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s, National Institute for Physi
s and Nu
lear Engineering, PO Box MG-6,RO-077125 Magurele-Bu
harest, Romaniaemail: 
une�theory.nipne.roAbstra
tStru
tures and binding energies for bimetalli
 
lusters 
onsisting of a large variety of atomi
 spe
ies areobtained for all atomi
 sizes N ≤ 40 and all 
on
entrations, using an interatomi
 potential derived within aquasi-
lassi
al des
ription. We �nd that in
reasing the di�eren
e between the two types of atoms leads to agradual disappearan
e of the well-known homo-atomi
 geometri
 magi
 numbers and the appearan
e of magi
pairs 
orresponding to the number of atoms of ea
h atomi
 spe
ies in binary nanostru
tures with higher stability.This 
hange is a

ompanied by stru
tural transitions and ground-state↔isomer inversions, indu
ed by 
hangesin 
omposition or 
on
entration.Experimental and theoreti
al results show that alloying atomi
 
lusters 
an lead to new nano-materials with newproperties and new fun
tionalities. [1℄ Therefore, there is a need of detailed studies of su
h binary 
lusters, 
overinga wide range of atomi
 spe
ies. Sin
e the 
omputational e�ort limits the use of the ab-initio methods to sele
ted
ompounds, guessed stru
tures or imposed symmetries, so far su
h extensive studies have been performed usingsemi-empiri
al potentials, usually Lennard-Jones potentials (see for example Ref.[2℄). Studies using semi-empiri
alpotentials spe
i�
 to metals, like se
ond-moment approximation to tight-binding potentials, in
luding Gupta [3℄and Sutton-Chen [4℄ potentials, are fo
used on spe
i�
 
luster sizes and 
ompositions, o

asionally for various
on
entrations. (See for example Refs. [5, 6, 7, 8℄). Sometimes, the stru
tures obtained with these semi-empiri
alpotentials are lo
ally re-optimized using density fun
tional theory (DFT) methods. [5, 6℄We present here a more general approa
h, similar in some respe
t to the one presented in Ref. [2℄ for binaryLennard-Jones 
lusters. Using a genuine metalli
 potential derived and applied previously to homo-atomi
 
lusters,[9℄ we sear
h for the ground state stru
tures for all binary 
lusters of size less than 40 and for any 
on
entration;moreover, by varying the 
oupling 
onstants in a range whi
h 
overs a large number of metalli
 elements we tryto map out the behavior of the bimetalli
 
lusters in the 
ompositional spa
e. The theory employed in derivingthese potentials has been applied also to homo-atomi
 
lusters deposited on surfa
es, [10℄ or to the metalli
 
ore ofan iron-hydro
arbon 
luster.[11℄ We 
ould add also that the theory provides valuable information when applied toma
ros
opi
 obje
t like metalli
 surfa
es, in�nite plates or slabs. It provides, for example, a theoreti
al derivationfor the well known Smolu
howski ansatz [12℄ for the ele
tron density at a metalli
 surfa
e. [10℄ The theory appliesstraightforwardly to hetero-metalli
 
ompounds, the simplest 
ase of free binary 
lusters being reported here.Using a quasi-
lassi
al des
ription for the ele
trons parti
ipating in a metalli
 bonding, it has been shown thatthe atomi
 intera
tions in a nanostru
ture 
an be des
ribed by an e�e
tive potential[9℄
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e−qRij , (1)where Rij are the interatomi
 distan
es, q is a variational s
reening waveve
tor and z∗i are the e�e
tive ioni

harges whi
h depends on the atomi
 spe
ies.1 It is worth mentioning here that long time ago a similar potentialhas been suggested on semi-empiri
al grounds, with some su

ess, for the H2 mole
ule. [13℄ These e�e
tive 
hargeswhi
h play the role of 
oupling 
onstants in the e�e
tive atomi
 intera
tion (1) 
an be estimated within the atomi
s
reening theory. We have, for instan
e, z∗Na = 0.443 for sodium, z∗Ba = 0.339 for barium and z∗Fe = 0.579 foriron. The equilibrium stru
tures are obtained by minimizing the total potential energy, ∑

i<j Φij , and depend on
q only as a s
ale fa
tor for the atomi
 positions. For binary 
lusters, the equilibrium stru
tures depends also onthe ratio between the e�e
tive 
harges of the two atomi
 types. On the other hand, the binding energy dependson the values of both e�e
tive valen
e 
harges; it is obtained by minimizing the quasi-
lassi
al energy [9℄
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Φij , (2)1Atomi
 units are used: the Bohr radius aH
∼= 0.53Å for distan
es and e2/aH

∼= 27.2eV for energies; −e is the ele
tron 
harge.
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Figure 1: Binding energy per atom for binary 
lusters AnBm with z∗B = 0.3.

