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P(r, t), related by j(r, t) = ∂P(r, t)/∂t, whih, in turn, give rise to a polarization �eld, aordingto the well-known wave equations with soures
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2 J. Theor. Phys.where A is the vetor potential and E = −(1/c)∂A/∂t is the polarization eletri �eld (we assumea transverse radiation �eld). We take only one polarization, oriented along one oordinate axis,and look for a separable solution of the form E(r, t) = E(t)χ(r), P (r, t) = P (t)χ(r), where χ(r)is an eigenfuntion of the laplaian, ∆χ(r) = −κ2χ(r), κ being a onstant. With the notation
ω2

0 = c2κ2, the seond equation (1) beomes
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. (2)We envisage a lassial polarization �eld E; onsequently, the soure in the rhs of equation (2)an be written as 4πn 〈∂2p/∂t2〉, where p is the dipole momentum of a partile and the braketsdenote the quantum average; the spatial average is taken into aount by the (uniform) density

n of the ensemble of partiles. We take 〈∂2p/∂t2〉 = −ω2
1 〈p〉, where ~ω1 = ε1 − ε0. Equation (2)an then be written as
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0E(t) = 4πnω2

1 〈p〉 . (3)In general, 〈∂2p/∂t2〉 depends on the internal dynamis of the partiles, and an be kept as suhin equation (3), or it may be expressed in terms of other onventional parameters. We note alsothat the eletri �eld soure, given generaly by ∂j(t)/∂t, may not originate only in orbital urrents(as we assumed here), but it may have also other origins, like the spin, for instane.The two quantum states ϕ0,1 are de�ned by the free hamiltonian H0 of the internal degrees offreedom of eah individual partile, H0ϕ0,1 = ε0,1ϕ0,1. The interation hamiltonian for one partileplaed at r is given by
Hint = −pχ(r) [E0(r, t) + E(r, t)] = −pEt(t)χ

2(r) , (4)where the external �eld E0 has been introdued, as well as the total �eld Et = E0 +E. We assumethe �elds and the (orthogonalized) eigenfuntions real. The spatial average of equation (4) givesan interation hamiltonian
(Hint)av = −pEt(t) . (5)The interating state ϕ = c0ϕ0 +c1ϕ1 is a superposition of the two free states ϕ0,1, with oe�ients

c0,1 satisfying the Shrodinger equation
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(6)The quantum average of the urrent is given by
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1c0 , (7)where we have assumed p00 = p11 = 0, as for stationary states. Moreover, we assume for simpliity
p01 = p∗01 = p. We set ε0 = 0 and introdue the parameter
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J. Theor. Phys. 3and equation (3) an be written as
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1p (c∗0c1 + c∗1c0) . (10)In equation (8) we may reognize the well-known Rabi "frequeny" pEt/~. Usually, the systemof equations (9) is transformed into a system of equations for the oupanies |c0,1|2 and theassoiated matrix density.[2, 3℄ We adopt a di�erent route, and fous on the system of equations(9) for the oupany amplitudes c0,1.The system of equations (9) an be solved formally with c0,1 = C0,1e
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. (12)The oe�ients C0,1 are determined by requiring the initial values of the oupany numbers
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n0n1 − x(t)(n0 − n1)] [1 − cos(θ0 − θ1)] , (14)where the phase di�erene θ0 − θ1 is given by
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x2(t) + 1 . (15)The osillations of the oupanies given by equation (14) are reminisent of the well-knownRabi osillations, exhibited, for instane, by the Jaynes-Cummings model (see, for instane, Refs.[4, 15℄). We take the time averages of all the relevant quantities given above. We an see, byequations (11), that the energy levels ε0,1 are hanged by interation into the mean values of ~θ̇0,1,and, in addition, the interation mixes up the two states, as expeted. We an see also that themean values of the oe�ients C0,1, as well as the mean values of the oe�ients fC0,1 enteringequations (11), are onstants, as it is required by a stationary solution; it beomes apparent that
n0,1 are onstants of integration.From equations (11)-(13) we get
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(16)whih an be inserted into equation (10); we an add the external �eld E0, whih satis�es the freewave equation Ë0 + ω2
0E0 = 0 , suh that equation (10) beomes
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(17)where λ2 = 8πnp2/~ω1. We note that x = λEt/e, where e =
√

2πn~ω1 is a harateristi eletri�eld.Equation (17) is a non-linear (integro-di�erential) equation. We asssume λ ≪ 1, and seek thesolution as a power series in λ,
x = λx0 + λ2x1 + λ3x2 + ... , (18)where x0 = B cos ω̃0t, B = E0/e and ω̃0 remains to be determined. We get straightforwardly
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, (20)for ω1 6= ω0, ±2ω0. These restritions an be related to the parametri resonanes 2ω0 ≃ nω1(where n 6= 0 is any integer), ourring for an assoiated Mathieu equation whih is a loserepresentation of the linearized form of equation (17) for n1 = 0 (though not a fully orretapproximation to equation (17)).[18℄ Leaving aside the (weak) frequeny renormalization, theresonanes exhibited by equations (19) are in fat what we may expet from a non-linear osillatorwith the basi frequeny ω0 subjeted to an external fore of frequeny ω1. As it is well known,suh an osillator exhibits the ombined-frequeny phenomenon, as re�eted in the ourrene offrequenies of the form ω0±ω1 and denominators 2ω0±ω1, et (arising from terms like ω2

0 − (ω0±
ω1)

