
1Journal of Theoretial PhysisFounded and Edited by M. Apostol 212 (2012)ISSN 1453-4428Propagation of eletromagneti pulses through the surfae of dispersive bodiesM. ApostolDepartment of Theoretial Physis,Institute of Atomi Physis, Magurele-Buharest MG-6,POBox MG-35, Romania, email: apoma�theory.nipne.roAbstratThe motion of an eletromagneti pulse (signal) through the surfae of a semi-in�nite(half-spae) polarizable body is investigated. The inident pulse of eletromagneti radiationpropagating in vauum is assumed to be of �nite duration and �nite spatial extension. Asregards its extension along the transverse diretions, two ases are onsidered. First, weassume a large (in�nite) extension (in omparison with the wavelength), as for a plane wave(beam, ray); seond, a very narrow pulse is assumed (zero thikness, lose to the difrationlimit). In its motion the pulse enounters the plane surfae of a semi-in�nite polarizablebody (a half-spae) and penetrates into the body. The body reats through its polarizationdegrees of freedom, wih obey the well-known Drude-Lorentz (plasma) equation of motion.It is shown that the beam obeys the well-known refration law (Fresnel equations), with aspei� disussion, whih is provided. For the narrow pulse, both the normal and obliqueinidene are analyzed. It is shown that far away from the inidene diretion (large transversedistane r) the motion is governed by the polaritoni eigenmodes, whih yields a pulse,approximately of the same shape as the original one, propagating with the group veloityand with an amplitude whih dereases as 1/r2. The group veloity is always smaller thanthe speed of light in vauum c. In the viinity of the propagation diretion (small distane
r), the original pulse is almost entirely preserved, inluding its propagation veloity c, witha distorted amplitude, whih depends on the transverse diretion. This piture is in fatthe di�raton limit of the narow pulse. The transmitted oe�ient is omputed for normalinidene. The re�eted pulse is also omputed, as well as the refrated pulse for obliqueinidene. While the re�etion law is preserved (re�etion angle is equal to the inideneangle), the refration law is di�erent from Snell's law of refration of a plane wave, in thesense that the highly loalized (narrow) pulse along the transverse diretion preserves itspropagation diretion on entering into the body.Introdution. In 1914, in two lassi papers, Sommefeld and Brillouin analyzed the propagationof an eletromagneti pulse (signal) in dispersive matter, in the ontext of a phase veloity whih,in some ases, trespasses the speed of light[1, 2℄ (see also Refs. [3, 4℄). Making use of the saddlepoint method,[5℄ the group veloity has been introdued on this oasion, and non-loality of theeletromagneti waves, sometimes assoiated with veloities higher than the speed of light, hasbeen highlighted for preursors (forerunners). In addition, it was shown that the front of the signalpropagates with the speed of light in vauum. The treatment has been re�ned in modern times,inluding experimental measurements of the propagation veloity.[6℄-[9℄The treatment is usually simpli�ed, in omparison with the experimental situation whih is moreomplex. For instane, the dependene on the transverse oordinates with respet to the propaga-tion diretion of the pulse is very helpful in getting a more omplete piture. Seond, the presene



2 J. Theor. Phys.of the surfae through whih the pulse penetrates into the body brings new realisti features.Not in the least, the motion of the polarization degrees of freedom of the body exhibits a moreomplex dynamis (for instane induing a longitudinal response) than the usual aount basedon a model dieletri funtion. Suh more realisti features are inorporated here, by making useof a method previously introdued for inluding the motion of the polarization.[10℄ Apart formtheir fundamental interest, the results obtained here may also be of interest for the urrent exper-imental investigations of eletrons aelerated by foalizing laser beams in rare�ed plasmas (see,for instane, Refs. [11, 12℄.Uusally, the lassial treatment rests upon assuming a radiation beam (a ray), of �nite temporalduration (and �nite spatial extension), produed at some point in the body and followed in itspropagation through the body. The �nite duration entails a superposition of frequenies and, sinethe body is dispersive, a orresponding dependene of the propagation wavevetor on frequeny.Consequently, the propagation lends itself naturally to be analyzed in terms of the group veloity,with all its limitations and partiularities. We introdue here two di�erent features. First, weasssume that the pulse of �nite duration and spatial extension penetrates into the body through aplane surfae, either at normal or oblique inidene. The presene of the surfae for a semi-in�nite(half-spae) polarizable body allows the desription of the usual re�etion and refration laws fora radiation beam (ray),[10℄ for a pulse of �nite duration and extension in the present ontext.Next, with the advent of highly-loalized laser beams foalized in plasma, it is worth investigatinga pulse of a vanishing thikness, i.e. a δ-pulse along the transverse diretions (narrrow pulse).This is the seond distint feature we introdue in the present paper.We �nd that suh a zero-thikness eletromagneti pulse enters the body from vauum almostin its entirety, i.e. it preserves its shape to a large extent; it preserves also the propagationdiretion and veloity, while su�ering a distortion in amplitude. At the same time, the pulseprodues an eletromagneti disturbane both in the body and outside it (a re�eted �eld), whihis extended spatially along the transverse diretions, is vanishing at in�nity as the inverse square ofthe transverse distane, has a �nite duration and spatial extension along the propagation diretion,is governed by the polaritoni eigenmodes and propagates with the group veloity. This pitureorresponds in fat to the di�ration limit of the narrow pulse. The alulations are performedwithin the well-known Drude-Lorentz (plasma) model of polarizable (non-magneti) matter.Polarization eigenmodes. A usual model of polarizable matter assumes the existene of (point)mobile harges q, with mass m and onentration n (e.g., eletrons), subjeted to a displaement�eld u(t,R), whih is a funtion of the time t and position R. The displaement �eld produesa slight imbalane δn = −ndivu in the partiles density, a harge density ρ = −nqdivu and aurrent density j = nqu̇. These harge and urrent densities give rise to an eletri �eld E and amagneti �eld H wih, for a non-magneti matter, obey the Maxwell equations
divE = 4πρ = −4πnqdivu , divH = 0 ,