Figure 2: Stability spe
trum for 
lusters AnBm.with respe
t to the variational s
reening waveve
tor q, and by adding the ex
hange energy Eex = −(9/32)q2
∑

i z∗i .In equation (2) the �rst term is the kineti
 energy of the ele
trons moving in the self-
onsistent Hartree �eld ϕ =
∑

i z∗i exp(−q |r−Ri|)/ |r−Ri|, where Ri are the atomi
 positions, and having the ele
tron density n = q2ϕ/4π;the se
ond term plays the role of an ele
tron self-energy and the last term is the total potential energy.It is worth emphasizing that the e�e
tive potential given by equation (1) is a genuine many-body potentialbe
ause the variational s
reening waveve
tor q has an impli
it dependen
e on all the atomi
 positions Ri. On theother hand, in the numeri
al problem of �nding equilibrium 
luster stru
tures we 
an avoid the di�
ult task ofminimizing an energy 
omposed of multiparti
le potentials by minimizing �rst a redu
ed total potential energy,
Epot/q, with respe
t to the s
aled positions qRi.The theory outlined above has been applied to binary 
lusters AnBN−n, with N = 2, 40, n = 0, N and the ratio
1 ≤ z∗A/z∗B ≤ 2.5 (step 0.1) of the e�e
tive valen
e 
harges of the two elements A and B. These parameters 
overa very large domain of binary metalli
 
ompounds. The minimization of the potential energy has been performedby usual gradient method starting from random initial positions. The use of large statisti
al ensembles is requiredby the in
reasing number of isomers 
ompared with the homo-atomi
 
ase; ea
h isomer is a

ompanied by theso 
alled homotops, 
lusters whi
h, up to permutations between di�erent type of atoms, share approximately thesame geometri
 stru
ture and energy. A way to over
ome this di�
ulty is to make su
h permutations during theminimization of the potential energy, provided they are energeti
ally favorable. Be
ause other authors use theword 
omposition with other meaning it is important to spe
ify that we use the term 
on
entration for the ratiobetween the number of atoms A and the total number of atoms and 
omposition for the ratio z∗A/z∗B. With this
onventions, a 
hanged 
on
entration means that some atoms A are repla
ed by atoms of type B (or vi
e versa)and a 
hanged 
ompositions means that all the atoms of one type (say A for example) are repla
ed by atoms ofanother type (say C for example) and this 
hange is re�e
ted in a variation of the ratio z∗A/z∗B. The ground-statebinding energies per atom for two values of the ratio z∗A/z∗B are presented in Figure 1. The energies presented inFigure 1 
orrespond to z∗B = 0.3 but 
an be easily s
aled to di�erent values of z∗B. We 
an see in Figure 1 how theenergy range in
reases for higher z∗A/z∗B values; we obtain, for instan
e, a range of less than 0.5eV for z∗A/z∗B = 1.1and more than 8eV for z∗A/z∗B = 2.5. This energy range variation 
an be understand as a rapid 
hange in the meane�e
tive valen
e 
harge when we 
hange the 
on
entration for 
lusters 
omposed of very dissimilar atoms.For homo-atomi
 
lusters the stability with respe
t to the variation of the number of atoms is tested by these
ond di�eren
e of the energy; [14℄ it de�nes the so 
alled stability spe
trum, sometimes well 
orrelated with theexperimental mass-abundan
e spe
trum; its maxima indi
ate the magi
 numbers, 
lusters with higher stability
ompared to their neighbors. The magi
 numbers obtained for homo-atomi
 metalli
 
lusters are 6, 13, 19, 23,26, 29, 34, ... ;[9℄ these numbers, now known as geometri
al magi
 numbers, be
ause they are given by the 
lose
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Figure 3: The 
luster A13B20 (left), magi
 for z∗A/z∗B ≥ 1.7 and ground-state for z∗A/z∗B ≥ 1.6, displaying an A13i
osahedron 
ore (
enter) and a B20 dode
ahedron shell (right).pa
king in the i
osahedral stru
tures, have been obtained with various other methods like, for example with Morsepotentials. [15℄ For binary 
lusters we 
an de�ne two families of su
h spe
tra for ea
h type of atoms:

