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λ =

√
2π

3a3~ω0

J01

ω0

, (1)where J01 is the matrix element of the urrent assoiated with eah partile, a is the mean inter-partile distane and ~ω0 = ε1 − ε0 is the energy separation between the two levels. It was



2 J. Theor. Phys.shown[1℄ that, at zero temperature, the two levels ε0,1 and the orresponding photon states ~ω0are marosopially oupied, provided λ > 1; at �nite temperature, this oherent state sets upfor λ > 2 and below a ritial temperature Tc (given by Tc ≃ λ2
~ω0/8). This seond-order phasetransition is usually known as a super-radiane transition;[2℄-[7℄ it orresponds to a long-rangeorder of the quantum phases (a lattie of oherene domains),[1℄ assoiated with the internalmotion (polarization) of the partiles.For numerial estimates we may take J01 = ω0p, where p = el is the dipole momentum of thepartiles, l being the distane over whih an eletron harge e is displaed in the polarizationproess. For typial atomi matter we may take, for illustrative purposes, l = a0 = 0.53Å (Bohrradius), ~ω0 = 1eV and a = 3Å (p = 2.4 × 10−18esu). We get λ ≃ 0.5, whih is insu�ientfor setting up the oherent state. Similarly, for atomi nulei we may take l = 1fm (10−13cm),

~ω0 = 1MeV and a = 3Å, and get λ ≃ 10−8, whih is an extremely small value for the ouplingonstant.We turn our attention in this paper to the presene of an external eletromagneti �eld, whoseoherent interation with the ensemble of partiles may lead to a lasing e�et. We get here thesolution of the oupled non-linear equations of motion in the presene of an external �eld, in thestationary regime and in the limit of small values of the oupling onstants. It is shown that thetwo levels and the orresponding photon states are marosopially oupied, to an extent whihdepends on the oupling onstant λ and the external �eld, leading thus to a lasing e�et. While foratomi matter (λ ≃ 0.5) this e�et may be onsiderable (for usual �eld intensities), it is extremelysmall (pratially insigni�ant) for atomi nulei (λ ≃ 10−8). The problem is similar with the well-known "semi-lassial theory" of the laser, whih has been extensively investigated, by variousapproahes and from many angles.[8℄-[18℄ It is worth noting that the theoretial onsiderationspresented here pertain to a onsequent �eld-theoretial approah to the oherent interation ofmatter with eletromagneti radiation, as distint from the usual semi-lassial approahes of theurrent theories of the laser (see, for instane, Refs. [19℄-[21℄).2 Coherent interationAs it is well-known, the eletromagneti �eld is desribed by the vetor potential
A(r) =

∑

µk

√
2π~c2

V ωk

[
eµ(k)aµke

ikr + e∗
µ(k)a∗µk

e−ikr
] (2)in the standard Fourier representation, with the transverse gauge divA = 0, where c is theveloity of light, V is the volume, ωk = ck is the frequeny and eµ(k) are the polarization vetors,

eµ(k)k = 0, eµ(k)e∗
ν(k) = δµν (µ, ν = ±1), e−µ(−k) = e∗

µ(k). The eletri and magneti �eldare given by E = −(1/c)∂A/∂t and, respetively, H = curlA, and three Maxwell's equationsare satis�ed: curlE = −1
c
∂H/∂t, divH = 0, divE = 0. The time dependene is inluded in theFourier oe�ients aµk, a∗µk
.We use a similar expression for the external vetor potential A0(r), the orresponding Fourieroe�ients being denoted by a0

µk
, a0∗

µk
, with a presribed time-dependene.We use also the lassial lagrangian of the radiation �eld

Lf =
1

8π

∫
dr

(
E2 −H2

)
, (3)



J. Theor. Phys. 3whih an be expressed by means of the Fourier oe�ients aµk, a∗µk
, and the interation lagrangian

Lint =
1

c

∫
dr · j (A + A0) =

∑

µk

√
2π~

ωk

[
eµ(k)j∗(k)

(
aµk + a0

µk

)
+ e∗

µ(k)j(k)
(
a∗µk

+ a0∗
µk

)]
, (4)where j(k) is the Fourier transform of the urrent density,

j(r) =
1√
V

∑

k

j(k)eikr , (5)with divj = 0 (ontinuity equation). The Euler-Lagrange equations for the lagrangian Lf + Lintlead to the wave equation with soures
äµk + ä∗−µ−k