curlE = −1
c
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∂t

, curlH = 1
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+ 4π
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∂E
∂t

+ 4π
c
nqu̇

(1)(where c denotes the speed of light). We an see that P = nqu is the polarization (and the �elds
E and H are internal, or polarization �elds of the body). Only two equations (1) are independent(those involving time derivatives), while there are three unknowns (E, H and u) in equations (1).The third (missing) equation is provided by the equation of motion

mü = q(E + E0) − mω2
cu− mγu̇ (2)for the displaement �eld u, whih is Newton's equation for the harges motion. In equation(2) E0 is an external eletri �eld, ωc is a harateristi frequeny (for "bound" harges) and
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γ is a damping parameter (muh smaller than any relevant frequeny). The ontribution of themagneti �eld to the law of motion (Lorentz fore) is left aside, in aordane with the assumptionof non-magneti matter, in view of the fat that the partile veloities are muh smaller than thespeed of light and aording to the hypothesis of small magnitude u of the displaement �eld inomparison with the relevant wavelengths. The Fourier transform of equatiom (2) with respet totime leads to the well-known eletri suseptibility χ(ω) and dieletri funtion

ε(ω) = 1 + 4πχ(ω) =
ω2 − ω2

c − ω2
p

ω2 − ω2
c + iωγ

, (3)where ωp =
√

4πnq2/m is alled the plasma frequeny. This is the well-known Drude-Lorentz(plasma) model of polarizable matter (dispersive bodies).[13℄-[15℄ As it is well known, for ondu-tors ωc = 0, for dieletris ωc 6= 0 (and, usually, ωp ≪ ωc, i.e. the band ωc < ω <
√

ω2
c + ω2

pof anomalous dispersion is narrow); ωc is alled the frequny of transverse modes (ωT = ωc),while ωL =
√

ω2
c + ω2

p is alled the frequeny of the longitudinal modes.[16, 17℄ Aording to itsde�nition, the ondutivity is σ(ω) = −iωχ(ω).For an in�nite body it is onvenient to use the spatial Fourier transforms, with the wavevetor
K; it is also onvenient to use the longitudinal projetion of the vetors along the wavevetor
K, denoted by subsript 1, and the transverse projetion of the vetors, i.e. their projetionperpendiular to the wavevetor K, denoted by subsript 2. Maxwell equations (1) supplementedby equation (2) an then be solved straighforwardly, and we get the polarizabilities

α1 = P1/E01 = −ω2
p

4π
1

ω2−ω2
c−ω2

p+iωγ
,

α2 = P2/E02 = −ω2
p

4π
λ2−K2

(ω2−ω2
c
)(λ2−K2)−ω2

p
λ2+iω(λ2−K2)γ

,

(4)where λ = ω/c. The polarizations P1,2 = nqu1,2 are related to the displaements u1,2 and the latter,by equation (2), give the total eletri �eld Et1,2 = E1,2 +E01,2 = −(m/q)(ω2−ω2
c + iωγ)u1,2. Theorresponding magneti �eld is obtained from the Faraday equation curlE = −(1/c)∂H/∂t.The �rst thing we notie in equations (4) is the fat that a free transverse wave annot be propa-gated in matter, sine, for λ = K (ω = cK), the total transverse eletri �eld is vanishing (seondeqaution (4)). This is the well-known Ewald-Oseen extintion theorem.[18℄-[20℄ It is worth em-phasizing this peuliarity of the propagation of the eletromagneti �eld in matter (known for along time), sine, although it implies a vanishing (transverse) displaement �eld u and a vanishing(transverse) total �eld, there still exists a polarization (internal) �eld whih ompensates exatlythe external �eld. In the presene of a surfae (as for a half-spae, for instane) the polarization�eld gives rise to the refrated ray.[10℄Next, we notie in equations (4) the singularities arising from the vanishing of the denomina-tors; they de�ne the polarization eigenmodes of matter. From the �rst equation (4) we get thelongitudinal mode

