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upan
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oupling 
onstant. Expli
it resultsare given for the leading 
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ular, it is shown that anexternal ele
tromagneti
 �eld may indu
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t in su
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tion of the 
lassi
al ele
tromagneti
 radiation with an ensemble of polarizable, identi
al,atomi
 parti
les with two energy levels is the 
ore of the "semi-
lassi
al theory" of the laser (see,for instan
e, Refs. [1℄-[3℄). The problem has been extensively investigated, by various approa
hesand from many angles.[4℄-[17℄ Usually, the equations of motion for the ele
tromagneti
 �eld andthe o

upan
ies of the two levels are solved by means of some approximations whi
h, amongother parti
ular assumptions, dis
ard the fast os
illating terms. However, su
h terms may bringrelevant 
ontributions in the stationary regime. It is generally believed that an exa
t solutionof the 
oupled, non-linear equations of the semi-
lassi
al theory of the laser would be impossible(see, for instan
e, Ref. [2℄, p. 459, Ref. [3℄, p. 98). We present here a fully 
omputable solution,represented as a power series in a (small) 
oupling 
onstant λ, and give expli
it results for thepolarization �eld, o

upan
y numbers and energy in the lowest, most relevant orders of λ, in thepresen
e of an external eletromagneti
 �eld. We show that a lasing e�e
t 
an be indu
ed in theensemble of parti
les, driven by the external �eld whi
h 
an populate the (initially empty) upperlevel.We 
onsider a uniform distribution of polarizable, identi
al parti
les, ea
h with two quantumenergy levels ε0,1, subje
ted to an external ele
tromagneti
 �eld and to their own polarization�eld. The ensemble of parti
les exhibits a �u
tuating 
urent density j(r, t), and a polarization
P(r, t), related by j(r, t) = ∂P(r, t)/∂t, whi
h, in turn, give rise to a polarization �eld, a

ordingto the well-known wave equations with sour
es
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2 J. Theor. Phys.where A is the ve
tor potential and E = −(1/c)∂A/∂t is the polarization ele
tri
 �eld (we assumea transverse radiation �eld). We take only one polarization, oriented along one 
oordinate axis,and look for a separable solution of the form E(r, t) = E(t)χ(r), P (r, t) = P (t)χ(r), where χ(r)is an eigenfun
tion of the lapla
ian, ∆χ(r) = −κ2χ(r), κ being a 
onstant. With the notation
ω2

0 = c2κ2, the se
ond equation (1) be
omes
Ë(t) + ω2

0E(t) = −4π
∂2P (t)

∂t2
. (2)We envisage a 
lassi
al polarization �eld E; 
onsequently, the sour
e in the rhs of equation (2)
an be written as 4πn 〈∂2p/∂t2〉, where p is the dipole momentum of a parti
le and the bra
ketsdenote the quantum average; the spatial average is taken into a

ount by the (uniform) density

n of the ensemble of parti
les. We take 〈∂2p/∂t2〉 = −ω2
1 〈p〉, where ~ω1 = ε1 − ε0. Equation (2)
an then be written as

Ë(t) + ω2
0E(t) = 4πnω2

1 〈p〉 . (3)In general, 〈∂2p/∂t2〉 depends on the internal dynami
s of the parti
les, and 
an be kept as su
hin equation (3), or it may be expressed in terms of other 
onventional parameters. We note alsothat the ele
tri
 �eld sour
e, given generaly by ∂j(t)/∂t, may not originate only in orbital 
urrents(as we assumed here), but it may have also other origins, like the spin, for instan
e.The two quantum states ϕ0,1 are de�ned by the free hamiltonian H0 of the internal degrees offreedom of ea
h individual parti
le, H0ϕ0,1 = ε0,1ϕ0,1. The intera
tion hamiltonian for one parti
lepla
ed at r is given by
Hint = −pχ(r) [E0(r, t) + E(r, t)] = −pEt(t)χ

