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Abstract

Structures and binding energies for bimetallic clusters consisting of a large variety of atomic species are
obtained for all atomic sizes N < 40 and all concentrations, using an interatomic potential derived within a
quasi-classical description. We find that increasing the difference between the two types of atoms leads to a
gradual disappearance of the well-known homo-atomic geometric magic numbers and the appearance of magic
pairs corresponding to the number of atoms of each atomic species in binary nanostructures with higher stability.
This change is accompanied by structural transitions and ground-state<isomer inversions, induced by changes
in composition or concentration.

Experimental and theoretical results show that alloying atomic clusters can lead to new nano-materials with new
properties and new functionalities. [1] Therefore, there is a need of detailed studies of such binary clusters, covering
a wide range of atomic species. Since the computational effort limits the use of the ab-initio methods to selected
compounds, guessed structures or imposed symmetries, so far such extensive studies have been performed using
semi-empirical potentials, usually Lennard-Jones potentials (see for example Ref.[2]). Studies using semi-empirical
potentials specific to metals, like second-moment approximation to tight-binding potentials, including Gupta [3]
and Sutton-Chen [4] potentials, are focused on specific cluster sizes and compositions, occasionally for various
concentrations. (See for example Refs. [5, 6, 7, 8]). Sometimes, the structures obtained with these semi-empirical
potentials are locally re-optimized using density functional theory (DFT) methods. [5, 6]

We present here a more general approach, similar in some respect to the one presented in Ref. [2] for binary
Lennard-Jones clusters. Using a genuine metallic potential derived and applied previously to homo-atomic clusters,
[9] we search for the ground state structures for all binary clusters of size less than 40 and for any concentration;
moreover, by varying the coupling constants in a range which covers a large number of metallic elements we try
to map out the behavior of the bimetallic clusters in the compositional space. The theory employed in deriving
these potentials has been applied also to homo-atomic clusters deposited on surfaces, [10] or to the metallic core of
an iron-hydrocarbon cluster.[11] We could add also that the theory provides valuable information when applied to
macroscopic object like metallic surfaces, infinite plates or slabs. It provides, for example, a theoretical derivation
for the well known Smoluchowski ansatz [12] for the electron density at a metallic surface. [10] The theory applies
straightforwardly to hetero-metallic compounds, the simplest case of free binary clusters being reported here.

Using a quasi-classical description for the electrons participating in a metallic bonding, it has been shown that
the atomic interactions in a nanostructure can be described by an effective potential[9]
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where R;; are the interatomic distances, ¢ is a variational screening wavevector and z; are the effective ionic
charges which depends on the atomic species.! It is worth mentioning here that long time ago a similar potential
has been suggested on semi-empirical grounds, with some success, for the Hy molecule. [13] These effective charges
which play the role of coupling constants in the effective atomic interaction (1) can be estimated within the atomic
screening theory. We have, for instance, 2z}, = 0.443 for sodium, 2z}, = 0.339 for barium and 23, = 0.579 for
iron. The equilibrium structures are obtained by minimizing the total potential energy, >, _ ; ®ij and depend on
q only as a scale factor for the atomic positions. For binary clusters, the equilibrium structures depends also on
the ratio between the effective charges of the two atomic types. On the other hand, the binding energy depends
on the values of both effective valence charges; it is obtained by minimizing the quasi-classical energy [9]
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! Atomic units are used: the Bohr radius az = 0.53A for distances and e?/ag = 27.26V for energies; —e is the electron charge.



J. Theor. Phys 2

AB, -13) 80 AB, -1.3
z*pz'g=1.1 -14 35 )z’ g=25 —34

150 30 5.5
-1.6 25 -7.6
170 20 —9.7
EN(eV) 5 EN (eV)
10
5

0 O
10 15 20 25 30 35n40 0 5 10 15 20 25 30 35n40

Figure 1: Binding energy per atom for binary clusters A, B,, with z3 = 0.3.
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Figure 2: Stability spectrum for clusters A, B,.

with respect to the variational screening wavevector ¢, and by adding the exchange energy E., = —(9/32)¢* ", z}.
In equation (2) the first term is the kinetic energy of the electrons moving in the self-consistent Hartree field ¢ =
>, zfexp(—q|r — R;|)/ |r — R;|, where R, are the atomic positions, and having the electron density n = ¢p/4m;
the second term plays the role of an electron self-energy and the last term is the total potential energy.

