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Abstract

It is shown that Compton (Thomson) backscattering by polaritonic pulses of electrons
accelerated with relativistic velocities by laser beams focused in a rarefied plasma may produce
coherent X- and gamma rays, as a consequence of the quasi-rigidity of the electrons inside
the polaritonic pulses and their relatively large number. The classical results of the Compton
scattering are re-examined in this context, the energy of the scattered photons and their cross-
section are analyzed, especially for backscattering, the great enhancement of the scattered
flux of X- or gamma rays due to the coherence effect is highlighted and numerical estimates
are given for some typical situations.
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It is well known that laser pulses focused in a rarefied plasma can accelerate electrons up to
considerable relativistic energies in the range of MeV’s or even GeV’s .[1]-[13] Various models,
both analytical and numerical, in particular the particle-in-cell simulations for plasma electron
"bubbles",[14]-[18] point toward the basic role played by plasmons and polaritons in laser-driven
electron acceleration, as suggested long time ago.[19] It is widely agreed that the propagation of the
laser radiation in plasma is governed by polaritonic excitations, arising from electrons interacting
with the electromagnetic radiation. The well-known polaritonic dispersion equation is given by
w1 = Jwi+w?, where w, = 4mne®/m is the plasma frequency (n being the plasma density,
—e - the electron charge and m - the electron mass) and w = ck is the frequency of the laser
electromagnetic wave (where k is the wavevector and ¢ denotes the light velocity). Polaritonic
pulses propagating with the group velocity v = ¢*k/w; can be formed by a superposition of plane
waves. Such a superposition can be obtaiend by taking k = ko + q, where kg is the wavevector
of the laser radiation (frequency wy = cko, wavelength \g = 27 /kg) and the q’s are restricted to
q < g < ko. A wavepacket of linear size d ~ 1/g. > X is then obtained, propagating with the

group velocity v = cwy/ [w2 + wa. In the particular case of a sufficiently rarefied plasma w, < wy

this group velocity can be written as v ~ ¢(1 — wﬁ/QwS) and the mobile electrons are transported

with the energy
2
mc W
Eg=—— ~mZ2 > md? (1)
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which may acquire values much higher than the electron rest energy mc? = 0.5MeV . For typical
values hiwg = 1leV (Ao = 2mc/wy ~ 1lum and h is Planck’s constant) and an electron density
n =10%cm™ we get hw, = 3 x 1072V and E, ~ 17MeV.

We consider the well known plasma model consisting of electrons moving in a neutralizing, rigid (or
quasi-rigid) background of positive ions. Let u(r,t) be a displacement field in electron positions,
such as to create a small volume density imbalance dn = —ndivu. We have, therefore, a charge
density p = endivu and a current density j = —enu. The polarization electric (E) and magnetic
(H) fields obey the Maxwell equations

divE = 4rwendivu , divH =0 ,
(2)

_ _10H _10BE _ 4mendu
curlE = . curlH = - b

where we assume a non-magnetic plasma (i.e. the magnetization is zero, and the magnetic field
is equal with the magnetic induction). It is easy to see that equations (2) lead to

| 8°E , 4ren 0%u
2o AE= Amengrad-divat =5m 55 @

We assume that the effect of the pulsed electromagnetic fields on the electron motion is non-
relativistic, as a consequence of the high polarization field which may compensate to a large
extent the original laser field. We assume therefore the Newton’s law for the electron motion

mi = —eE — eE (4)

under the action of the electric field, where Eg is the external electric field of the laser pulse. We
note in equation (4) the absence of the Lorentz force and the approximation of the total time
derivative with the partial time derivative, as for non-relativistic motion.