2(r) , (4)where the external �eld E0 has been introdu
ed, as well as the total �eld Et = E0 +E. We assumethe �elds and the (orthogonalized) eigenfun
tions real. The spatial average of equation (4) givesan intera
tion hamiltonian
(Hint)av = −pEt(t) . (5)The intera
ting state ϕ = c0ϕ0 +c1ϕ1 is a superposition of the two free states ϕ0,1, with 
oe�
ients

c0,1 satisfying the S
hrodinger equation
i~∂c0

∂t
= ε0c0 − p01Etc1 ,

i~∂c1
∂t

= ε1c1 − p∗01Etc0 .
(6)The quantum average of the 
urrent is given by

〈p〉 = p01c
∗

0c1 + p∗01c
∗

1c0 , (7)where we have assumed p00 = p11 = 0, as for stationary states. Moreover, we assume for simpli
ity
p01 = p∗01 = p. We set ε0 = 0 and introdu
e the parameter

x(t) =
2p
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Et(t) , (8)so that equations (6) be
ome
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J. Theor. Phys. 3and equation (3) 
an be written as
Ë(t) + ω2

0E(t) = 4πnω2
1p (c∗0c1 + c∗1c0) . (10)In equation (8) we may re
ognize the well-known Rabi "frequen
y" pEt/~. Usually, the systemof equations (9) is transformed into a system of equations for the o

upan
ies |c0,1|2 and theasso
iated matrix density.[2, 3℄ We adopt a di�erent route, and fo
us on the system of equations(9) for the o

upan
y amplitudes c0,1.The system of equations (9) 
an be solved formally with c0,1 = C0,1e

iθ; we get immediately Ċ0,1 = 0and
c0 = C0e

iθ0 − fC1e
iθ1 , c1 = fC0e

iθ0 + C1e
iθ1 ,
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,

(11)where
f(t) =

x(t)√
x2(t) + 1 + 1

. (12)The 
oe�
ients C0,1 are determined by requiring the initial values of the o

upan
y numbers
|c0,1(t = 0)|2 be equal with n0,1 (n0 + n1 = 1). We get the amplitudes

C0,1 =
1

1 + f 2(t)

[√
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] (13)and the o

upan
y numbers
|c0,1|2 = n0,1 ±

1
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n0n1 − x(t)(n0 − n1)] [1 − cos(θ0 − θ1)] , (14)where the phase di�eren
e θ0 − θ1 is given by
∆θ = θ0 − θ1 = ω1

∫ t

0

dt
√

x2(t) + 1 . (15)The os
illations of the o

upan
ies given by equation (14) are reminis
ent of the well-knownRabi os
illations, exhibited, for instan
e, by the Jaynes-Cummings model (see, for instan
e, Refs.[4, 15℄). We take the time averages of all the relevant quantities given above. We 
an see, byequations (11), that the energy levels ε0,1 are 
hanged by intera
tion into the mean values of ~θ̇0,1,and, in addition, the intera
tion mixes up the two states, as expe
ted. We 
an see also that themean values of the 
oe�
ients C0,1, as well as the mean values of the 
oe�
ients fC0,1 enteringequations (11), are 
onstants, as it is required by a stationary solution; it be
omes apparent that
n0,1 are 
onstants of integration.From equations (11)-(13) we get
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(16)whi
h 
an be inserted into equation (10); we 
an add the external �eld E0, whi
h satis�es the freewave equation Ë0 + ω2
0E0 = 0 , su
h that equation (10) be
omes
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ẍ + ω2

0x = λ2ω2
1

1
x2+1

{x
[
2x

√
n0n1 + n0 − n1

]
+

+
[
2
√

n0n1 − x(n0 − n1)
]
cos ∆θ} ,

(17)where λ2 = 8πnp2/~ω1. We note that x = λEt/e, where e =
√

2πn~ω1 is a 
hara
teristi
 ele
tri
�eld.Equation (17) is a non-linear (integro-di�erential) equation. We asssume λ ≪ 1, and seek thesolution as a power series in λ,
x = λx0 + λ2x1 + λ3x2 + ... , (18)where x0 = B cos ω̃0t, B = E0/e and ω̃0 remains to be determined. We get straightforwardly
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)
, (20)for ω1 6= ω0, ±2ω0. These restri
tions 
an be related to the parametri
 resonan
es 2ω0 ≃ nω1(where n 6= 0 is any integer), o