+ ω2
k

(
aµk + a∗−µ−k

)
=

√
8πωk

~
e∗

µ(k)j(k) , (6)whih is the fourth Maxwell's equation curlH = (1/c)∂E/∂t+ 4πj/c.We onsider a set of N independent, non-relativisti, idential partiles labelled by i = 1, ...N ,(N ≫ 1) and write the hamiltonian orresponding to their internal degrees of freedom as Hs =∑
iHs(i). We introdue a set of orthonormal eigenfuntions ϕn(i), where εn is the energy level ofthe n-state, and onstrut also a set of orthonormal eigenfuntions

ψn =
1√
N

∑

i

eiθniϕn(i) , (7)where θni are some undetermined phases.The �eld operator
Ψ =

∑

n

bnψn , (8)with boson-like ommutation relations [bn, b
∗
m] = δnm, [bn, bm] = 0, leads to the (marosopi)number of partiles N =

∑
n b

∗
nbn and to the lagrangian

Ls =
1

2

∑

n

i~
[
b∗nḃn − ḃ∗nbn

]
−

∑

n

εnb
∗
nbn , (9)where Hs =

∑
n εnb

∗
nbn is the hamiltonian of the ensemble of partiles. The orresponding equationof motion i~ḃn = εnbn is Shrodinger's equation.The urrent density assoiated with this ensemble of partiles an be written as

j(r) =
∑

i

J(i)δ(r− ri) =
1

V

∑

ik

J(i)e−ikrieikr =
1√
V

∑

k

j(k)eikr , (10)where ri is the position of the i-th partile and J(i) is the urrent assoiated with one partile.Now, making use of equations (8) and (10), it is easy to see that the interation lagrangian givenby equation (4) an be written as
Lint =

∑

nmµk

√
2π~

V ωk
Fnm(µk)

(
aµk + a∗−µ−k

+ a0
µk

+ a0∗
−µ−k

)
b∗nbm , (11)



4 J. Theor. Phys.where
Fnm(µk) =

1

N

∑

i

eµ(k)Jnm(i)eikri−i(θni−θmi) , (12)
Jnm(i) being the matrix element of the urrent assoiated with the i-th partile.For any pair (n,m) of levels, the quantum phases θni an be arranged in a periodi lattie with theshortest (generating) reiproal vetors denoted by kr, r = 1, 2, 3. For a given pair (n,m) we takethese vetors as being equal in magnitude, kr = k0 and ω0 = ck0.[1℄ Under these irumstanesthe phase in equation (12) may satisfy the ondition krrpi − (θni − θmi) = const, where p labelsthe unit ells of the phase lattie. This ondition was alled the oherene ondition in Ref. [1℄.Then, the interation lagrangian aquires a simple form, whih, limiting ourselves to only twolevels, and using the oherent states operators[22℄ b0,1 |β0,1〉 = β0,1 |β0,1〉, an be written as

Lint =

√
2π~

V ω0

J01

(
α + α∗ + α0 + α0∗

)
(β∗

1β0 + β1β
∗
0) , (13)where we have assumed J00 = J11 = 0. In equation (13) we have also replaed the photonoperators aµkr

, kr = k0, by c-numbers α, the same for any polarization µ and any diretion ofthe vetors kr, and similarly for the external �eld. We note that the external �eld depends ontime; we take α0 + α0∗ = 2|α0| cosω0t. A similar replaement of the �eld operators by c-numbersis made in the free lagrangians of the �eld and partiles. The summation over µkr, kr = k0,in the �eld lagrangian Lf gives a fator 12, for a three-dimensional lattie (three ±kr's and twopolarizations). This fator an be absorbed in the photon operators, so we an write down thefull "lassial" lagrangian
Lf = ~