Making use of Fourier transforms of the type

u(r,t) = (2i)4 /dkdwu(k,w)ei(krm) : (5)
we get easily from equations (3) and (4)
w?(w® — w2 — k) u + wic’k(ku) = %(w2 — K Ey ; (6)
hence, we get
w(w? —w) — Pk = _ewf)ch 2kEO 5+ E(u)2 — *kHE, |, (7)
m o w?—w2 om

where we can read the two well-known branches of elementary excitations: longitudinal plasmons,
with frequency w,, and transverse polaritons, propagating with frequency w; = /w2 + 2k2.19]
The plasmons do not "propagate", in the sense that their group velocity is vanishing. We assume
that the external field is transverse (KE; = 0), and get rid of the plasmon term in equation (7).
We get therefore ku = 0 (and kKE = 0), i.e. a vanishing volume charge density, as expected, and
a transverse displacement field given by

E, . (8)
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It is convenient to introduce the vector potential Ay = —%EO in equation (8), where we per-
form first the inverse Fourier transform with respect to the frequency, and retain only the wi-
contribution. The full inverse Fourier transform of equation (8) reads

ew? 1

u(r,1) = _4mpc (2m)3

1 )
/ dk— Aok, wy et (9)
Wi

We focus now, in equation (9), on a certain wavevector kg and make a series expansion of w;
in powers of q = k — kg, where 0 < ¢ < ¢q., the cutoff wavevector ¢. being such that q. < ko.
We assume an isotropic cutoff wavevector. As it is well known, we get an isotropic wave packet
extending approximately over the length d = 27 /q. > Ao, where \jq is the wavelength of the wave

with frequency wio = /w2 + c2k2. This pulse is propagating with the group velocity v = dw; /0k
for k = kg, given by

?k
N (10)

/w2 + kg

The displacement field u(r,t) given by equation (9) can be represented as

ew2

u(r, t) >~ —4mcz)%0 Ao(ko, W10)5<I' — Vt) . (11)

It is worth emphasizing that the d-function of the pulse is in fact a representation for a function of
the type ~ (sinq.x/x)(sin q.y/y)(sinq.z/z), along the propagation direction, where z = r — vt is
the coordinate along the pulse motion and y, z denote the transverse coordinates, perpendicular
to the direction of motion. We can see that this function is localized over the volume ~ d3, and
has a peaked height ~ ¢> ~ 1/d>.

Let us assume w, < wy = cko. With this assumption the displacement in the pulse given by
equation (11) can be written as

ew?

~——P —Ayk . 12
Uo Amcwld® o(ko, wo) (12)

It is easy to see that a similar pulse is obtained for the vector potential Ay. We take it of the form
AQ(I‘, t) = A0d35(r — Vt) s (13)

where Ay is real. It consists of a superposition of frequencies in the range Aw = ¢q. = 2wc¢/d, so
we have approximately Ag(ko,wo) ~ Agd*/c and get finally

2
ew, d

o 14
Ho Amcw? (14)

As we said above, the displacement ug is transverse (koguy = 0), and there is no volume charge
density in the pulse. The charge is distributed transversally toward the pulse surface. Let us
assume that this distribution extends over a region of thickness /; then, we may take approximately
dng = nugy/l for the electron density imbalance, where [ is of the order of the wavelength Ay, for a
perfect d-pulse. We get the total number of electrons in the pulse

ew?

N ~ mnd® LA 15
i Amcwd 0 (15)
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where we can see that N does not depend on the thickness [. It is convenient to express the
vector potential Ay by means of the density of the field energy wo = k2 A2/4m. Making use of the
notations €, = hw,, €9y = Awg and e, = €?/d, the later being the Coulomb energy of an electron

localized in the pulse, we get

2
€p

dme2ed
where T, is the total amount of field energy in the pulse (W, = Iyd®/c, where I is the laser
intensity). For typical values Iy = 10%w/cm?, d = 1mm (W = 10%e¢V and ¢, = 107%V),
n = 108em™3 (g, = 3 x 1072eV), g9 = 1eV (Ao =~ 1u) and mc® = 0.5MeV we get N ~ 10!
electrons in the pulse (transported with the energy ~ 17MeV'), wich is a relatively high flux of
electrons. Their total energy is W ~ 10'8¢V/, the remaining energy (up to Wy = 10%3¢V) being
left in the polarized laser pulse. Numerical data from recent experimental measurements|11]-[13]
seem to be in fair agreement with equations (1) and (16) given here.

