra
ti
ally a transverse �eld. It is also easy to 
he
k that (Es)ϕ ∼ sin ϕ and
(Es)θ ∼ cos ϕ, whi
h give the degree of polarization for an arbitrary azimuthal angle ϕ.In the same manner as for the �eld inside the sphere we 
an 
ompute the s
attered magneti
 �eld,the energy stored by this �eld and the Poynting ve
tor. The s
attered magneti
 �eld is given by

Hs(r) =
ika2

16π2
E0

∞
∑

l=1m

[

Alalmf 0
l H

+
lmk(r) + Blblmf+

l H0
lmk(r)

] (47)and the stored energy 
an be written as
Ws = 1

16π

(

ka2

16π2

)2
E2

0

∑∞
l=1m

(

|Alalmf 0
l |

2
+
∣

∣

∣Blblmf+
l

∣

∣

∣

2
)

·

·
[

∫∞
a dr · r2

(

|hl(kr)|2 + l
2l+1

|hl+1(kr)|2 + l+1
2l+1

|hl−1(kr)|2
)]

.

(48)The radial �ow of energy is given by the real part of
Qs =

∫

dΩ (Ss)r = c
8π

(

ka2

16π2

)2
E2

0

∑∞
l=1m

(

|Alalmf 0
l |

2
+
∣

∣

∣Blblmf+
l

∣

∣

∣

2
)

·

·hl(kr)
[

l
2l+1

h∗
l+1(kr) + l+1

2l+1
h∗

l−1(kr)
]

.

(49)



10 J. Theor. Phys.This quantity is not vanishing anymore. In fa
t it de�nes the s
atterring 
ross-se
tion (or therelative s
atterred intensity)
σ = Re

[

r2 Qs

|S0|
|r→∞

]

=
a4

16π2

∞
∑

l=1m

(

∣

∣

∣Alalmf 0
l

∣

∣

∣

2
+
∣

∣

∣Blblmf+
l

∣

∣

∣

2
)

, (50)where |S0| = 1
8π

E2
0 is the modulus of the Poynting ve
tor of the in
ident wave. It 
an be 
he
kedstraightforwardly, by dire
t 
al
ulations, that (the real part of) the 
ross-produ
t 
ontribution tothe �ow

Q
′

s =
∫

dΩ (E0 × H∗
s + Es ×H∗

0)r =

= c
8π

(

ka2

8π2

) (

E2
0

16π

)

∑∞
l=1{

(

Alf
0
l + Blf

+
l

)

hl(kr)
[

lj∗l+1(kr) + (l + 1)j∗l−1(kr)
]

+

+
(

A∗
l f

0∗
l + B∗

l f
+∗
l

)

jl(kr)
[

lh∗
l+1(kr) + (l + 1)h∗

l−1(kr)
]

}

(51)

an
els out exa
tly the 
ontribution ReQs given above for the s
attering �eld, i.e. ReQ

′

s+ReQs =
0, leading thereby to a vanishing total net �ow outside the sphere, in agreement with the vanishing�ow of the external �eld and the �eld inside the sphere.Moreover, for large distan
es the �ow Q

′

s given above 
an be written as
Q

′

s ∼r→∞
c

8π

E2
0a

2

8πkr2

∞
∑

l=1

(2l + 1)
[

Re
(

Alf
0
l + Blf

+
l

)

+ iIm
(

Alf
0
l + Blf

+
l

)

e2i(kr−lπ/2)
]

, (52)while the forward s
attered �eld be
omes
[Es(θ = 0)]x ∼r→∞ −iE0a

2

32π2

eikr

r

∞
∑

l=1

(2l + 1)
(

Alf
0
l + Blf

+
l

)

; (53)if we denote by Ef the amplitude of the spheri
al wave in this equation, and 
ompare the twoequations (52) and (53), we get
r2ReQ

′

s = −E0
c

2k
ImEf , (54)or, making use of equation (50) and the �ow balan
e ReQ

′

s + ReQs = 0,
σ =

4π

kE0
ImEf , (55)whi
h is the well-known "opti
al theorem"[17℄.5 Dis
ussion and 
on
lusionsThe results presented in this paper are 
ast in the form of well-known series of partial waves, withrespe
t to the angular momentum number l = 1, 2, .... We emphasize that this is the total angularmomentum, arising from the 
oupling of the orbital momentum to the angular momentum 1. Thelatter re�e
ts the ve
torial 
hara
ter of the ele
tromagneti
 �eld, and the e�e
t of the 
oupling 
anbe seen, for instan
e, from the o

urren
e of the l±1-partial waves and from the lowest value l = 1a
quired by this label. The partial-waves expansions (whi
h essentially are multipole expansions)
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tions F
0,±
lmk, supplemented by H