4ω0

(
α̇2 + α̇∗2 + 2 |α̇|2

)
− ~ω0

4

(
α2 + α∗2 + 2 |α|2

)
,

Ls = 1
2
i~

(
β∗

0 β̇0 − β̇∗
0β0 + β∗

1 β̇1 − β̇∗
1β1

)
−

(
ε0 |β0|2 + ε1 |β1|2

)
,

Lint = g
√

N
[α + α∗ + α0 + α0∗] (β0β

∗
1 + β1β

∗
0) ,

(14)
where the oupling onstant is given by

g =

√
π~

6a3ω0
J01 ; (15)hene, the dimensionless oupling onstant λ = 2g/~ω0 introdued in equation (1).The lagrangian given by equations (14) leads to the equations of motion

Ä+ ω2
0A = 2ω0g

~
√

N
(β0β

∗
1 + β1β

∗
0) ,

i~β̇0 = ε0β0 − g
√

N
[A+ A0(t)]β1 ,

i~β̇1 = ε1β1 − g√
N

[A+ A0(t)]β0 ,

(16)
where A = α+α∗ and A0(t) = 2 |α0| cosω0t. It is easy to see, by using these equations of motion,that the number of partiles N = |β0|2 + |β1|2 is onserved. Making use of equations (14), we an



J. Theor. Phys. 5de�ne a total hamiltonian
H t

f = ~

4ω0

[
Ȧ+ Ȧ0(t)

]2

+ ~ω0

4
[A+ A0(t)]

2
,

Hs = ε0 |β0|2 + ε1 |β1|2 ,

Hint = − g
√

N
[A + A0(t)] (β0β

∗
1 + β1β

∗
0) ,

(17)
where the external �eld is inluded.3 Stationary solutionsWe fous on the equations of motion (16), where we put for onveniene ε0 = 0. In the abseneof the external �eld (A0(t) = 0) the solutions are of the form β0,1 = B0,1e

iΩt, where B0,1 areonstant amplitudes, B2
0 + B2

1 = N) and the frequeny Ω is given by 2Ω + 1 − λ2 = 0 (and
A = λ

√
N(1 − 1/λ4)1/2).[1℄ The total energy given by equations (17) (for A0(t) = 0) reads

E = −1

4
~ω0λ

2N
[
1 − 1/λ2

]2
= −~ΩB2

1 (18)(whene the ritiality ondition λ > 1 for the super-radiane transition). This energy is lowerthan the non-interating ground-state energy Nε0 = 0. It may be viewed as the formationenthalpy of the oherene domains. The oupled ensemble of matter and radiation is unstablefor a marosopi oupation of the partiles quantum states and the assoiated photon states,provided λ > 1. The non-analyti harater of this solution with respet to the oupling onstant
λ is obvious.We assume now A0(t) 6= 0. It is onvenient to put the problem in more general terms. First, weintrodue the notation ε1 = ~ω1, where, in general, ω1 may di�er from ω0. Seond, we introduethe total �eld At(t) = A + A0(t) and de�ne the parameter

x(t) =
2g

~ω1

√
N
At(t) =

λ√
N
At(t) , (19)where λ = 2g/~ω1. We look for solutions of the form β0,1 = B0,1e

iθ for the system of the last twoequations (16). We get immediately Ḃ0,1 = 0 and
β0 = B0e

iθ0 − fB1e
iθ1 , β1 = fB0e

iθ0 +B1e
iθ1 ,

θ̇0,1 = 1
2
ω1

(
−1 ±

√
x2(t) + 1

)
,

(20)where
f(t) =

x(t)√
x2(t) + 1 + 1

. (21)The oe�ients B0,1 are determined by requiring the initial values of the oupany numbers
|β0,1(t = 0)|2 be equal with N0,1 (N0 +N1 = N). We get the amplitudes

B0,1 =
1

1 + f 2(t)

[√
N0,1 ± f(t)

√
N1,0

] (22)



6 J. Theor. Phys.and the oupany numbers
|β0,1|2 = N0,1 ±

1

2

x(t)

x2(t) + 1

[
2
√
N0N1 − x(t)(N0 −N1)

]
[1 − cos(θ0 − θ1)] , (23)where the phase di�erene θ0 − θ1 is given by

∆θ = θ0 − θ1 = ω1

∫ t

0

dt
√
x2(t) + 1 . (24)The osillations in the oupanies given by equation (23) are reminisent of the well known Rabiosillations in the Jaynes-Cummings model (see, for instane, Refs. [23℄-[25℄). We take the timeaverages of all the relevant quantities given above. We an see, by equations (20), that the energylevels ε0,1 are hanged by interation into the mean values of ~θ̇0,1, and, in addition, the interationmixes up the two states, as expeted. We an see also that the mean values of the oe�ients