N = nd*\ meaWo , (16)

The propagating polaritonic pulse is polarized, in the sense that the mobile electrons in the
propagating pulse are displaced from their equilibrium positions with respect to the quasi-rigid
background of positive ions, such that the polarization field compensates, practically, the laser
field. The electrons inside the pulse accumulate on the surface of the pulse, along a direction
which is transverse to the direction of pulse propagation (laser radiation is transverse), such as a
new equibrium is reached, in the presence of the laser field. Using the same numerical values as
above we can estimate the displacement given by equation (12) as uy = N/mnd? ~ 10~2um, which
is a very small displacement, as expected. It is worth noting that the pulsed fields acquire a very
small frequency, arising from the factor e’“10t=%or) which is omitted in equations (11) and (12).

Since wyp = /w2 + wg, it is easy to see that this frequency is of the order of Q = w§/2wo , so the

electron velocity in the pulse is of the order of Quy = wf,uo /2wo. This is a very small velocity in
comparison with the velocity of light (~ 10~*¢), which justifies the non-relativistic approximation
in treating the electron motion. The polarization charge oscillates slowly in the pulse, with a
small phase velocity, vy = Q/ky = cw? /wi ~ 107%¢c. Tt is the trapped motion carried along by the
pulse that made the electrons to acquire relativistic velocities. This motion is decoupled from the
displacement u, it pertains to the pulse coordinate r. The motion of the electrons as described
here is an inertial transport. The charge is polarized by the external field Fy and the electrons
are kept inside the pulse by the polarization field E.

The positive ions in plasma are rigid (or quasi-rigid) in comparison with the electrons, which are
mobile. While the latter are carried along by the pulse, the former will be depolarized by a wake
field and an electron backflow, which give rise to plasma oscillations outside the pulse. This is the
well-known picture of wakefield accelerated electrons, and the related bubble models.[1], [14]-[18]
Therefore, the pulse energy is also spend for creating these depolarizing plasma oscillations in the
sample, as expected. An unpolarized electron in the process of being accelerated by the pulse will
experience an uncompensated field of the order of Ey (or the compensating polarization field FE).
The energy gain F,; of an accelerated electron is therefore obtained by the work of the force eEj
over a distance . With our numerical values used here we get § ~ 10um, which may give an
estimate for the surface thickness [ of the pulse (or the contrast thickness of the pulse).

The polarized electrons in the polaritonic pulse are practically quasi-rigid (though subjected to
very slow density oscillations). The quasi-rigid electrons in the polaritonic pulse moving with
relativistic velocities offer a unique opportunity of coherent Compton backscattering, which may
produce coherent high-energetic X- or even gamma rays, i.e. an X-ray or gamma-ray laser.

We assume a head-on (unpolarized) electron-photon collision. With usual notations p = (F, p)
and k = (w,k) are the electron and, respectively, photon 4-momenta, and we set ¢ = h = 1.
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Figure 1: The ratio of the energy of the scattered photon to the energy of the incident photon wvs
scattering angle for a few values of the polariton (electron) velocity v (equation (18) for 1 — v >
493 (1 4 v)).

E = E,; denotes here the electron energy (not to be mistaken for the electric field). . From the
momentum-energy conservation p+k = p’+ k', written as p’ = p+k—k, we get pk—pk' —kk’ = 0,
or, making use of p? = p? = m?, k> = k" = 0,

: E+ |p|

= ) 17
“ wE+|p|cos€+w(1—cos€) (17

Since |p| = vE = mv/+v/1 — v?, this equation can also be written as

o 14w
14+ vcosd +yv/1 —v2(1 —cosf)

where v = w/m and v is the velociy of the electron (velocity of the polaritonic pulse). For all
relevant situations (except ultrarelativistic limit) the inequality 2v4/1 + v /1 — v is satisfied
(Thomson scattering). The ratio w’/w given by equation (18) vs angle @ is shown in Fig. 1 in
this case (for 472(1+v)<< 1 —v) for a few values of the parameter v. The maximum value of the
frequency W’ of the scattered photon is obtained for the scattering angle § ~ = (backscatering).
This increase is sometimes assigned to a Doppler effect, which would introduce a relativistic
factor 4/(1 —v?) ~ (1 +v)/(1 —v) for v ~ 1. For the typical parameter values used in this
paper 1 — v ~ w?/2w§ ~ 4.5 x 107, which is much greater than 2yy/1 —v? ~ 1077 (we take the
frequency of the incident photon w = 1€V, v ~ 2 x 107%). Therefore, we may neglet the y-term
in equation (18), and get a maximum scattered frequency