∆A
2 E = En+1,m + En−1,m − 2En,m (3)

∆B
2 E = En,m+1 + En,m−1 − 2En,mwhere En,m is the binding energy of the binary 
luster AnBm, ∆A

2 E and ∆B
2 E indi
ate the 
luster stability withrespe
t to the variation of the number of A-atoms (or B-atoms respe
tively) at �xed number of B-atoms (or A-atomsrespe
tively). Ea
h spe
trum has magi
 numbers; the 
oin
iden
e of a maximum in both spe
tra de�ne a magi
pair {n, m}, i.e. a double magi
 
lusters AnBm. The maxima in a sum spe
trum de�ned as ∆2E = ∆A

2 E + ∆B
2 E
an also be viewed as magi
 pairs; by analogy with the homo-atomi
 
ase,[9℄ we 
an de�ne a relative abundan
e

D = ln I4
n,m/In+1,mIn−1,mIn,m+1In,m−1, where In,m is the Boltzmann statisti
al weight; up to a 
onstant we have

D ≃ ∆2E. We have found a very 
lose similarity between the results obtained with these two de�nitions in thewhole range of e�e
tive valen
e 
harges we have studied. The de�nitions given here for magi
 pairs follows 
loselythe de�nition for magi
 numbers in homo-atomi
 
lusters, whi
h re�e
ts an enhan
ed stability relative to all theneighbors with one atom more or one atom less. The de�nition of magi
 spe
tra re�e
t also the 
ondensation andevaporation pro
esses that take pla
e in a majority of experimental setups. Only the �rst order pro
esses (involvingloosing or a
quiring of a single atom) are taken into a

ount. It is somehow tempting to 
onsider also, for example,the 
luster An−1Bm+1 as a neighbor of AnBm in the stability spe
trum; but AnBm 
an evolve into An−1Bm+1 orvi
e versa only through se
ond order pro
esses (losing an atom of one type and a
quiring an atom of another type).Stability relative to su
h neighbors 
an be tested by de�ning a spe
trum at �xed size and variable 
on
entration.[1, 7, 16℄The sum spe
trum de�ned above is shown in Figure 2 for two values of z∗A/z∗B; the darker squares indi
atemagi
 pairs; also, the magi
 pairs a

ording to the �rst de�nition are marked with white dots; we 
an see the abovementioned similarity between the two de�nitions. We 
an see in Figure 2 that for small values of the ratio z∗A/z∗Bthe magi
 pairs 
orrespond to the homo-atomi
 magi
 numbers for N = n + m. On
e the dis
repan
y betweenatomi
 spe
ies in
reases, this homo-atomi
 behavior gradually disappears giving pla
e to new magi
 pairs. This 
anbe explained by the small distortions in the i
osahedral symmetry 
aused by the small di�eren
e in the interatomi
intera
tions A− A, A−B, B −B, and by stru
tural transitions to f