0,±
lmk, whi
h formtogether a 
omplete set. The �eld inside the sphere is regular in the origin, and is representedby fun
tions F

0,+
lmk, while the s
attered �eld is propagating and is represented by fun
tions H

0,+
lmk.The fun
tions F−

lmk and H−
lmk do not appear, be
ause they are asso
iated with a net 
harge. Theterms 
ontaining F0

lmk (H0
lmk) 
orrespond to magneti
 multipoles (TE), while those 
ontaining

F+
lmk (H+

lmk) 
orrespond to ele
tri
 multipoles (TM).We have 
omputed these �elds for a plane wave in
ident on an ideal metalli
 sphere and re
over, ina di�erent form, the original results of Mie's theory. We have also 
omputed the energy stored bysu
h �elds, their Poynting ve
tor, the s
attering 
ross-se
tion (s
attered intensity), and 
he
kedthe well-known 
ontinuity 
onditions at the surfa
e of the sphere and the balan
e of the energy�ow. We re-derived also the well-known "opti
al theorem". We do not introdu
e the diele
tri
fun
tion from the beginning in our 
al
ulations, but we re
over the results of the so-
alled theoryof "e�e
tive medium permittivity" in our �nal results. This is possible due to our di�erent methodof 
al
ulation, whi
h employs the equation of motion for the polarization and the ele
tromagneti
potentials. The 
hara
teristi
 feature of this method 
onsists in the fa
t that it leads to 
oupledintegral equations, whi
h we solved.We have presented the results, more or less, in a 
ompa
t form. Various parti
ular 
ases 
anbe derived from our results, by using well-known de�nitions and properties of, essentially, thespheri
al harmoni
s, the ve
tor spheri
al harmoni
s and the spheri
al Bessel fun
tions. It isworth noting that the �elds given by us exhibit the 
orresponding modi�
ations of the in
identplane wave (de
omposed in partial waves) through our 
oe�
ients Al,Bl given by equations (32)and (33), and the 
oe�
ients f 0,+
l given by equations (42) and (43).A 
ase of interest is the limit of small radii, i.e. ka ≪ 1. For realisti
 values of the bulkplasma frequen
y ωp, the "wave number" k1 inside the sphere a
quires purely imaginary values,i.e. k1 = iα1, where α1 = 1
c

√

ω2
p − ω2 ≃ ωp/c. The argument ak1 
an then be written as

ak1 = iaα1 ≃ iaωp/c, whi
h, in general, may not be small. Making use of the asymptoti
 behaviourof the spheri
al Bessel fun
tions given by equations (75), we give here the leading 
ontributionsto the 
oe�
ients Al, Bl, f 0,+
l in the limit ka ≪ 1 and for any value of the k1a:

Al = 4π(ika)l

(2l+1)!!jl(k1a)
,

Bl = 4π ck1ω
ω2

p
· (ika)l
(

ω2

ω2
p
− l

2l+1

)

(2l+1)!!jl(k1a)
,

f 0
l = 4πk1

(−ika)l

(2l+1)!!
jl+1(k1a) ,

f+
l = −4π

ω2
p

c2k1

(−ika)l−1(l+1)
(2l+1)!!

jl(k1a)

(56)
(where we have assumed jl(k1a) 6= 0). We 
an see that, in this limit, the leading 
ontributions
orrespond to l = 1 (so-
alled dipolar 
ontributions).It is worth noting the resonan
es o

urring in the denominator of the 
oe�
ient Bl for frequen-
ies ω = ωp

√

l/(2l + 1), whi
h are the frequen
ies of the "spheri
al" plasmons. They appear assingularities in the �elds, but, if the dissipation is in
luded, these singularities are smoothed out,the �elds exhibit an enhan
ement, and the absorption is very high. The dissipation 
an easily bein
luded in the above formulae by 
hanging ω2 into ω(ω + iγ), where the dissipation parameter γis, in general, mu
h smaller than the relevant values of the frequen
ies ω. The absorption is then