(18)

, 14w
w =W

~ 10keV (19)
—v

for the backscattering angle § = 7. It is easy to see that an increase by an order of magnitude
in the energy of the accelerated electrons (£, = E ~ muwy/w,) means a decrease by two orders
of magnitude in 1 — v (1 — v ~ w?/2w{), such that, by equation (19), we may get w' ~ 1MeV
for the frequency of the backscattered gamma rays. Such high backscattering frequencies are
concentrated around ¢ = 7 within a range Af ~ /2(1 — v)/3v.

The well-known Compton cross-section can be written as|19]

2
do = 8rr22idl [( me uﬁiz) +

e (s—m2)% L\ s—m

s—m?

m>2 m?2 1 s—m? u—m?
+sfm2 + u—m? 4 \ u—m? + ] ’
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Figure 2: Compton cross-section vs scattering angle for a few values of the polariton (electron)
velocity v (equation (23), 1 — v > 4+%(1 + v)).

where r, = e%/m is the classical electron radius and

s=p+k?=m*+2pk, u=(p—K)*>=m*>—2pk’
(21)
t=(K —k)? = —2kkK

are the invariant kinematical variables. By straightforward calculations this expression can be put

in the form
(1—v?) sin 6d0

¢ [1+v cos 0+vv/1—v2(1—cos 0)] 2

[\

do = 7r

(22)

v4cosf )2 /1 _ ,,2_1—cosé 14+vcosf
X |:(1+vcos€) +7 L—w 14w cos 6 + 14vcos 0+vvV/1—v2(1—cos ) | ’

where the transport velociy v is shown explicitly. Similarly, for the parameter values used here we
may neglect the v-terms in equation (22) (Thomson scattering), and get

, (1—2?) v+ cosf 2+1
1+wvcosf

“(1+wvcosb)?
This cross-section is shown in Fig. 2 for a few values of the parameter v. The total backscattering
cross-section is given by

sin 6d6 . (23)

do ~ 7r

—v? v+-Ccos 2
Op = 7T’I“g (lJ(rlvcos)G)2 |:(lqirvcos€9) + 1] ’9_ A(_ cos ‘9) =

= 122 (A)? ~ 472 /3

and the rate of the bakscattered photons is dN,,/dt = coyn,y, where ny, is the photon density
in the incident flux. The energy loss of the scattered (recoil) electron for backscatering is AE =
W —w ~2wv/(1—v) (AE/E ~ 2yv\/(1 +v)/(1 —v) < 1), which is approximately equal with
the energy of the scattered photon w’ ~ w(1 + v)/(1 — v) given above for v ~ 1 (since w K W').
The momentum transferred to the electron in the scattering process is very small, in comparison
with the initial momentum of the electron. It is important to note that for a polaritonic pulse
this momentum is transferred to the whole ensemble of electrons, as a consequence of the rigidity
of the electrons in the polaritonic pulse. For the sake of the comparison, we note that the total
cross-section is 8712 /3 ~ 20y, as it is well known.