urring for an asso
iated Mathieu equation whi
h is a 
loserepresentation of the linearized form of equation (17) for n1 = 0 (though not a fully 
orre
tapproximation to equation (17)).[18℄ Leaving aside the (weak) frequen
y renormalization, theresonan
es exhibited by equations (19) are in fa
t what we may expe
t from a non-linear os
illatorwith the basi
 frequen
y ω0 subje
ted to an external for
e of frequen
y ω1. As it is well known,su
h an os
illator exhibits the 
ombined-frequen
y phenomenon, as re�e
ted in the o

urren
e offrequen
ies of the form ω0±ω1 and denominators 2ω0±ω1, et
 (arising from terms like ω2

0 − (ω0±
ω1)

2).We 
an see that the intera
tion renormalizes both the �eld frequen
y ω0 and the 
hara
teristi
frequen
y ω1 of the ensemble of parti
les. The term x1 represents the os
illations of the ensembleof parti
les (for n0,1 6= 0); the e�e
t of the external �eld appears only in the next order (the term
x2), with 
ombined frequen
ies ω̃0 ± ω̃1. For n1,0 = 0 the polarization pro
ess is governed entirelyby the external �eld, as expe
ted (and the 
onstraint ω0 6= ω1 is removed).Having known the parameter x(t), the mean values (time averages) of all the relevant quantities
an be 
omputed, as given by equations (11)-(15). We get, for instan
e, the frequen
ies

Ω0 = θ̇0 =
1

8
λ2ω1B

2 , Ω1 = θ̇1 = −ω1 −
1

8
λ2ω1B

2 (21)and the mean o

upan
ies
|c0,1|2 = n0,1 ∓ λ2n0n1

ω2
1

ω2
0 − ω2

1

∓ 1

4
λ2(n0 − n1)B

2 . (22)One 
an see that the external �eld 
an pump, or deplete, the upper level, depending on theparameters n0,1 and ω0,1. Parti
ularly interesting is the 
ase n1 = 0 (
orresponding to an upperlevel whi
h is empty at the initial moment t = 0). In this 
ase, the o

upan
y of the upper levelis given by
|c1|2 =

1

4
λ2B2 =

1

4e2
λ2E2

0 =

(
pE0

~ω1

)2

; (23)



J. Theor. Phys. 5the external �eld leads to a ma
ros
opi
 o

upation of this level. The release of the 
orrespondingenergy Es = ~ω1|c1|2 (per parti
le) is a lasing e�e
t, driven by the external �eld. We note inequation (23) the o

urren
e of the Rabi frequen
y pE0/~.The polarization 
an be 
omputed by making use of the solution x(t) given here (equation (19))in equations (7) and (16). Within this approximation, the polarization is a 
ompli
ate fun
tion,involving quadrati
 dependen
e on the strength of the external �eld, frequen
y doubling, 
ombinedfrequen
ies, et
, as expe
ted for a non-linear equation. We 
olle
t here a few relevant terms:
c∗0c1 + c∗1c0 = 2

√
n0n1 cos ω̃1t + λB(n0 − n1)(1 − cos ω̃1t) cos ω̃0t+

+2λ2√n0n1

[
B2 cos2 ω̃0t − (n0 − n1)
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−

+λ3 ω1B2

16ω0

(n0 − n1) sin ω̃0t sin ω̃1t .

(24)
The mean value of the polarization is given by

P = np (c0c
∗

1 + c1c
∗

0) = λ2np
√

n0n1

[
B2 − (n0 − n1)

ω2
1

ω2
0 − ω2

1

]
, (25)where the quadrati
 dependen
e on the external �eld is to be noted. It is worth noting that P = 0for n0,1 = 0. The ω̃0-
omponent of the polarization gives the permittiviy κ = (2np2/~ω1)(n0 −n1)and the parti
le polarizability α = 2p2/~ω1 (for n1 = 0). We 
an see that the 
oupling 
onstant