It is worth emphasizing that the effective potential given by equation (1) is a genuine many-body potential
because the variational screening wavevector ¢ has an implicit dependence on all the atomic positions R;. On the
other hand, in the numerical problem of finding equilibrium cluster structures we can avoid the difficult task of
minimizing an energy composed of multiparticle potentials by minimizing first a reduced total potential energy,
Epot/q, with respect to the scaled positions ¢R;.

The theory outlined above has been applied to binary clusters A, By_,, with N = 2,40, n = 0, N and the ratio
1< 2% /25 < 2.5 (step 0.1) of the effective valence charges of the two elements A and B. These parameters cover
a very large domain of binary metallic compounds. The minimization of the potential energy has been performed
by usual gradient method starting from random initial positions. The use of large statistical ensembles is required
by the increasing number of isomers compared with the homo-atomic case; each isomer is accompanied by the
so called homotops, clusters which, up to permutations between different type of atoms, share approximately the
same geometric structure and energy. A way to overcome this difficulty is to make such permutations during the
minimization of the potential energy, provided they are energetically favorable. Because other authors use the
word composition with other meaning it is important to specify that we use the term concentration for the ratio
between the number of atoms A and the total number of atoms and composition for the ratio 2% /2. With this
conventions, a changed concentration means that some atoms A are replaced by atoms of type B (or vice versa)
and a changed compositions means that all the atoms of one type (say A for example) are replaced by atoms of
another type (say C for example) and this change is reflected in a variation of the ratio 2% /z}. The ground-state
binding energies per atom for two values of the ratio z% /z} are presented in Figure 1. The energies presented in
Figure 1 correspond to zj; = 0.3 but can be easily scaled to different values of z};. We can see in Figure 1 how the
energy range increases for higher 2% /z}; values; we obtain, for instance, a range of less than 0.5eV for 2% /25 = 1.1
and more than 8eV for z% /25 = 2.5. This energy range variation can be understand as a rapid change in the mean
effective valence charge when we change the concentration for clusters composed of very dissimilar atoms.

For homo-atomic clusters the stability with respect to the variation of the number of atoms is tested by the
second difference of the energy; [14] it defines the so called stability spectrum, sometimes well correlated with the
experimental mass-abundance spectrum; its maxima indicate the magic numbers, clusters with higher stability
compared to their neighbors. The magic numbers obtained for homo-atomic metallic clusters are 6, 13, 19, 23,
26, 29, 34, ... ;[9] these numbers, now known as geometrical magic numbers, because they are given by the close
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Figure 3: The cluster A13Bs¢ (left), magic for 2% /z} > 1.7 and ground-state for z% /z5 > 1.6, displaying an A;3
icosahedron core (center) and a Bsy dodecahedron shell (right).

packing in the icosahedral structures, have been obtained with various other methods like, for example with Morse
potentials. [15] For binary clusters we can define two families of such spectra for each type of atoms:

AIQL‘E = En+1,m + En—l,m - 2En,m

(3)
AfE = En,m+1 + En,mfl - 2En,m

where E,, ,, is the binding energy of the binary cluster A, B,,, A4 E and AP E indicate the cluster stability with
respect to the variation of the number of A-atoms (or B-atoms respectively) at fixed number of B-atoms (or A-atoms
respectively). Each spectrum has magic numbers; the coincidence of a maximum in both spectra define a magic
pair {n,m}, i.e. a double magic clusters A, B,,. The maxima in a sum spectrum defined as Ao E = AYE + APE
can also be viewed as magic pairs; by analogy with the homo-atomic case,[9] we can define a relative abundance
D=1In Iﬁ,m/InH,mIn,17mIn7m+1In1m,1, where I, ,,, is the Boltzmann statistical weight; up to a constant we have
D ~ Ay E. We have found a very close similarity between the results obtained with these two definitions in the
whole range of effective valence charges we have studied. The definitions given here for magic pairs follows closely
the definition for magic numbers in homo-atomic clusters, which reflects an enhanced stability relative to all the
neighbors with one atom more or one atom less. The definition of magic spectra reflect also the condensation and
evaporation processes that take place in a majority of experimental setups. Only the first order processes (involving
loosing or acquiring of a single atom) are taken into account. It is somehow tempting to consider also, for example,
the cluster A, _1By,+1 as a neighbor of A, B,, in the stability spectrum; but A,,B,, can evolve into A,,_1B,,4+1 or
vice versa only through second order processes (losing an atom of one type and acquiring an atom of another type).
Stability relative to such neighbors can be tested by defining a spectrum at fixed size and variable concentration.
[1, 7, 16]