The cross-section computed above refers to one electron (and one photon). The field bi-spinors in
the interaction matrix element (the scattering amplitude) between the initial state and the final
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state are normalized to unity. If we have N electrons, then each of them contributes individually to
the cross-section, which is multiplied by N (i.e. 0, — Noy). This is an incoherent scattering. For
the electrons in the polaritonic pulse the situation is different. These electrons are not independent
anymore (because of their rigidity inside the pulse), and they suffer the scattering collectively.
This amounts to normalize the bi-spinors to /N, such that each bi-spinor carries now a factor
V/N. Consequently, the scattering amplitude acquires an additional factor N and the cross-
section acquires an additional factor N2. In comparison with the incoherent scattering we get an
additional factor NV in the coherent scattering, which increases considerably the cross-section for
large values of N.[20]-[24]

From the above estimations we can see that the energy of the backscattered photons is much
higher than the energy of the incident photons. Therefore, in the following estimations we can
neglect the energy of the incident photons. The energy of the scattered photons is produced at the
expense of the energy of the electrons. By successive Compton scattering we may expect a certain
limitation on the duration of the scattering process for electron pulses (beside the limitations
caused by the pulse duration, both for the electrons and the incident photons). Such a limitation
is more stringent for the coherent scattering (due to the occurrence of the factor N?).

Making use of the rate d?N,,/d0dt = c(do /d)n,;, of the scattered photons we can write down the
rate of the energy produced by Compton (Thomson) scattering

dE*" = ( / dfuw'dN,y, /d@) dt = N*cny, ( / w’dcr) dt . (25)

The integral in equation (25) can be computed by using w’ given by equation (18) (with v = 0)
and the differential cross-section given by equation (23). The result is

8
dE“" = gNchrgnph dt . (26)

1—w
This energy must be compared with the energy loss of the electrons in the polaritonic pulse,

_NdE = —Nmd——— (27)

1 — 2

Integrating the equation dE“" = —NdFE with the new variable z = m/E, we get easily

8 ! 1
%chnphAt = m/gc0 da:l n (28)

V1—a?2 '’
where zo = m/FEy < 1 corresponds to the initial energy of the polaritonic pulse. The integral in
equation (28) can easily be estimated (~ 7/2 — 1), so we get the duration At of the scattering

3me

At (/2= )

(29)

where we have re-established in full the universal constants.

We assume an incident, flow of photons with intensity I = 10%w/cm? focused on a spatial region
of size d = 1mm (picosecond pulses); the energy is W = Id*/c ~ 3J and, for photon energy
w = leV, we get a photon density n,, ~ 5 x 10*2cm™3. For N = 10'! given before for the
polaritonic pulse (and r, = 2.8 X 1073¢m) we get At ~ 107"°s (femtoseconds). This time is an
estimate for the duration of the collision, and for the duration of emission of the backscattered
photons. As we can see, it does not depend, practically, on the electron energy in the polaritonic
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pulse (Ep), for high, relativistic energies. It is expected that the polaritonic pulse is "stopped",
and, in fact, destroyed, after the lapse of this time.

The total energy of the backscatterd photons can be estimated similarly, by using equation (25)
and dt/dE from dE“" = —NdE, where dE°" is given by equation (26). Let us assume that we
are interested in the photon bakscattering within an angle A0 = a+/2(1 —v)/3v, with o < 1.
Then, we get easily

1 Eo 1 v 2
EM = ~Na? / N (30)
4 m v

and, folowing the same technique as above, we get Ef°" ~ o?N Ey, where we can recognize the total
energy of the polaritonic pulse W, = NFEy. This result is valid for « < 1. For high, relativistic
velocities a ~ 1, and practically the whole polaritonic energy is recovered in the backscattering
photons.

In conclusion, we may say that the polaritonic pulses of electrons transported by laser radiation
focused in a rarefied plasma may serve as targets for coherent Compton backscattering in the
X-rays or gamma rays energy range, therefore as a means for obtaining an X-ray or gamma ray
laser. The coherent scattering, which enhances considerably the photon output and ensure its
coherence, is due to the quasi-rigidity of the electrons in the propagating polaritonic pulse, which
ensures (within certain limits) the stability of this interacting formation of matter and electro-
magnetic radiation. The energy and cross-section of the Compton (Thomson) backscattering was
re-examined in this paper in the context of the coherent scattering by polaritonic pulses, and
the (pulse) duration of the backscattering emission was also estimated. Similar ideas have been
advanced recently, especially for laser-driven accelerated electron mirrors.|26]-[32]
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