λ =
√

8πnp2/~ω1 
an be related to the polarizability α through λ2 = 4πnα. It follows that weare justi�ed in assuming λ ≪ 1 as far as the polarizability per unit volume is small, whi
h is ausual situation.By equation (18), the total ele
tri
 �eld 
an be represented as a Et = e(x0+λx1+λ2x2+...). Hen
e,we 
an obtain the ve
tor potential At(t) = −c
∫ t

0
dtEt and the magneti
 �eld H = curlAt(r, t)(where we take into a

ount the transversality 
ondition divAt = 0). It is then easy to 
omputethe mean value of the total �eld energy density (per parti
le) Et

f . We get
Et

f = 1
8πn

E2
0 + λ2

4πn
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1
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0
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4ω2
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]
. (26)From equations (5), (7) and (16) we 
an 
ompute the intera
tion energy (per parti
le)

Eint = −〈p〉Et = −1

2
~ω1x (c∗0c1 + c∗1c0) (27)and its mean value
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~ω1
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ω2
0 − ω2

1

+
1

4
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2

]
. (28)As it was said above, the energy of the ensemble of parti
les (per parti
le) is given by

Es = ~ω1|c1|2 = ~ω1

[
n1 + λ2n0n1

ω2
1

ω2
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1

+
1

4
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2

]
. (29)Parti
ularly interesting are these equations for n1 = 0:

Et
f = E0

f

(
1 + λ2 ω2

1

2ω2
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)
,

Es = −Eint = 1
4
~ω1λ

2B2 = λ2E0
f ,

(30)
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f = E2

0/8πn is the energy (per parti
le) of the (bare) external �eld. One 
an see that thetotal energy Et = Et
f +Es +Eint redu
es to the total �eld energy Et

f , the polarization energy (Es)being entirely 
ompensated by the intera
tion energy (Eint), as expe
ted. The e�
ien
y quotientof this lasing pro
ess is ≃ λ2.In 
on
lusion, after setting up the equations of motion for the polarization �eld and the amplitudesof the level o

upan
y for an ensemble of identi
al, polarizable parti
les with two energy levelsintera
ting with a 
lassi
al ele
tromagneti
 radiation, we have identi�ed a small 
oupling 
onstant
λ whi
h allows the solution of these 
oupled non-linear equations to be obtained by a theoreti
al-perturbation method. The solution is represented as a power series in λ. The 
oupling 
onstant λis related to the polarizaton nα per unit volume of the ensemble of parti
les, λ =

√
4πnα. Expli
itresults have been given for the leading 
ontributions to the polarization �eld, o

upan
y numbersand energy in the presen
e of an external �eld. It was shown that an external �eld 
an indu
e alasing e�e
t, by pumping the upper energy level whi
h was empty at the initial moment of time.Finally, it is worthwhile 
ommenting upon the absen
e of the external �eld in the problem pre-sented in this paper. The equations of motion (3) and (6) have a 
ompletely di�erent solution inthis 
ase. These equations 
an be solved exa
tly, and the solution, whi
h is independent of timeand exists only for λ ex
eeding a 
riti
al value, is non-analyti
 in the 
oupling 
onstant λ. For astrong enough 
oupling the ensemble of parti
les is unstable, and it undergoes a phase transitionto a state known as a super-radian
e state. Beside su
h a 
riti
ality 
ondition upon the 
oupling
onstant, for �nite temperatures the super-radian
e (se
ond-order) phase transition o

urs belowa 
ertain 
riti
al temperature. The exa
t solution was obtained in a previous paper,[19℄ where thesuper-radian
e transition was also 
hara
terized, under the assumption of a 
oherent intera
tionof matter with radiation. It was shown there that the two energy levels and the photon states arema
ros
opi
ally o

upied, leading to a spatially long-range ordered state whi
h involves the quan-tum phases of the internal motion of the parti
les. The transition pro
ess is initiated, and 
arriedon, for ω0 = ω1, as 
orresponding to quantum transitions. In the 
lassi
al 
ase the 
ondition of
oherent intera
tion is impli
itly in
luded. The solution of the 
lassi
al equations of motion (3)and (6) in the absen
e of the external �eld is identi
al with the solution obtained in Ref. [19℄within the 
oherent intera
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