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Abstract

The interaction of the classical electromagnetic field with an ensemble of polarizable,
identical, atomic particles with two energy levels is investigated, and the coupled non-linear
equations of motion for the polarization field and the amplitudes of the level occupancies
are solved by a perturbation-theoretical method. A small coupling constant is identified,
and the solution is represented as a power series in this coupling constant. Explicit results
are given for the leading contributions to the solution. In particular, it is shown that an
external electromagnetic field may induce a lasing effect in such an ensemble of particles, by
populating the (initially empty) upper level.
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The interaction of the classical electromagnetic radiation with an ensemble of polarizable, identical,
atomic particles with two energy levels is the core of the "semi-classical theory" of the laser (see,
for instance, Refs. [1]-[3]). The problem has been extensively investigated, by various approaches
and from many angles.|[4|-[17] Usually, the equations of motion for the electromagnetic field and
the occupancies of the two levels are solved by means of some approximations which, among
other particular assumptions, discard the fast oscillating terms. However, such terms may bring
relevant contributions in the stationary regime. It is generally believed that an exact solution
of the coupled, non-linear equations of the semi-classical theory of the laser would be impossible
(see, for instance, Ref. [2]|, p. 459, Ref. [3], p. 98). We present here a fully computable solution,
represented as a power series in a (small) coupling constant A, and give explicit results for the
polarization field, occupancy numbers and energy in the lowest, most relevant orders of A, in the
presence of an external eletromagnetic field. We show that a lasing effect can be induced in the
ensemble of particles, driven by the external field which can populate the (initially empty) upper
level.

We consider a uniform distribution of polarizable, identical particles, each with two quantum
energy levels €y, subjected to an external electromagnetic field and to their own polarization
field. The ensemble of particles exhibits a fluctuating curent density j(r,t¢), and a polarization
P(r,t), related by j(r,t) = OP(r,t)/0t, which, in turn, give rise to a polarization field, according
to the well-known wave equations with sources
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where A is the vector potential and E = —(1/¢)0A /0t is the polarization electric field (we assume
a transverse radiation field). We take only one polarization, oriented along one coordinate axis,
and look for a separable solution of the form E(r,t) = E(t)x(r), P(r,t) = P(t)x(r), where x(r)
is an eigenfunction of the laplacian, Ax(r) = —x%x(r), k being a constant. With the notation

wi = c®k?, the second equation (1) becomes

Bt) + wRE(t) = 47r82£ () (2)

We envisage a classical polarization field F; consequently, the source in the rhs of equation (2)
can be written as 47n (9*p/0t?), where p is the dipole momentum of a particle and the brackets
denote the quantum average; the spatial average is taken into account by the (uniform) density
n of the ensemble of particles. We take (0*p/0t*) = —w? (p), where hw; = £, — 9. Equation (2)
can then be written as

E(t) + WiE(t) = 4mnw? (p) . (3)

In general, (0*p/dt?) depends on the internal dynamics of the particles, and can be kept as such
in equation (3), or it may be expressed in terms of other conventional parameters. We note also
that the electric field source, given generaly by 97j(t)/0t, may not originate only in orbital currents
(as we assumed here), but it may have also other origins, like the spin, for instance.

The two quantum states ¢y are defined by the free hamiltonian H, of the internal degrees of
freedom of each individual particle, Hopo1 = €0,1¢0,1. The interaction hamiltonian for one particle
placed at r is given by

Hine = —px(r) [Eo(r,t) + E(r, t)] = —pEy(t)x*(r) (4)

where the external field Fy has been introduced, as well as the total field £, = Ey+ E. We assume
the fields and the (orthogonalized) eigenfunctions real. The spatial average of equation (4) gives
an interaction hamiltonian

(Hint), = —PE(t) - (5)