Ω1 = ωL =
√

ω2
c + ω2

p (5)(whih is non-dispersive); it is usually alled the plasmon mode. From the seond equation (4) weget, in general, two transverse eigenmodes, Ω2,3(K), whih are dispersive; they are given by theroots of the well-known equation ε(ω)λ2 = K2. In the long-wavelength limit they go like
Ω2(K) ≃

√

ω2
L + c2K2 , Ω3(K) = vK , v = cωc/ωL , (6)
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OFigure 1: The polarization longitudinal eigenmode Ω1 and the two transverse eigenmodes Ω2,3.We note the veloity v of the "renormalized" transverse waves (cK is the frequeny of the freetransverse waves).while in the short-wavelength limit they behave as Ω2(K) ≃ cK and Ω3(K) ≃ ωc = ωT . Theyare usually alled the polaritoni modes. All these eigenmodes are shown in Fig. 1. We note the"renormalization" of the speed of light c → v for the seond polaritoni mode Ω3(K). It is worthemphasizing that the polarization eigenmodes are di�erent in di�erent onditions (for instanein the presene of a surfae, or in the presene of an external uniform magneti �eld, et). Thepropagation of eletromagneti waves in matter is governed by the polaritoni frequenies. It wasthe group veloity vg2,3 = ∂Ω2,3/∂K whih was identi�ed in Refs. [1℄-[4℄ for the propagation oflight in dispersive media. Noteworthy, it is always smaller than the speed of ligh in vauum c.External pulse. We onsider an eletri �eld
E0(t,R) = E0x(t,R) = E0 cos ω0(t − z/c)θ(ct − z)θ(z − ct + d) · d2

t δ(r) , (7)where ω0 is the main frequeny, d is the length of the pulse along the propagation z-axis and
dt is the transverse dimension of the pulse. This is a very narrow pulse. We use the notations
R = (r, z) (and K = (k, κ)); θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step funtionand δ(r) is the Dira δ-funtion. The assoiated magneti �eld is H0y = E0x. The pulse arriesthe density E2

0/8π of eletromagneti energy along the z-xis with veloity c. Equation (7) an beonsidered as giving an adequate representation of an eletromagneti pulse (signal) of a vanishingthikness (δ-funtion along the transverse diretions). Due to its limitation in time (and spae)the pulse given by equation (7) ontains many other frequenies beside the main frequeny ω0, aswell as many other wavelengths beside the main wavelength c/ω0. Inded, the Fourier transform
E0(t, r, z) =

1

(2π)3

∫

dω
∫

dkE0(ω,k; z)e−iωteikr (8)gives
E0(ω,k; z) = E0(ω)d2

te
iωz/c , (9)where

E0(ω) = E0

[

ei(ω−ω0)d/2c sin(ω − ω0)d/2c

ω − ω0

+ (ω0 → −ω0)

]

. (10)We an see that the pulse onsists of a superposition of frequenies in a band of approximate half-width ∆ω ≃ 2πc/d around the main frequenies ±ω0; a further Fourier transform with respet



J. Theor. Phys. 5to the oordinate z gives ω = cκ, whih implies a similar superposition of wavelengths; this is awell-known wavepaket. In the limit d → ∞ it beomes a superposition of two monohromatiwaves, E0(ω) = πE0[δ(ω − ω0) + δ(ω + ω0)], while in the opposite limit d → 0 we get a δ-pulse
E0(ω) = E0d/c, i.e. E0(t, r,z) = E0V δ(z − ct)δ(r), where V = dd2

t is the volume of the pulse.In the subsequent disussion we desribe the propagation of suh an eletromagneti pulse in apolarizable half-spae, i.e. a (homogeneous) semi-in�nite body with a plane surfae at z = 0.We onsider �rst the normal inidene, whih ontains the most relevant features; the obliqueinidene is treated thereafter, espeially with the aim of investigating the law of pulse refrationand re�etion.A tehnial note is worth introduing here. The funtion in equation (10) is �nite for ω = ω0.However, we may need to integrate over ω the expression of sin(ω−ω0)d/2c with exponentials, inwhih ase we get funtions of the type (ω ± ω0)
−1, whih have singularities (poles) at ω = ±ω0.In this ase, in order to have a "good ausality", we should take the poles as being plaed in thelower half-plane, orresponding to ω → ±ω0 − i0+, or ω → ω + i0+; indeed, the temporal fators

e−iωt appearing in suh integrations over ω have a good behaviour for the "past" ontributionsorresponding to t < 0. This point is emphasized in Ref. [1, 2℄ (see also Ref. [21℄).Half-spae. The motion of the polarization in a half-spae was given in Refs. [10, 22℄. Herewe inlude a few results from Ref. [22℄ whih are neessary for desribing the propagation of aneletromagneti pulse. The polarization for a half-spae is taken as
P = nq(u, uz)θ(z) , (11)giving rise to harge and urrent densities

ρ = −nq(divu + ∂uz

∂z
)θ(z) − nquz(z = 0)δ(z) ,j = nq(u̇, u̇z)θ(z) .