The sum spectrum defined above is shown in Figure 2 for two values of 2% /z}; the darker squares indicate
magic pairs; also, the magic pairs according to the first definition are marked with white dots; we can see the above
mentioned similarity between the two definitions. We can see in Figure 2 that for small values of the ratio z% /2%
the magic pairs correspond to the homo-atomic magic numbers for N = n + m. Once the discrepancy between
atomic species increases, this homo-atomic behavior gradually disappears giving place to new magic pairs. This can
be explained by the small distortions in the icosahedral symmetry caused by the small difference in the interatomic
interactions A — A, A — B, B — B, and by structural transitions to fcc or disordered geometries. The magic pairs
are confined to certain regions in the range of the parameter 2% /z}. Varying the composition, the magic peaks
gradually appear, starting with some value z%/z5 and may vanish at a higher z% /25 value. We obtained, for
instance, the magic pairs {6,32} for 2% /2 > 1.4, {10,22} for 1.5 < 2% /25 <2.4, {13,20} for 2 /25 > 1.7, {14,24}
for 1.4 < 2% /25 < 2.0 and {26,12} for 2% /25 > 1.8, which correspond to clusters having N=32, 33 or 38 which are
not homo-atomic magic numbers.|[9]

In the lowest range of the z% /25 values the equilibrium structures have with preponderance icosahedral sym-
metry and display a core-shell atomic arrangement, with the ’heavier’, i.e. greater effective charge, A-atoms in the
center and a B-atoms shell. There is experimental and theoretical evidence for this radial segregation in binary
clusters (see for example Refs. [5, 17, 18]). In our model segregation is favored over mixing because the strength
of the A — B interaction is always smaller than the A — A interaction. The A atoms segregate in the center where
atoms have greater coordination numbers and an increasing number of A — A bonds is energetically favorable. The
mixing could take place if A — B had been the strongest interaction. [1] Although new structures and symmetries
appear, the icosahedral symmetry is often obtained for larger values of the ratio of the effective charges of the two
atomic species. For example, the magic cluster Aj3Bsg, whose structure is presented in Figure 3, has a perfect
icosahedral symmetry and a core-shell atomic arrangement with a core icosahedron formed by the A-atoms and an
outside shell of B-atoms grouped in a perfect dodecahedron. The high stability of this cluster can be explained by
the favorable ratio of the numbers of atoms A and B (favorable concentration). The Aj3-icosahedron core is also
magic in the homo-atomic series. In spite of different strengths in the inter-atomic interaction, each atom species
occupies distinct icosahedral shells, which do not lead to symmetry distortions, and gives stability. Moreover, the
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Figure 4: The bimetallic 38-atoms cluster corresponding to the magic pairs {6,32} (the top row), {14,24} (the
middle row) and {26,12} (the bottom row).

strength of the inter-atomic interaction A — B, greater than the B — B interaction, equilibrates the incomplete
outside shell (the so called anti-Mackay shell which becomes complete at N = 45) by maximizing the numbers
of A — B bounds in detriment of the weaker B — B bounds. Once the ratio between the two effective charges is
decreased this geometric arrangement becomes energetically unfavorable, the homo-atomic ground-state having a
rather disordered structure. This is a first example of structural transition induced by composition. Such core-
magic structures (the core is magic itself, as a homo-atomic cluster) which are also stable against the variation of
the number of B atoms, forming in this way magic pairs, have been obtained, usually for higher z%/z} values,
for various magic numbers of A-atoms. For instance, we can identify the magic pairs {6,32}, {13,20}, {23, m},
whit m = 3, 6 and {26, m} , with m = 3, 6, 9, 12. A particular cluster is the 38-atoms clusters which becomes
highly stable, in different equilibrium structures, for the magic pairs {6, 32}, {14, 24} and {26, 12}. The equilibrium
geometric forms for these clusters are shown in Figure 4. The clusters AgBss and AssBis belong to the above
mentioned core-magic structures. The structure A;4B24 has a fcc symmetry, his Aj4-core being a face centered
cube and the outside Byy-shell a truncated octahedron.