The interacting state ¢ = copo+c11 is a superposition of the two free states ¢g 1, with coeffcients
o1 satisfying the Schrodinger equation
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The quantum average of the current is given by
(p) = porcycr + pyicico (7)

where we have assumed poy = p11 = 0, as for stationary states. Moreover, we assume for simplicity
po1 = po; = p- We set g9 = 0 and introduce the parameter
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so that equations (6) become
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and equation (3) can be written as
E(t) + w2E(t) = 4mnw?p (cier + i) (10)

In equation (8) we may recognize the well-known Rabi "frequency" pFE;/h. Usually, the system
of equations (9) is transformed into a system of equations for the occupancies ]00,1]2 and the
associated matrix density.|2, 3] We adopt a different route, and focus on the system of equations
(9) for the occupancy amplitudes cg ;.

The system of equations (9) can be solved formally with ¢o; = Cy1¢?; we get immediately C; = 0
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where
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The coefficients Cp; are determined by requiring the initial values of the occupancy numbers
lco1(t = O)]2 be equal with ng; (ng +n; = 1). We get the amplitudes
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and the occupancy numbers
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where the phase difference 6y — 6, is given by
t
Ab = 90 — 01 = wl/ dt\/ .TZ(t) +1. (15)
0

The oscillations of the occupancies given by equation (14) are reminiscent of the well-known
Rabi oscillations, exhibited, for instance, by the Jaynes-Cummings model (see, for instance, Refs.
[4, 15]). We take the time averages of all the relevant quantities given above. We can see, by
equations (11), that the energy levels ¢ ; are changed by interaction into the mean values of héoﬂl,
and, in addition, the interaction mixes up the two states, as expected. We can see also that the
mean values of the coefficients Cy 1, as well as the mean values of the coefficients fCy; entering
equations (11), are constants, as it is required by a stationary solution; it becomes apparent that
np,1 are constants of integration.

From equations (11)-(13) we get

cher + ey = I%H{a: [22/nony + no — nq] +
(16)
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which can be inserted into equation (10); we can add the external field Fy, which satisfies the free
wave equation Fy 4+ w2FEy = 0 , such that equation (10) becomes
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where \? = 8mnp?/hw;. We note that © = AE;/e, where e = /2mnhw, is a characteristic electric
field.

Equation (17) is a non-linear (integro-differential) equation. We asssume A < 1, and seek the
solution as a power series in A,

T = \xg + Nx; + Voo + .., (18)

where xy = B coswyt, B = FEy/e and @y remains to be determined. We get straightforwardly
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for wi # wp, £2wy. These restrictions can be related to the parametric resonances 2wy >~ nw;
(where n # 0 is any integer), occurring for an associated Mathieu equation which is a close
representation of the linearized form of equation (17) for n; = 0 (though not a fully correct
approximation to equation (17)).[18] Leaving aside the (weak) frequency renormalization, the
resonances exhibited by equations (19) are in fact what we may expect from a non-linear oscillator
with the basic frequency wy subjected to an external force of frequency w;. As it is well known,
such an oscillator exhibits the combined-frequency phenomenon, as reflected in the occurrence of
frequencies of the form wy+w; and denominators 2wy +wy, etc (arising from terms like w? — (wy +
wi)?).

We can see that the interaction renormalizes both the field frequency wy and the characteristic
frequency w; of the ensemble of particles. The term z; represents the oscillations of the ensemble
of particles (for ng; # 0); the effect of the external field appears only in the next order (the term
x3), with combined frequencies wy £ w;. For ny o = 0 the polarization process is governed entirely
by the external field, as expected (and the constraint wy # w; is removed).

Having known the parameter z(t), the mean values (time averages) of all the relevant quantities
can be computed, as given by equations (11)-(15). We get, for instance, the frequencies
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and the mean occupancies
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One can see that the external field can pump, or deplete, the upper level, depending on the
parameters ng; and wg ;. Particularly interesting is the case ny = 0 (corresponding to an upper
level which is empty at the initial moment ¢t = 0). In this case, the occupancy of the upper level
is given by
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the external field leads to a macroscopic occupation of this level. The release of the corresponding

energy F, = hw1\01]2 (per particle) is a lasing effect, driven by the external field. We note in
equation (23) the occurrence of the Rabi frequency pFEy/h.