(12)We use Fourier deompositions of the type given by equation (8) and may omit oassionallythe arguments k, ω, writing simply u(z), or u, for instane. We ompute the eletromagnetipotentials given by
Φ(t,R) =

∫

dR′ ρ(t−|R−R′|/c,R′)
|R−R′| ,

A(t,R) = 1
c

∫

dR′ j(t−|R−R′|/c,R′)
|R−R′|

(13)by using the well-known deomposition[23℄
eiλ|R−R′|

|R −R′| =
i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| , (14)for the "retarded" Coulomb potential ei ω

c
|R−R′|/ |R − R′|, where λ = ω/c and κ =

√
λ2 − k2. Itis more onvenient to ompute �rst the vetor potential A and then derive the salar potential Φfrom the gauge equation divA − iλΦ = 0. The alulations are straightforward and we get theFourier tranforms of the potentials

Φ(ω,k; z) == 2π
κ

∫∞
0 dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫∞
0 dz′uze

iκ|z−z′| ,

A(ω,k; z) = 2πλ
κ

∫∞
0 dz′(u, uz)e

iκ|z−z′| ,
(15)



6 J. Theor. Phys.where we leave aside the fator nq; it is restored in the �nal formulae. In order to ompute theeletri �eld (E = iλA− gradΦ) it is onvenient to use the vetors k and k⊥ = ez ×k as refereneaxes, where ez is the unit vetor along the z-diretion; for instane, we write
u = u1

k

k
+ u2

k⊥
k

(16)as above, and a similar representation for the eletri �eld parallel with the surfae of the half-spae. We note that in order to satisfy the ondition u∗(−ω,−k; z) = u(ω,k; z) the oordinates
u1,2 should inlude a fator ±i; we hoose −i. We get the eletri �eld

E1 = 2πiκ
∫∞
0 dz′u1e

iκ|z−z′| − 2πk
κ

∂
∂z

∫∞
0 dz′uze

iκ|z−z′| ,

E2 = 2πiλ2

κ

∫∞
0 dz′u2e

iκ|z−z′| ,

Ez = −2πk
κ

∂
∂z

∫∞
0 dz′u1e

iκ|z−z′| + 2πik2

κ

∫∞
0 dz′uze

iκ|z−z′| − 4πuzθ(z) .

(17)Making use of equations (17), we an hek easily the equalities
ikE1 +

∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z) − 4πuz(z = 0)δ(z) , (18)whih is an expression of Gauss's law, and
k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z) , (19)whih re�ets Faraday's and Maxwell-Ampere's equations. From equation (18), we an hekthe transversality ondition divE = 0 for the eletri �eld outside the half-spae (z < 0). Themagneti �eld an be obtained either from H = curlA or from curlE = (−1/c)∂H/∂t.Fresnel equations. We use now the equation of motion (2) (with γ = 0) for E2 given by equation(17) and for the ombinations iku1 +∂uz/∂z and k∂u1/∂z + iκ2uz in the region z > 0. In general,we get equations whih ontains ontributions from the external �eld E0. Assuming that E0 is aradiation �eld we have divE0 = 0 and k∂E01/∂z + iκ2E0z = 0 (for a plane wave) and

iku1 +
∂uz

∂z
= 0 , k

∂u1

∂z
+ iκ′2uz = 0 , (20)or

∂2u
∂z2 + κ′2u = 0 , (21)where

κ′2 = κ2 − λ2ω2
p

ω2 − ω2
c

. (22)The omponents u1,2 of the displaement �eld are given by u1,2 = A1,2e
iκ′z, where A1,2 are on-stants, while uz = −(k/κ′)A1e

iκ′z (we restrit ourselves to outgoing waves, κ′ > 0). The totaleletri �eld inside the half-spae is given by the equation of motion (2):
Et = −m

q
(ω2 − ω2

c )u (23)for z > 0. We an see that the �eld propagates in the half-spae with a modi�ed wavevetor κ′,aording to the Ewald-Oseen extintion theorem. The modi�ed wavevetor κ′ given by equation(22) an also be written as
κ′2 = ελ2 − k2 = ε

ω2

c2
− k2 , (24)



J. Theor. Phys. 7where ε is the dieletri funtion (as given by equation (3)). We an hek the well-known polari-toni dispersion relation εω2 = c2K
′2, where K′ = (k, κ′) is the wavevetor.The amplitudes A1,2 an be derived from the original equation (2) and the �eld equations (17)(for z > 0). We get
1
2
A1ω

2
p

κκ′+k2

κ′(κ′−κ)
eiκz = q

m
E01 ,

1
2
A2ω

2
p

λ2

κ(κ′−κ)
eiκz = q

m
E02 .