12 J. Theor. Phys.related to the imaginary parts of the singularities given above, and one 
an see easily that it isvery high (∼ 1/γ) at resonan
e.It is worth investigating the dependen
e on radius of the resonan
es found above. This 
an bea
hieved by taking the next-to-leading 
ontributions to the denominator of the 
oe�
ient Bl. Weget
ω2 = ω2

p

l

2l + 1
· 1

1 + iak1
jl+1(k1a)

(2l+1)jl(k1a)

. (57)The resonan
e frequen
ies ω = ωp

√

l/(2l + 1) are of the same order of magnitude as ωp. It followsthat aωp/c 
an also be taken as being mu
h lesser than unity, i.e. aα1 ≪ 1 in ak1 = iaα1 ≃ iaωp/c.Then, equation (57) yields
ω2 ≃ ω2

p

l

2l + 1

[

1 − 1

(2l + 1)(2l + 3)
(aωp/c)

2

]

, (58)whi
h, within these limiting 
ase, gives the radius dependen
e of the resonan
e frequen
ies. How-ever, a word of 
aution must be inserted here, regarding su
h series expansions. For pra
ti
alsituations the "small radius" 
onditon ka = aω/c ≪ 1 might not be ful�lled for resonan
e fre-quen
ies ω ∼ ωp

√

l/(2l + 1), so, a
tually, the series expansions are not valid, and the resonan
esremain to be estimated numeri
ally. In the opposite limit ka ≫ 1 these resonan
es disappear.Finally, we give an illustration of the s
attered intensity at large distan
es (kr ≫ 1) for the mostinteresting 
ase ka ≪ 1. To this end, we use the s
attered �eld Es given by equation (41), wherethe 
oe�
ients Al, Bl as well as the 
oe�
ients f 0,+
l are given by equations (56). We 
an seeeasily that the leading 
ontributions 
orrespond to l = 1 in this 
ase (dipolar approximation). For

ω < ωp/
√

2 we have the resonan
e regime, while for ω < ωp we have the damped regime (k1 purelyimaginary). In order to simplify the 
al
ulations we avoid these frequen
y regions. Moreover, weassume ω ≫ ωp, su
h that k1a ≃ ka ≪ 1. Although this is a rather unrealisti
 situation,
orresponding to a small plasma frequen
y ωp, we 
hoose it for the purpose of illustrating theangular dependen
e of the s
attered radiation intensity, whi
h, in spite of all these simpli�
ations,still exhibits a su�
iently 
omplex behaviour. Under these 
ir
umstan
es we �nd out the angular
omponents of the s
attered �eld
Esθ = 1

30
E0k

4a5 eikr

r
(1 + ε cos θ) cos ϕ ,

Esϕ = 1
30

E0k
4a5 eikr

r
(3ε − cos θ) sin ϕ

(59)where ε = 10ω2
p/3ω2(ka)2, so that we get the intensities

I‖ = |Esθ|2 = I0 (1 + ε cos θ)2 , I⊥ = |Esϕ|2 = I0 (3ε − cos θ)2 (60)with 
ustomary notations, for naturally polarized in
ident radiation ( ¯cos2ϕ = ¯sin2ϕ = 1/2), where
I0 = 1

2
(E0k

4a5/30r)
2. A plot of these intensities is shown in the polar diagram given in Fig. 1.We 
an see that these intensities are very sensitive to the parameter ε, whi
h is the ratio of twosmall parameters (ω2
p/ω

2 to (ka)2), thus illustrating the 
omplexity of the angular dependen
e ofthe s
atterring pattern.
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Figure 1: Polar diagram for the redu
ed intensities I‖/ε
2I0 forε = 2 (solid line) and I⊥/I0 for