The polarization can be computed by making use of the solution x(t) given here (equation (19))
in equations (7) and (16). Within this approximation, the polarization is a complicate function,
involving quadratic dependence on the strength of the external field, frequency doubling, combined
frequencies, etc, as expected for a non-linear equation. We collect here a few relevant terms:

CSCl + CTCO = 2,/n0n1 COS Ezlt + )\B(TLO — nl)(l — COS (Dlt) COS &Ot—F
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The mean value of the polarization is given by
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where the quadratic dependence on the external field is to be noted. It is worth noting that P = 0
for ng; = 0. The &y-component of the polarization gives the permittiviy x = (2np?/hw;)(ng —ny)
and the particle polarizability a = 2p*/hw, (for ny = 0). We can see that the coupling constant
A = /8mnp?/hw; can be related to the polarizability a through A\* = 47rna. It follows that we
are justified in assuming A\ < 1 as far as the polarizability per unit volume is small, which is a
usual situation.

By equation (18), the total electric field can be represented as a F; = 6(x0+)\x1+)\2x2+...). Hence,
we can obtain the vector potential A;(t) = —c fot dtE; and the magnetic field H = curlA,(r,t)
(where we take into account the transversality condition divA; = 0). It is then easy to compute
the mean value of the total field energy density (per particle) £f. We get
2 20,2, 2 2
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From equations (5), (7) and (16) we can compute the interaction energy (per particle)
1 *
Eipy = —(p) By = —57:%0155 (cher + cico) (27)

and its mean value
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As it was said above, the energy of the ensemble of particles (per particle) is given by
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Particularly interesting are these equations for n; = 0:
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where EY = Eg/8mn is the energy (per particle) of the (bare) external field. One can see that the
total energy E; = E} + E,+ By reduces to the total field energy E%, the polarization energy (F,)

being entirely compensated by the interaction energy (E;,;), as expected. The efficiency quotient
of this lasing process is ~ \2.

In conclusion, after setting up the equations of motion for the polarization field and the amplitudes
of the level occupancy for an ensemble of identical, polarizable particles with two energy levels
interacting with a classical electromagnetic radiation, we have identified a small coupling constant
A which allows the solution of these coupled non-linear equations to be obtained by a theoretical-
perturbation method. The solution is represented as a power series in A\. The coupling constant A
is related to the polarizaton na per unit volume of the ensemble of particles, A = v4mna. Explicit
results have been given for the leading contributions to the polarization field, occupancy numbers
and energy in the presence of an external field. It was shown that an external field can induce a
lasing effect, by pumping the upper energy level which was empty at the initial moment of time.

Finally, it is worthwhile commenting upon the absence of the external field in the problem pre-
sented in this paper. The equations of motion (3) and (6) have a completely different solution in
this case. These equations can be solved exactly, and the solution, which is independent of time
and exists only for A exceeding a critical value, is non-analytic in the coupling constant A. For a
strong enough coupling the ensemble of particles is unstable, and it undergoes a phase transition
to a state known as a super-radiance state. Beside such a criticality condition upon the coupling
constant, for finite temperatures the super-radiance (second-order) phase transition occurs below
a certain critical temperature. The exact solution was obtained in a previous paper,[19] where the
super-radiance transition was also characterized, under the assumption of a coherent interaction
of matter with radiation. It was shown there that the two energy levels and the photon states are
macroscopically occupied, leading to a spatially long-range ordered state which involves the quan-
tum phases of the internal motion of the particles. The transition process is initiated, and carried
on, for wy = wy, as corresponding to quantum transitions. In the classical case the condition of
coherent interaction is implicitly included. The solution of the classical equations of motion (3)
and (6) in the absence of the external field is identical with the solution obtained in Ref. [19]
within the coherent interaction theory.
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