 or disordered geometries. The magi
 pairsare 
on�ned to 
ertain regions in the range of the parameter z∗A/z∗B. Varying the 
omposition, the magi
 peaksgradually appear, starting with some value z∗A/z∗B and may vanish at a higher z∗A/z∗B value. We obtained, forinstan
e, the magi
 pairs {6,32} for z∗A/z∗B ≥ 1.4, {10,22} for 1.5 ≤ z∗A/z∗B ≤2.4, {13,20} for z∗A/z∗B ≥ 1.7, {14,24}for 1.4 ≤ z∗A/z∗B ≤ 2.0 and {26,12} for z∗A/z∗B ≥ 1.8, whi
h 
orrespond to 
lusters having N=32, 33 or 38 whi
h arenot homo-atomi
 magi
 numbers.[9℄In the lowest range of the z∗A/z∗B values the equilibrium stru
tures have with preponderan
e i
osahedral sym-metry and display a 
ore-shell atomi
 arrangement, with the 'heavier', i.e. greater e�e
tive 
harge, A-atoms in the
enter and a B-atoms shell. There is experimental and theoreti
al eviden
e for this radial segregation in binary
lusters (see for example Refs. [5, 17, 18℄). In our model segregation is favored over mixing be
ause the strengthof the A−B intera
tion is always smaller than the A−A intera
tion. The A atoms segregate in the 
enter whereatoms have greater 
oordination numbers and an in
reasing number of A−A bonds is energeti
ally favorable. Themixing 
ould take pla
e if A−B had been the strongest intera
tion. [1℄ Although new stru
tures and symmetriesappear, the i
osahedral symmetry is often obtained for larger values of the ratio of the e�e
tive 
harges of the twoatomi
 spe
ies. For example, the magi
 
luster A13B20, whose stru
ture is presented in Figure 3, has a perfe
ti
osahedral symmetry and a 
ore-shell atomi
 arrangement with a 
ore i
osahedron formed by the A-atoms and anoutside shell of B-atoms grouped in a perfe
t dode
ahedron. The high stability of this 
luster 
an be explained bythe favorable ratio of the numbers of atoms A and B (favorable 
on
entration). The A13-i
osahedron 
ore is alsomagi
 in the homo-atomi
 series. In spite of di�erent strengths in the inter-atomi
 intera
tion, ea
h atom spe
ieso

upies distin
t i
osahedral shells, whi
h do not lead to symmetry distortions, and gives stability. Moreover, the
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Figure 4: The bimetalli
 38-atoms 
luster 
orresponding to the magi
 pairs {6,32} (the top row), {14,24} (themiddle row) and {26,12} (the bottom row).strength of the inter-atomi
 intera
tion A − B, greater than the B − B intera
tion, equilibrates the in
ompleteoutside shell (the so 
alled anti-Ma
kay shell whi
h be
omes 
omplete at N = 45) by maximizing the numbersof A − B bounds in detriment of the weaker B − B bounds. On
e the ratio between the two e�e
tive 
harges isde
reased this geometri
 arrangement be
omes energeti
ally unfavorable, the homo-atomi
 ground-state having arather disordered stru
ture. This is a �rst example of stru
tural transition indu
ed by 
omposition. Su
h 
ore-magi
 stru
tures (the 
ore is magi
 itself, as a homo-atomi
 
luster) whi
h are also stable against the variation ofthe number of B atoms, forming in this way magi
 pairs, have been obtained, usually for higher z∗A/z∗B values,for various magi
 numbers of A-atoms. For instan
e, we 
an identify the magi
 pairs {6, 32}, {13, 20}, {23, m},whit m = 3, 6 and {26, m} , with m = 3, 6, 9, 12. A parti
ular 
luster is the 38-atoms 
lusters whi
h be
omeshighly stable, in di�erent equilibrium stru
tures, for the magi
 pairs {6, 32}, {14, 24} and {26, 12}. The equilibriumgeometri
 forms for these 
lusters are shown in Figure 4. The 
lusters A6B32 and A26B12 belong to the abovementioned 
ore-magi
 stru
tures. The stru
ture A14B24 has a f

 symmetry, his A14-
ore being a fa
e 
entered
ube and the outside B24-shell a trun
ated o
tahedron.The stru
tures presented in Figure 4 suggest an i
osahedral-f

 transition for the AnB38−n 
lusters driven bythe variation of 
on
entration (variation of n) at �xed 
omposition (at �xed z∗A/z∗B ratio). A similar transition, hasbeen previously reported for the binary 
lusters ComPt38−m, [7℄ for the 38-atoms mixed rare-gas 
lusters [19℄ andMorse binary 
lusters. [16℄ This type of transition has been obtained for various 
luster sizes, espe
ially at large
z∗A/z∗B ratio.A new kind of stru
tural transition, a 
omposition indu
ed transition, is obtained for �xed numbers of atoms
A and B (�xed 
on
entration), by varying z∗A/z∗B, i.e. by repla
ing at least one type of atom with one having adi�erent e�e
tive 
harge. For instan
e, the 
luster A14B24 has two stru
tural transitions, its ground-state being ofi
osahedral type (slightly disordered) for z∗A/z∗B ≤ 1.2, f