ε = 0.17 (dashed line), as given by equation (60). The inset shows the 
entral region enlarged.In 
on
lusion, we may say that we 
omputed the di�ra
tion of an ele
tromagneti
 plane wave byan ideal metalli
 sphere and re
overed the results of Mie's theory. We did these 
al
ulations by amethod di�erent than Mie's method, whi
h uses the boundary 
onditions at the sphere surfa
e andthe diele
tri
 fun
tion of the metal. By our method we re
over these "e�e
tive medium theory"results. We have 
hara
terized as fully as posible, in 
ompa
t formulae, the intera
tion of theplane ele
tromagneti
 wave with the metalli
 sphere, and have given additional results, like the�eld inside the sphere, the energy stored by these �elds, their Poynting ve
tor, s
attering 
ross-se
tion (s
attered intensity) and have also 
he
ked the balan
e of the energy �ow. In addition,we have 
omputed by our method the "spheri
al" plasmons and put in eviden
e the di�ra
tionresonan
es o

urring at frequen
ies 
lose to these plasmons frequen
ies in the limit of small radii.The method used in this paper is not restri
ted to metalli
 spheres. For diele
tri
s we repla
e ω2in our formulae (in
luding k1 given by equation (24)) by ω2
p/(1−ε) and use the diele
tri
 fun
tion

ε for diele
tri
s. Within our method (without loss) it is represented as ε = 1 + ω2
p/ω

2
0, where both

ωp and ω0 are parameters. Under these 
ir
umstan
es, the resonan
es found above for a metalli
sphere do not appear anymore. Instead, for a diele
tri
 sphere, there exist small os
illations inthe relevant 
oe�
ients Al, Bl, f 0,±
l , arising by a di�erent me
hanism whi
h originates in theos
illatory behaviour of the Bessel fun
tions.A
knowledgments. The authors are indebted to the members of the Laboratory of Theoreti
alPhysi
s at Magurele-Bu
harest for enlightening dis
ussions and to Dr. L. C. Cune for many useful
omments.Appendix A. Ve
tor spheri
al harmoni
sThe ve
tor spheri
al harmoni
s are de�ned by[21, 22℄

YJlM =
∑

mq

Cl1(JM ; mq)Ylmeq , (61)



14 J. Theor. Phys.where Cl1(JM ; mq) are the Clebs
h-Gordan 
oe�
ients for the 
oupling of the angular momenta
lm and 1q to the angular momentum JM , Ylm are (s
alar) spheri
al harmoni
s and eq, q = 0,±1,are de�ned by e± = ∓ 1√

2
(ex ± iey), e0 = ez; ex,y,z are unit ve
tors of the referen
e frame.Obviously, J = l, l ± 1. The s
alar spheri
al harmoni
s are de�ned as in Ref.[21℄

Ylm(θ, ϕ) = (−1)m

√

√

√

√

(2l + 1)(l − m)!

4π(l + m)!
P m

l (cos θ)eimϕ , (62)where the asso
iated Legendre polynomials are given by
P m

l (x) =
(1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l . (63)The ve
tor spheri
al harmoni
s are orthogonal fun
tions over the sphere. We give here a fewuseful formulae used in the main text[21℄:

div (f(r)Yllm) = 0 ,

div (f(r)Yll−1m) =
√

l
2l+1

(

d
dr

− l−1
r

)

f(r)Ylm ,

div (f(r)Yll+1m) = −
√

l+1
2l+1

(

d
dr

+ l+2
r

)

f(r)Ylm

(64)and
grad (f(r)Ylm) = −

√

l + 1

2l + 1

(

d

dr
− l

r

)

f(r)Yll+1m +

√

l

2l + 1

(

d

dr
+

l + 1

r

)

f(r)Yll−1m . (65)for any arbitrary fun
tion f(r). We have also
curlF0

lmk = −kF+
lmk , curlF+

lmk = −kF0
lmk , curlF−

lmk = 0 (66)and similar relations for H
0,±
lmk, where F

0,±
lmk and H

0,±
lmk are de�ned in the main text. Another usefulformula is

erYlm =
1√

2l + 1

(√
lYll−1m −

√
l + 1Yll+1m

)

, . (67)where er is the radial unit ve
tor.Making use of their de�niton (61) and of the Clebs
h-Gordan 
oe�
ients we 
an 
ompute thespheri
al 
omponents the ve
tor spheri
al harmoni
s[21, 22℄. We give here a few useful formulaefor these spheri
al 
omponents. First we have
(Yllm)r = 0 , (Yll−1m)r =