B0,1, as well as the mean values of the oe�ients fB0,1 entering equations (20), are onstants, asit is required for a stationary solution; it beomes apparent that N0,1 are onstants of integration.4 Polarization �eldWe turn now to the �rst equation (16) for the polarization �eld A. It is worth noting that ther.h.s. of this equation is proportional to the polarization of the ensemble of partiles. Indeed,making use of equations (7) and (8), the polarization
P =

1

V

∑

i

p(i) (25)aquires the form
P =

1

NV

∑

i

[
p01(i)e

−i(θ0i−θ1i)β∗
0β1 + c.c.

]
, (26)where p01(i) = p∗

10(i) are the matrix elements of the dipole momentum p(i) of the i-th partile.The ensemble of partiles is polarized by the �eld, so these dipole momenta are oriented along the�eld and have the same spatial dependene as the �eld, orresponding to the reiproal vetors
kr of the oherene domains lattie (kr = k0 = ω0/c). Then, it is easy to see that the ohereneondition used before (krrpi − (θni − θmi) = const) gives a non-vanishing polarization, involvingthe Fourier oe�ients p01(kr) of the omponents along the �eld of the dipole momenta. There isno partiular reason to have di�erent dipole momenta p01(kr) for di�erent vetors kr, so we mayput p01(kr) = p10(kr) = p. The polarization beomes

P =
p

V
(β0β

∗
1 + β1β

∗
0) , (27)whih is proportional to the rhs of the �rst equation (16), as expeted.The quantity β0β

∗
1 + c.c. entering the rhs of the �rst equation (16) an be omputed by usingequations (20). We get

β0β
∗
1 + β1β

∗
0 = 1

x2+1
{x

[
2x

√
N0N1 +N0 −N1

]
+

+
[
2
√
N0N1 − x(N0 −N1)

]
cos ∆θ}

(28)



J. Theor. Phys. 7The external �eld A0, whih satis�es the wave equation Ä0 + ω2
0A

0 = 0, may be added to thepolarization �eld A in the �rst equation (16); this equation beomes
ẍ+ ω2

0x = ω0ω1
λ2

N
1

x2+1
{x

[
2x

√
N0N1 +N0 −N1

]
+

+
[
2
√
N0N1 − x(N0 −N1)

]
cos ∆θ} .

(29)This is a non-linear (integro-di�erential ) equation. We assume λ ≪ 1 and A0(t)/
√
N , A(t)/

√
N�nite, so that we an seek the solution as a power series in λ, x = λx0 + λ2x1 + λ3x2 + ...,where

x0 =
2|α0|
√

N
cosωt. The frequeny ω will be determined by requiring the absene of the ω-resonatingterms. The leading ontribution to the phase di�erene ∆θ an then be written as ω̃1t, where thefrequeny ω̃1 remains to be determined. Equation (29) beomes
ẍ+ ω2

0x = 2ω0ω1

√
N0N1

N
λ2 cos ω̃1t+ ω0ω1

N0 −N1

N
λ3x0(1 − cos ω̃1t) + ... . (30)A similar series expansion ω = ω0 + λ2Ω + ... is used for the frequeny ω. We get

x1 =
√

N0N1

N
2ω0ω1

ω2

0
−ω2

1

cos ω̃1t ,

x2 =
|α0|
√

N
N0−N1

N
ω0

[
1

2ω0+ω1

cos(ω + ω̃1)t− 1
2ω0−ω1

cos(ω − ω̃1)t
] (31)and

ω = ω0 − λ2ω1
N0 −N1

2N
, ω̃1 = ω1 + λ2ω0

|α0|2

N
. (32)(Ω = −ω1(N0 − N1)/2N) for ω1 6= ω0, ±2ω0. We note that these resonanes an be related tothe parametri resonanes 2ω0 ≃ nω1 (n positive integer) of a Mathieu equation,[12℄ whih, for