2).We an see that the interation renormalizes both the �eld frequeny ω0 and the harateristifrequeny ω1 of the ensemble of partiles. The term x1 represents the osillations of the ensembleof partiles (for n0,1 6= 0); the e�et of the external �eld appears only in the next order (the term
x2), with ombined frequenies ω̃0 ± ω̃1. For n1,0 = 0 the polarization proess is governed entirelyby the external �eld, as expeted (and the onstraint ω0 6= ω1 is removed).Having known the parameter x(t), the mean values (time averages) of all the relevant quantitiesan be omputed, as given by equations (11)-(15). We get, for instane, the frequenies
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2 . (22)One an see that the external �eld an pump, or deplete, the upper level, depending on theparameters n0,1 and ω0,1. Partiularly interesting is the ase n1 = 0 (orresponding to an upperlevel whih is empty at the initial moment t = 0). In this ase, the oupany of the upper levelis given by
|c1|2 =

1

4
λ2B2 =

1

4e2
λ2E2

0 =

(
pE0

~ω1

)2

; (23)



J. Theor. Phys. 5the external �eld leads to a marosopi oupation of this level. The release of the orrespondingenergy Es = ~ω1|c1|2 (per partile) is a lasing e�et, driven by the external �eld. We note inequation (23) the ourrene of the Rabi frequeny pE0/~.The polarization an be omputed by making use of the solution x(t) given here (equation (19))in equations (7) and (16). Within this approximation, the polarization is a ompliate funtion,involving quadrati dependene on the strength of the external �eld, frequeny doubling, ombinedfrequenies, et, as expeted for a non-linear equation. We ollet here a few relevant terms:
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The mean value of the polarization is given by
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, (25)where the quadrati dependene on the external �eld is to be noted. It is worth noting that P = 0for n0,1 = 0. The ω̃0-omponent of the polarization gives the permittiviy κ = (2np2/~ω1)(n0 −n1)and the partile polarizability α = 2p2/~ω1 (for n1 = 0). We an see that the oupling onstant
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8πnp2/~ω1 an be related to the polarizability α through λ2 = 4πnα. It follows that weare justi�ed in assuming λ ≪ 1 as far as the polarizability per unit volume is small, whih is ausual situation.By equation (18), the total eletri �eld an be represented as a Et = e(x0+λx1+λ2x2+...). Hene,we an obtain the vetor potential At(t) = −c
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dtEt and the magneti �eld H = curlAt(r, t)(where we take into aount the transversality ondition divAt = 0). It is then easy to omputethe mean value of the total �eld energy density (per partile) Et
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. (26)From equations (5), (7) and (16) we an ompute the interation energy (per partile)
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f = E2

0/8πn is the energy (per partile) of the (bare) external �eld. One an see that thetotal energy Et = Et
f +Es +Eint redues to the total �eld energy Et

f , the polarization energy (Es)being entirely ompensated by the interation energy (Eint), as expeted. The e�ieny quotientof this lasing proess is ≃ λ2.In onlusion, after setting up the equations of motion for the polarization �eld and the amplitudesof the level oupany for an ensemble of idential, polarizable partiles with two energy levelsinterating with a lassial eletromagneti radiation, we have identi�ed a small oupling onstant
λ whih allows the solution of these oupled non-linear equations to be obtained by a theoretial-perturbation method. The solution is represented as a power series in λ. The oupling onstant λis related to the polarizaton nα per unit volume of the ensemble of partiles, λ =

√
4πnα. Expliitresults have been given for the leading ontributions to the polarization �eld, oupany numbersand energy in the presene of an external �eld. It was shown that an external �eld an indue alasing e�et, by pumping the upper energy level whih was empty at the initial moment of time.Finally, it is worthwhile ommenting upon the absene of the external �eld in the problem pre-sented in this paper. The equations of motion (3) and (6) have a ompletely di�erent solution inthis ase. These equations an be solved exatly, and the solution, whih is independent of timeand exists only for λ exeeding a ritial value, is non-analyti in the oupling onstant λ. For astrong enough oupling the ensemble of partiles is unstable, and it undergoes a phase transitionto a state known as a super-radiane state. Beside suh a ritiality ondition upon the ouplingonstant, for �nite temperatures the super-radiane (seond-order) phase transition ours belowa ertain ritial temperature. The exat solution was obtained in a previous paper,[19℄ where thesuper-radiane transition was also haraterized, under the assumption of a oherent interationof matter with radiation. It was shown there that the two energy levels and the photon states aremarosopially oupied, leading to a spatially long-range ordered state whih involves the quan-tum phases of the internal motion of the partiles. The transition proess is initiated, and arriedon, for ω0 = ω1, as orresponding to quantum transitions. In the lassial ase the ondition ofoherent interation is impliitly inluded. The solution of the lassial equations of motion (3)and (6) in the absene of the external �eld is idential with the solution obtained in Ref. [19℄within the oherent interation theory.Referenes[1℄ M. Sargent, M. O. Sully and W. E. Lamb, Laser Physis, Addison-Wesley, Reading (1974).[2℄ W. H. Louisell, Quantum Statistial Properties of Radiation, Wiley, NY (1973).[3℄ H. Haken, Laser Theory, in Enylopedia of Physis, vol. XXV/2, S. Flugge ed., Springer,Berlin (1970).[4℄ E. T. Jaynes and F. W. Cummings, Comparison of quantum and semilassial radiationtheories with appliation to the beam maser, Pro. IEEE 51 89-109 (1963).[5℄ S. Stenholm, Quantum theory of eletromagneti �elds interating with atoms and moleules,Phys. Reps. C6 1-121 (1973).[6℄ B. R. Mollow, Pure-state analysis of resonant light sattering: radiative damping, saturationand multiphoton e�ets, Phys. Rev. A12 1919-1943 (1975).
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