√

l

2l + 1
Ylm , (Yll+1m)r = −

√

l + 1

2l + 1
Ylm (68)for the radial 
omponents, when
e

(

F0
lmk

)

r
= 0 ,

(

F+
lmk

)

r
=

√

l(l + 1)

ikr
jl(kr)Ylm (69)and similar formulae for the fun
tions H0,+

lmk, repla
ing jl by hl. We have also
(Yll+1m)ϕ = −i

√

l

2l + 1
(Yllm)θ , (Yll−1m)ϕ = −i

√

l + 1

2l + 1
(Yllm)θ (70)and

(Yll+1m)θ = i

√

l

2l + 1
(Yllm)ϕ , (Yll−1m)θ = i

√

l + 1

2l + 1
(Yllm)ϕ , (71)whi
h we use to get the tangential spheri
al 
omponents of the fun
tions Flmk and Hlmk in termsof the 
orresponding 
omponents of Yllm.
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al Bessel fun
tionsWe use the following de�nitions for the spheri
al Bessel fun
tions
jl(z) = (2π)3/2il

Jl+1/2(z)√
z

,

nl(z) = (2π)3/2il
Nl+1/2(z)√

z
,

hl(z) = jl(z) + inl(z) = (2π)3/2il
Hl+1/2(z)√

z
,

(72)where Jl+1/2, Nl+1/2 and Hl+1/2 are (
ylindri
al) Bessel fun
tions of half-integer order and of the�rst, se
ond and, respe
tively, third rank (Hl+1/2 known also as the Hankel fun
tion)[23, 24℄. Wenote the "orthogonality" property
∫

dz · zwν(αz)Wν(βz) =
z

β2 − α2
[βWν+1(βz)wν(αz) − αWν(βz)wν+1(αz)] (73)for any pair wν , Wν of (
ylindri
al) Bessel fun
tions of the same rank. We have also the usefulintegral

∫

dz · z2j2
l (αz) =

z3

2

[

j2
l (αz) − j2

l+1(αz) − 2l + 1

iαz
jl(αz)jl+1(αz)

] (74)and a similar integral for hl(z).The asymtoti
 behaviour of the spheri
al Bessel fun
tions is given by
jl(z) ∼z→0 4πil zl

(2l+1)!!
, jl(z) ∼z→∞ 4πil sin(z−lπ/2)

z
,

nl(z) ∼z→0 −4πil (2l−1)!!
zl+1 , nl(z) ∼z→∞ −4πil cos(z−lπ/2)

z

(75)and
hl(z) ∼z→∞ −4πil+1 ei(z−lπ/2)

z
. (76)The following re
urren
e relations are used in the main text:

d
dz

jl(z) = i
2l+1

[ljl−1(z) + (l + 1)jl+1(z)] ,

jl(z) = iz
2l+1

[jl−1(z) − jl+1(z)]
(77)and

Jν(z)H
′

ν(z) − J
′

ν(z)Hν(z) = 2i
πz

,

Jν−1(z)Hν(z) − Jν(z)Hν−1(z) = 2
πiz

,

J
′

ν(z) = Jν−1(z) − ν
z
Jν(z) = −Jν+1(z) + ν

z
Jν(z) .

(78)
Appendix C. Plane waveBeside the well-known de
omposition

E0(r) = E0ex

∞
∑

l=0

√

2l + 1

4π
jl(kr)Yl0(θ, ϕ) (79)
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ikz, we have also the de
omposition

E0(r) = 1
2
√

4π
E0
∑∞

l=1{
√

2l + 1jl(kr)[Yll1(θ, ϕ) + Yll−1(θ, ϕ)]+

+
√

l + 1jl−1(kr)[Yll−1−1(θ, ϕ) −Yll−11(θ, ϕ)]+

+
√

ljl+1(kr)[Yll+1−1(θ, ϕ) − Yll+11(θ, ϕ)]}

(80)as a series of ve
tor spheri
al harmoni
s. It is very 
onvenient to write this equation in the more
ompa
t form
E0(r) = E0

∞
∑

l=1m

(

almF0
lmk(r) + blmF+

lmk(r)
)

, (81)where
alm =

1

4

√

2l + 1

π
(δm1 + δm,−1) , blm =

1

4

√

2l + 1

π
(−δm1 + δm,−1) (82)and the fun
tions F

0,+
lmk are given by equation (18) in the main text. The magneti
 �eld is 
al
ulatedfrom H0 = (−i/k)curlE0, and, making use of equations (64), we get

H0 = iE0

∞
∑

l=1m

[

almF+
lmk(r) + blmF0

lmk(r)
]
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