 for 1.3 ≤ z∗A/z∗B ≤ 2.2 and i
osahedral for z∗A/z∗B ≥ 2.3.The existen
e of these stru
tural domains bounded by stru
tural transition points is a general feature of binary
lusters. Be
ause we have performed our study with step 0.1 of the parameter z∗A/z∗B we 
an identify with thisa

ura
y the lo
ation of the transition points. For instan
e, in the above example, we have two transition points,one lo
ated between 1.2 − 1.3 and another between 2.2 − 2.3. Often, for the left-right values whi
h border thetransition points we 
an observe ground-state←→isomer inversions, i.e. the left ground-state be
omes the rightisomer and (or) the left isomer be
omes the right ground-state. This implies that, at the transition points, theground state is degenerate; we have two stru
tures with di�erent symmetries but with the same 
ohesion energy.Of 
ourse, there remains the question of �nding two atomi
 spe
ies whose e�e
tive valen
e ratio has this 
riti
alvalue. On the other hand, even if we �nd su
h atomi
 spe
ies, it is likely that quantum 
orre
tions to the quasi-
lassi
al des
ription[9℄ remove this degenera
y. In this respe
t, the 
orre
t 
on
lusion is that it is possibly tosynthesize binary metalli
 
lusters, made up of spe
i�
 atoms, with very small gaps between the ground-state andthe �rst isomers. These small gaps 
ould imply an in
reased experimental abundan
e even if they are not magi
(the theoreti
al abundan
e spe
trum is referred to the ground-state stru
tures; the existen
e of su
h small gaps forspe
i�
 
ompositions 
ould lo
ally alter this spe
trum). On the other hand the task of produ
ing 
lusters with a
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Figure 5: (Color online) The domain walls segregation in the 
luster A7B12 irrespe
tive of the ratio z∗A/z∗B.spe
i�
 geometry will be
ome di�
ult in the presen
e of this shape degenera
y.Beside the 
ore-shell segregation, whi
h is dominant for binary nano-
lusters, we 
an identify another typeof segregation. In some stru
tures the B-atoms o

upy two distin
t regions (up-down) separated by an A-atomsregion. This kind of domains walls segregation is very rare, the 
ore-shell segregation being predominant; it has beenobtained for the 
luster A7B12, whose stru
ture is presented in Figure 5. A similar segregation has been obtainedfor the Lennard-Jones 
luster A7B12 [2℄ and also in Co − Pd nano
lusters for sizes N = 13 and N = 19, usinga geneti
 algorithm in 
ombination with a Gupta potential. On the other hand the segregation shown in Figure5 
an be des
ribed as a surfa
e segregation, be
ause the 12 B atoms, instead of forming a uniform 
losed surfa
earound the 7 atoms A-
ore, segregate in two distin
t regions diametri
ally opposite on that surfa
e. Moreover,a surfa
e segregation 
an be observed also in the stru
ture of the 
luster A26B12 shown in Figure 4. There, the

12 B atoms forming the outside shell segregate in 4 distin
t regions, ea
h region 
onsisting of 3 B atoms 
loselybound together. Su
h a surfa
e segregation 
ould be interpreted as a variable surfa
e 
omposition in experimentalmeasurements. Eviden
e for a variable surfa
e 
omposition in Ar/Xe 
lusters in photoele
tron spe
tros
opy hasbeen reported in Ref. [17℄.In 
on
lusion, we have obtained the general 
hara
teristi
s of binary metalli
 
lusters: the magi
 pairs in thestability spe
tra, the radial, domain walls and surfa
e segregation and the stru
tural transitions indu
ed by 
hangein 
omposition or 
on
entration. These features are expe
ted to hold also for larger binary 
lusters althoughnew stru
tures and segregation types 
ould appear. It is worth noting that by adding an intera
tion energy with ametalli
 surfa
e[10℄ to the quasi-
lassi
al energy given by (2), the present approa
h 
an be applied to binary metalli

lusters deposited on surfa
es, whi
h is the 
ommon environment for most of the intended te
hni
al appli
ations.The author is indebted to M. Apostol for useful dis
ussions. This work was partially supported by Contra
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