N1 = 0, may be viewed as a linearized, approximate form of the equation (29). As a matter offat, exept for the resonanes, the solutions given above for N0,1 = 0 are lose to the leadingontributions to the (non-periodi) solutions of Mathieu's equation. In the partiular ase ω = ω̃1(or other similar ases of the approximate form 2ω = nω̃1) they are very lose to the leadingontributions to the (periodi) Mathieu funtion ce2(ω̃1t/2) (or, in general, cen(ω̃1t/2)). However,we must note that the linearized form of the equation (29), whih is a Mathieu equation, is nota satisfatory approximation for the non-linear equation (29), beause of the apparition of the
x-term in the rhs of this equation, instead of the oret x0-term, as in equation (30). In otherwords, a onsequent expansion in powers of the parameter λmakes the leading ontributions to theequation (29) to aquire a form whih is di�erent, in fat, from a Mathieu equation. Leaving asidethe (weak) frequeny renormalization, the resonanes exhibited by equations (31) are in fat whatwe may expet from a non-linear osillator with the basi frequeny ω0 subjeted to an externalfore of frequeny ω1. As it is well known, suh an osillator exhibits the ombined-frequenyphenomenon, as re�eted in the ourrene of frequenies of the form ω0 ± ω1 and denominators
2ω0 ± ω1, et (arising from terms like ω2

0 − (ω0 ± ω1)
2).We note that the term x1 in equations (31) represents the osillations of the ensemble of partiles(for N0,1 6= 0), and the e�et of the external �eld appears only in the next order (the term x2),with ombined frequenies ω ± ω̃1. For N1,0 = 0, the polarization proess is governed entirely bythe external �eld, as expeted (and the onstraint ω0 6= ω1 is removed). We note also that theinteration shifts both the frequeny of the external �eld and the energy levels of the ensemble ofpartiles, aording to equation (32).



8 J. Theor. Phys.Having known the parameter x(t), we an determine the phase di�erene ∆θ (and cos ∆θ) aord-ing to equation (24), and the mean values (averages over the time) of all the relevant quantitiesan be omputed, as given by equations (20)-(24). We get, for instane, the frequenies
Ω0 =

〈
θ̇0

〉
= λ2ω1

|α0|2

2N
, Ω1 =

〈
θ̇1

〉
= −ω1 − λ2ω1

|α0|2

2N
(33)and the mean oupanies

〈
|β0,1|2

〉
= N0,1 ∓ λ2N0N1

N

ω0ω1

ω2
0 − ω2

1

∓ λ2N0 −N1

N

∣∣α0
∣∣2 . (34)One an see that the external �eld an pump, or deplete, the upper level, depending on theparameters N0,1 and ω0,1. Partiularly interesting is the ase N1 = 0 (orresponding to an upperlevel whih is empty at the initial moment t = 0). In this ase, the oupany of the upper levelis given by 〈

|β1|2
〉

= λ2
∣∣α0

∣∣2 ; (35)the external �eld leads to a marosopi oupation of this level. The release of the orrespondingenergy Es = ~ω1

〈
|β1|2

〉 is a lasing e�et, driven by the external �eld.The polarization an be omputed from equations (27) and (28), by using the solution x(t) givenby equations (31). Within this approximation, the polarization ontains many osillating terms,inluding both a quadrati depedene on the external �eld and frequeny doubling, as expetedfor suh non-linear equations. We ollet here a few relevant ontributions:
β∗

0β1 + β∗
1β0 = 2

√
N0N1 cos ω̃1t+ 2λ

|α0|
√

N
(N0 −N1)(1 − cos ω̃1t) cosωt+

+2λ2
√

N0N1

N

[
4 |α0|2 cos2 ω̃0t− (N0 −N1)

ω0ω1

ω2

0
−ω2

1

cos2 ω̃1t
]
−

+λ3 ω1|α0|2
4ω0N

(N0 −N1) sin ω̃0t sin ω̃1t .