(25)The (polarization) eletri �eld, both inside and outside the half-spae, an be omputed fromequations (17). We get
E1 = −4πnqA1

ω2−ω2
c

ω2
p

eiκ′z − 2πnqA1
κκ′+k2

κ′(κ′−κ)
eiκz , z > 0 ,

E2 = −4πnqA2
ω2−ω2

c

ω2
p

eiκ′z − 2πnqA2
λ2

κ(κ′−κ)
eiκz , z > 0 ,

Ez = 4πnqA1
k(ω2−ω2

c
)

κ′ω2
p

eiκ′z + 2πnqA1
k(κκ′+k2)
κκ′(κ′−κ)

eiκz , z > 0 .

(26)
for z > 0. It is worth noting that the polarization eletri �eld, as given by equations (26), inludesboth the external �eld ∼ eiκz (with opposite sign) and the displaement �eld u ∼ eiκ′z. This anbe heked easily by using equations (25) and (26). The (polarization) eletri �eld outside thehalf-spae (in the region z < 0) is given by

E1 = −2πnqA1
κκ′−k2

κ′(κ′+κ)
e−iκz , z < 0 ,

E2 = −2πnqA2
λ2

κ(κ′+κ)
e−iκz , z < 0

(27)and Ez = (k/κ)E1 for z < 0. We an see that it is the �eld re�eted by the half-spae (κ → −κ).Making use of equations (25) and (27) we get the total eletri �eld Et = E + E0 outside thehalf-spae, as well as the assoiated magneti �eld everywhere.Aording to the results given above a half-spae subjeted to an external radiation �eld
E0(ω;k, z) = E0e

iκz , (28)where E0 is the amplitude of the (transverse) eletri plane wave, develops an eletri �eld (z > 0)
Et1(ω;k, z) = −ω2−ω2

c

ω2
p

· 2κ′(κ′−κ)
κκ′+k2 E01e

iκ′z ,

Et2(ω;k, z) = −ω2−ω2
c

ω2
p

· 2κ(κ′−κ)
λ2 E02e

iκ′z ,

Etz(ω;k, z) = ω2−ω2
c

ω2
p

· 2k(κ′−κ)
κκ′+k2 E01e

iκ′z

(29)
(where kE01 +κE0z = 0) and the assoiated magneti �eld (whih an be obtained from curlEt =
−(1/c)∂Ht/∂t); we an see that it is a transverse plane wave with the wavevetor omponent
κ normal to the surfae hanged into κ′. This is the refrated �eld, whih obeys the extintiontheorem. We note that the external �eld goes like eiκz, while the displaement �eld and thepolarization go like eiκ′z, whih makes it di�ult to de�ne a polarizability (it beomes loal).Snell's refration law reads sin r/ sin i = K/K ′ = 1/

√
ε (for ω satisfying κ′ =

√
ελ2 − k2, i.e.
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ελ2 = K ′2). It is worth noting that the denominators in equations (29) do not vanish for those ωwhere the denominators of equations (4) for in�nite matter do; i.e., the polarization eigenmodesare di�erent for a half-spae than for in�nite matter. We get an eigenmode in equations (29)for both κ and κ′ purely imaginary, whih means that both the inident and the refrated wavesare loalized at the surfae and propagates only along the surfae. We all this mode a surfaeplasmon-polariton mode. Its frequeny is given by

ω2 =
2(2ω2

c + ω2
p)c

2k2

ω2
c + ω2

p + 2c2k2 +
√

(ω2
c + ω2

p + 2c2k2)2 − 4(2ω2
c + ω2

p)c
2k2

(30)for c2k2 > ω2
c ; it goes from ωc (ck = ωc) to √ω2

c + ω2
p/2 (k → ∞).The omponent denoted by 2 orresponds to the s- ("senkreht") wave (i.e. the wave whosepolarization vetor is perpendiular to the inidene plane). Sine κ′2 = κ2 − λ2ω2

p/(ω2 − ω2
c ) weget from equations (29)

Et2(ω;k, z) =
2κ

κ′ + κ
E02e

iκ′z ; (31)we an ompute the orresponding magneti �eld (from curlEt = −(1/c)∂Ht/∂t) and get thePoynting vetor; the transmission oe�ient is the ratio of the z-omponents of the refrated(transmitted) to the inident Poynting vetors, i.e.
Ts =

κ′

κ
|Et2/E02|2 =

∣

∣

∣

∣

∣

4κκ′

(κ′ + κ)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4
√

ε cos i cos r

(cos i +
√

ε cos r)2

∣

∣

∣

∣

∣

, (32)where we use κ = K cos i, κ′ = K ′ cos r and sin r/ sin i = K/K ′ = 1/
√

ε.The omponent denoted by 1 and the z-omponent orrespond to the p-wave (the polarization isparallel with the inidene plane). Making use of equations (29) we ompute the magneti �eldfor the p-wave and the z-omponent of the Poynting vetor; its ratio to the z-omponent of thePoynting vetor of the inident wave gives the transmission oe�ient
Tp =