The structures presented in Figure 4 suggest an icosahedral-fcc transition for the A, Bsg_,, clusters driven by
the variation of concentration (variation of n) at fixed composition (at fixed z% /z} ratio). A similar transition, has
been previously reported for the binary clusters Co,, Pt3g_m,, [7] for the 38-atoms mixed rare-gas clusters [19] and
Morse binary clusters. [16] This type of transition has been obtained for various cluster sizes, especially at large
2% /%5 ratio.

A new kind of structural transition, a composition induced transition, is obtained for fixed numbers of atoms
A and B (fixed concentration), by varying z% /z}, i.e. by replacing at least one type of atom with one having a
different effective charge. For instance, the cluster A;4Bs4 has two structural transitions, its ground-state being of
icosahedral type (slightly disordered) for 2% /25 < 1.2, fec for 1.3 < 2% /25 < 2.2 and icosahedral for 2% /z}; > 2.3.
The existence of these structural domains bounded by structural transition points is a general feature of binary
clusters. Because we have performed our study with step 0.1 of the parameter z%/z} we can identify with this
accuracy the location of the transition points. For instance, in the above example, we have two transition points,
one located between 1.2 — 1.3 and another between 2.2 — 2.3. Often, for the left-right values which border the
transition points we can observe ground-state«—isomer inversions, i.e. the left ground-state becomes the right
isomer and (or) the left isomer becomes the right ground-state. This implies that, at the transition points, the
ground state is degenerate; we have two structures with different symmetries but with the same cohesion energy.
Of course, there remains the question of finding two atomic species whose effective valence ratio has this critical
value. On the other hand, even if we find such atomic species, it is likely that quantum corrections to the quasi-
classical description[9] remove this degeneracy. In this respect, the correct conclusion is that it is possibly to
synthesize binary metallic clusters, made up of specific atoms, with very small gaps between the ground-state and
the first isomers. These small gaps could imply an increased experimental abundance even if they are not magic
(the theoretical abundance spectrum is referred to the ground-state structures; the existence of such small gaps for
specific compositions could locally alter this spectrum). On the other hand the task of producing clusters with a
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Figure 5: (Color online) The domain walls segregation in the cluster A7 By irrespective of the ratio 2% /z5.

specific geometry will become difficult in the presence of this shape degeneracy.

Beside the core-shell segregation, which is dominant for binary nano-clusters, we can identify another type
of segregation. In some structures the B-atoms occupy two distinct regions (up-down) separated by an A-atoms
region. This kind of domains walls segregation is very rare, the core-shell segregation being predominant; it has been
obtained for the cluster A7Bj2, whose structure is presented in Figure 5. A similar segregation has been obtained
for the Lennard-Jones cluster A7Bj2 [2] and also in Co — Pd nanoclusters for sizes N = 13 and N = 19, using
a genetic algorithm in combination with a Gupta potential. On the other hand the segregation shown in Figure
5 can be described as a surface segregation, because the 12 B atoms, instead of forming a uniform closed surface
around the 7 atoms A-core, segregate in two distinct regions diametrically opposite on that surface. Moreover,
a surface segregation can be observed also in the structure of the cluster AsgBis shown in Figure 4. There, the
12 B atoms forming the outside shell segregate in 4 distinct regions, each region consisting of 3 B atoms closely
bound together. Such a surface segregation could be interpreted as a variable surface composition in experimental
measurements. Evidence for a variable surface composition in Ar/Xe clusters in photoelectron spectroscopy has
been reported in Ref. [17].

In conclusion, we have obtained the general characteristics of binary metallic clusters: the magic pairs in the
stability spectra, the radial, domain walls and surface segregation and the structural transitions induced by change
in composition or concentration. These features are expected to hold also for larger binary clusters although
new structures and segregation types could appear. It is worth noting that by adding an interaction energy with a
metallic surface[10] to the quasi-classical energy given by (2), the present approach can be applied to binary metallic
clusters deposited on surfaces, which is the common environment for most of the intended technical applications.

The author is indebted to M. Apostol for useful discussions. This work was partially supported by Contract
Nos CEx05-D11-67 and PN-09-37-01-02 of the Romanian Ministry of Education and Research.
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