(36)
The mean value of the polarization is given by

〈β0β
∗
1 + β1β

∗
0〉 = λ2

√
N0N1

N

[
4
∣∣α0

∣∣2 − (N0 −N1)
ω0ω1

ω2
0 − ω2

1

]
, (37)where the quadrati dependene on the external �eld is to be noted. It is also worth notingthat it vanishes for N0,1 = 0. Making use of equation (2) we an ompute the eletri �eld

Et = −(1/c)∂At/∂t, while the polarization is given by equation (28). The permittivity, de�nedas P = κEt (for the Fourier omponents), is κ = (2p2/~ω1a
3)(N0 − N1)/N for the ω-omponent.We an see that the partile polarizability is α = κa3 = 2p2/~ω1 (for N1 = 0), so that we an alsorepresent the oupling onstant as λ =

√
πα/3a3 (for ω0 = ω1). It follows that we are justi�edin assuming λ ≪ 1, as long as the polarizability per unit volume of the ensemble of partiles issu�iently small. Similarly, introduing the eletri �eld, equation (35) an be transformed into

〈
|β1|2

〉
= N

(
pE0

~ω0

)2

, (38)where E0 is the strength of the external eletri �eld. One an reognize in equation (38) thewell-known Rabi frequeny pE0/~.



J. Theor. Phys. 95 Conluding remarksMaking use of the parameter x(t) derived above and averaging over time in the hamiltonian givenby equations (17), we get the leading ontributions to the energy:
Et

f = E0
f + 1

2
λ2

[
~(ω2

0
+ω2

1
)

ω0

N0N1

N

(
ω0ω1

ω2

0
−ω2

1

)2

− ~ω1
N0−N1

N
|α0|2

]
,

Es = ~ω1

[
N1 + λ2

(
N0N1

N
ω0ω1

ω2

0
−ω2

1

+ N0−N1

N
|α0|2

)]
,

Eint = −~ω1λ
2
(

N0N1

N
ω0ω1

ω2

0
−ω2

1

+ N0−N1

N
|α0|2

)
,

(39)
where E0

f = ~ω0 |α0|2 is the energy of the (bare) external �eld. The total �eld energy an also bewritten as
Et

f = ~ω
∣∣α0

∣∣2 + λ2 ~(ω2
0 + ω2

1)

2ω0

N0N1

N

(
ω0ω1

ω2 − ω2
1

)2

. (40)For N1 = 0 the above equations beome
Et

f = ~ω |α0|2 = E0
f − 1

2
~ω1λ

2 |α0|2 ,

Es = −Eint = ~ω1λ
2 |α0|2 = ω1

ω0

λ2E0
f .

(41)One an see that the total energy Et = Et
f + Es + Eint redues to the total �eld energy Et

f ,the polarization energy (Es) being entirely ompensated by the interation energy, as expeted.The e�ieny quotient of this lasing proess is λ2(ω1/ω0). It may appear that it is favourable todiminish ω0 with respet to ω1, but one must avoid the resonane ouring at 2ω0 = ω1, on onehand, and, on the other, one must be aware that a dereasing ω0 is limited by λ = 2g/~ω1 ≪ 1(aording to equation (15)) (and by Et
f > 0).For N1 = 0 we take for onveniene ω0 = ω1. As disussed in Introdution, for a typial sampleof atomi matter the oupling onstant is λ = 0.5 (~ω1 = 1eV , a = 3Å, p = 2.4 × 10−18esu). Forreasonable values E0

f = 103J , N = 6 × 1023 (Avogadro's number) we get Es = 250J , whih maybe viewed as a onsiderable e�et. For atomi nulei λ = 10−8 (~ω1 ≃ ~ω0 = 1MeV , a = 3Å,
p = 5 × 10−23esu), and we an see that the released energy is extremely small.In onlusion, we may say that we have solved the oupled non-linear equations of motion, inthe stationary regime and for small oupling onstants, for an ensemble of polarizable, identialpartiles with two energy levels interating oherently with their own polarization �eld and withan external eletromagneti �eld. It was shown that a lasing e�et is possible, driven by theexternal �eld. For typial atomi matter the e�et may be onsiderable, while for an ensemble ofatomi nulei the e�et is extremely small. The di�erene originates in the great disparity betweenthe orresponding oupling onstants.Aknowledgments. The authors are indebted to their olleagues in the Department of The-oretial Physis and Plasma Physis Laboratory at Magurele-Buharest, in partiular to F. D.Buzatu, for many useful disussions, and to the organizers of the Workshop on Extreme LightInfrastruture (ELI), Magurele, February 1, 2010 for their generous support.
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