∣

∣

∣

∣

∣

4κκ′ελ4

(κ + κ′)2(κκ′ + k2)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4κκ′ε

(εκ + κ′)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4
√

ε cos i cos r

(
√

ε cos i + cos r)2

∣

∣

∣

∣

∣

. (33)The re�etion oe�ients are given by Rs,p = 1 − Ts,p; they an be obtained diretly from there�eted �eld (z < 0)
E1(ω;k, z) = − (κ′−κ)(κκ′−k2)

(κ′+κ)(κκ′+k2)
E01e

−iκz ,

E2(ω;k, z) = −κ′−κ
κ′+κ

E02e
−iκz ,

(34)
Ez = kE1/κ, given by equations (27); we get

Rs =
∣

∣

∣

cos i−√
ε cos r

cos i+
√

ε cos r

∣

∣

∣

2
, Rp =

∣

∣

∣

√
ε cos i−cos r√
ε cos i+cos r

∣

∣

∣

2
. (35)These are Fresnel's formulae (∼ 1820). It is worth noting that the re�eted p-wave is vanishingfor κκ′ − k2 = 0, whih means tan2 i = ε and Rp = 0; this gives the angle of total polarization(Brewster's angle), beause it remains re�eted only the s-wave (whih is "totally polarized").The total re�etion is obtained for r = π/2 (i.e. sin i =

√
ε), where the transmission oe�ientsare vanishing (transpareny edge). The dependene of the re�etion and transmission oe�ientson the inidene angle and frequeny exhibits interesting features, espeially related to sharpshoulders.
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Figure 2: Pulse propagating along the ξ-diretion against a half-spae.Pulsed plane wave (beam, ray).We onsider a ξ, η, y-frame assoiated with a half-spae, as in Fig. 2, with the transformation ofoordinates
x = ξ sin α + η cos α , z = ξ cos α − η sin α ,

ξ = x sin α + z cos α , η = x cos α − z sin α
(36)(rotation by angle α about the y-axis ). We onsider also a radiation pulse with an eletri �eld

E0(t,R) = E0η(t,R) = E0 cos ω0(t − ξ/c)θ(ξ − ct + d)θ(ct − ξ) ; (37)it is a pulse of length d, with the main fequeny ω0, propagating in vauum with phase veloity c,along the ξ-diretion, with an inidene angle α. It is a p-wave; similarly, we an take an s-wave,with the eletri �eld oriented along the y-axis. It is worth noting that the �eld does not dependon the transverse ooordinates η and y, as for a plane wave (beam, ray). With the notations usedbefore, the Fourier transform of this external �eld is given by
E0(ω,k; z) = E0(ω,k)eiκz , (38)where

E0(ω,k) = (2π)2E0

[

e−i(ω0−ω)d/2c sin(ω0−ω)d/2c
ω0−ω

+ (ω0 → −ω0)
]

·

·δ(kx − ω
c

sin α)δ(ky)

(39)and κ = (ω/c) cosα. The �eld has the omponents E0x = E0 cos α, E0z = −E0 sin α and E0yfor the s-wave. We are in the situation desribed before, where the external �eld is a transversemonohromati plane wave, with the only di�erene that here we have many frequenies ω, eahwith its orresponding wavevetor K = (k, κ), ω = cK; in partiular, ky = 0. We an applyequations (29) given before:
Et1(ω;k, z) = 2κ′λ2

(κ′+κ)(κκ′+k2)
E01(ω,k)eiκ′z = 2κ′

κ′+εκ
E01(ω,k)eiκ′z ,

Et2(ω;k, z) = 2κ
κ′+κ

E02(ω,k)eiκ′z ,

Etz(ω;k, z) = − 2kλ2

(κ′+κ)(κκ′+k2)
E01(ω,k)eiκ′z = − 2k

κ′+εκ
E01(ω,k)eiκ′z ,

(40)where κ′ =
√

κ2 − λ2ω2
p/(ω2 − ω2

c ) =
√

ελ2 − k2. This is the (total) eletri �eld inside thesemi-in�nite body (the refrated �eld). Aording to equations (39) we may put ky = 0, so
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(ωL/ωc)
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O

Figure 3: Dieletri funtion ε vs frequeny ω, as given by equation (3).that E01 = E0x and E02 = E0y. We are interested in the �eld in the diret spae, i.e. in theinverse Fourier transforms of equations (40). The integrations with respet to k an be performedstraightforwardly, due to the presene of the δ-funtions in equations (40). We get, for instane,
Et1(ω;R) = E01(ω)

2κ′

κ′ + εκ
e

i ω

c

[

x sinα+z
√

ε−sin2 α

]

, (41)where
E01(ω) = E01

[

e−i(ω0−ω)d/2c sin(ω0 − ω)d/2c

ω0 − ω
+ (ω0 → −ω0)

]

, (42)
κ′ = λ

√
ε − sin2 α and E01 is in fat E0x (and Et1 is Etx); and similar expressions for the otheromponents of the �eld. We note �rst that the refrated �eld propagates along the refrationdiretion (it does not propagate anymore along the original, inidene ξ-diretion), as expeted.In general, this diretion depends on ω (through ε(ω) in the expression of κ′). We are now leftwith performing the integral

Etx(t,R) =
1

2π

∫

dωE0x(ω)
2κ′

κ′ + εκ
e

i ω

c

[

x sinα+z
√

ε−sin2 α−ct

]

. (43)The main ontribution to E0x(ω) (equation (42)) omes from ω ≃ ω0, over an interval ∆ω ∼ c/d;it is worth noting that there is no singularity in the wave amplitude oming from the zeros of thedenominator κ′ + εκ; therefore, the polarization eigenmodes do not drive the propagation (as theydo in the ase of in�nite matter). For ω0 ≪ ωc, the dieletri funtion given in Fig. 3 has a slowvariation; the integration in equation (43) gives a waves group propagating along the refrationdiretion and of spatial extension ≃ c/∆ω = d, i.e. the original pulse preserves approximately itsshape and is refrated. The same happens also for ω0 ≫ ωc, exept that the propagation diretionis the original one, as expeted (ε → 1). For ω0 near ωc there is a great dispersion, and, sine
ε → ∞, the phase fators in equation (43) anel out; the transmitted �eld is vanishing; while inthe region of anomalous dispersion ωc < ω < ωL, where ε < 0, we have a great absorption. Asimilar disussion an be done for the re�eted �eld.Narrow pulse. We use now the equation of motion (2) (with γ = 0) with E1,2,z given by equations(17) for u2 and the ombinations iku1 + ∂uz/∂z and k∂u1/∂z + iκ2uz in the region z > 0. The



J. Theor. Phys. 11external �eld is the pulse given by equation (9). The alulations are straightforward. We get
u1 = Aeiκ′z + A1e

iλz , u2 = Beiκ′z + B1e
iλz ,

uz = − k
κ′Aeiκ′z +

λω2
p

k(ω2−ω2
c
)
A1e

iλz ,

(44)where
A =

λ2ω2
p

k2 · λ+κ
κ′+κ

· κ′[κ(ω2−ω2
c )−λω2

p]

(κκ′+k2)(ω2−ω2
c
)2

A1 ,

A1 = − q
m
· ω2−ω2

c

ω2−ω2
c−ω2

p

· k2

(ω2−ω2
c )k2+λ2ω2

p

E01(ω)d2
t ,

(45)
B =

λ2ω2
p

k2(ω2−ω2
c
)
· λ+κ

κ′+κ
B1 ,

B1 = − q
m
· k2

(ω2−ω2
c )k2+λ2ω2

p

E02(ω)d2
t

(46)and
κ′2 = κ2 − λ2ω2

p

ω2 − ω2
c

= ελ2 − k2 . (47)By equation (2) the total eletri �eld Et = E + E0 (transmitted �eld) is given by (ω2 − ω2
c )u =

−(q/m)Et.We note that the pulse propagating in matter onsists of two distint parts: 1) the original partof the external pulse proportional to eiλz, with a modi�ed amplitude, orresponding to oe�ients
A1 and B1 in equations (44) and 2) an eletromagneti �eld proportional to eiκ′z, orrespondingto the polaritoni eigenmodes given by ελ2 = κ′2 + k2 in equation (47). In addition, we notethat, in ontrast with the external pulse whih is transverse, the �eld propagating in matter has alongitudinal omponent orresponding to a non-vanishing uz in equations (44). This longitudinalomponent arises from the presene of the surfae.The results given above an be speialized to an external monohromati plane wave, orrespond-ing to a single frequeny ω and a single wavevetor K = (k, κ) (as we did in the preedingsetions). In this ase, sine the external �eld is transverse, the displaement �eld given by equa-tions (44) has only the polaritoni ontribution ∼ eiκ′z; we an hek easily the refration law
sin r/ sin i = ω/cK ′ = 1/

√

ε(ω), where r is the refration angle, i is the inidene angle and
K′ = (k, κ′) (κ′ =

√
ελ2 − k2). A superposition of suh waves with di�erent frequenies ω and isa beam (ray) of �nite duration and spatial extension along its propagation diretion; aording tothe above results, the refration of suh a pulse exhibits dispersion.We are interested now in taking the inverse Fourier transforms of equations (44) in order to getthe spae and time dependene of the �eld. We notie now that, in ontrast with the externalpulse, we have a transverse dispersion, through the k-dependene. We fous �rst on the angularintegration in the Fourier transform with respet to k, taking advantage of the fat that the �elddepends only on the magnitude k. In the partial Fourier transform

u(ω; r, z) =
1

(2π)2

∫

dku(ω,k; z)eikr (48)we take r = r(cos θ, sin θ), k = k(cos ϕ, sin ϕ) and k⊥ = k(− sin ϕ, cosϕ) and integrate over angle
ϕ. We get easily that u1,2 orresponds to the radial and, respetively, tangential omponents ofthe �eld,

ur,θ(ω; r, z) =
i

2π

∫

0
dk · ku1,2(ω,k; z)J1(kr) , (49)
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uz(ω; r, z) =

1

2π

∫

0
dk · kuz(ω,k; z)J0(kr) , (50)where J0,1 are the Bessel funtions of the zeroth and, respetively, �rst order.1) Large transverse distane. It is easy to see from equations (49) and (50) that for largedistanes r the �eld goes like 1/r2, as expeted for a loalized eletromagneti perturbation. In thisase only the k ≃ 0 omponents ontribute to the integrals. Taking the limit k → 0 in equations(44)-(47) we see that the original, external pulse is lost in this ase (A1, B1 → 0), as well asthe longitudinal omponent uz, whih is vanishing in this limit. For large transverse distanesthe propagation is governed by the polaritoni eigenmodes (with the longitudinal wavevetor

κ′ ≃ λ
√

ε), as expeted. It is onvenient to give the expression of the total eletri �eld
Et(ω; r, z) ≃ 1√

ε + 1
E0(ω)

d2
t

r2
eiλ

√
εz , r ≫ dt . (51)The inverse temporal Fourier of equation (51) proeeds in a similar manner as for the externalpulse. First, we note that κ′ ≃ λ

√
ε may have purely imaginary values, orresponding to the band

ωc < ω < ωc + ωp of anomalous dispersion. In this ase, the �eld is damped with respet to thelongitudinal oordinate z. In this respet, it is worth noting that κ′ arises from ελ2 = κ′2, and λin equation (51) is in fat |λ|; onsequently, a orresponding sign should be attahed to √
ε whenit is purely imaginary. More onvenient is to use the expression given by equation (51) for ω near

ω0 and to add the omplex onjugate (orresponding to ω near −ω0). Leaving aside the dampedmode, the inverse Fourier transform in equation (51) gives a pulse of, pratially, the same length
d as the original, external pulse, propagating with the group veloity vg = c/[∂(λ

√
ε)/∂ω]ω=ω0

, orthe more familiar form vg = ∂(ω/∂κ′)κ′=κ
′

0

, where √
ελ = κ′ for ω = ω0 and κ

′

= κ
′

0. This groupveloity is always smaller than the speed of light. As usually, if the dispersion is too high (as forinstane for a temporal δ-pulse), a group propagation annot be de�ned any longer.2) Small transverse distane. In the region of small tranverse distanes the Fourier omponentswith large wavevetors k ontribute to the integrals in equations (49) and (50). We take the limit
k → ∞ in equations (44)-(47) and get

Etr(ω; r, z) ≃ 1
ε
E0r(ω)eiλz , Etθ(ω; r, z) ≃ E0θ(ω)eiλz , r ≃ dt . (52)Therefore, in the entral region r ≃ dt → 0 the original, external pulse penetrates into the bodypratially with the same shape and the amplitude a�eted by the dieletri funtion ε(ω0). Themotion of the pulse in this region is not a�eted by the polaritoni eigenmodes, whih give onlya damped �eld; it is governed mainly by the external pulse; it propagates with the speed oflight c. It is reminisent of the propagation of the front of the signal.[1℄-[4℄ However, it is worthnoting that the radial omponent of the �eld is hanged. We an ompute the (average) densityof energy trasmitted by this pulse, ut ≃ E2

0(1 + 1/2ε2)/4π (the radial omponent of the eletri�eld has not an assoiated magneti �eld), whih should be ompared with the inident density ofenergy E2
0/8π (the same ralationship holds also for energy �ows). We get a transmission oe�ient

T ≃ [1 + 1/2ε2(ω0)]/2, whih is valid for ε2 > 1/2. In the opposite ase, where ε is vanishing, weare approahing a resonant regime orresponding to the exitation of the longitudinal mode ωL.Re�eted pulse. Equations (17) give also the re�eted �eld for z < 0. Making use of thedisplaement �eld given by equations (44) we get
E1 = 2π{λ2ω2

p

k2 · (λ+κ)(κκ′−k2)
(κ′+κ)2(κκ′+k2)

· κ(ω2−ω2
c
)−λω2

p

(ω2−ω2
c )2

+

+
κ(ω2−ω2

c
)+λω2

p

(λ+κ)(ω2−ω2
c )
}A1e

−iκz

(53)
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Ez = kE1/κ and

E2 =
2πλ2

κ

[

λ2ω2
p

k2(ω2 − ω2
c )

· λ + κ

(κ′ + κ)2
+

1

λ + κ

]

B1e
−iκz , (54)where A1 and B1 are given by equations (45) and (46). We note that that this is indeed a re�eted�eld (∼ e−iκz), whih is transverse (divE = 0 sine kE1 − κEz = 0), as expeted. The analysisgoes in the same manner as for the transmitted �eld. At large transverse distanes we get

E(ω; r, z) ≃ − ω2
p

(
√

ε + 1)2(ω2 − ω2
c )

E0(ω)
d2

t

r2
e−iλz , r ≫ dt , (55)while for small transverse distanes the �eld is damped (it goes like ekz for z < 0).Therefore, we an say that the external pulse penetrates almost entirely in the body in the regionof small transverse distanes where it is loalized, while the body responds through its polaritonieigenmodes both in the transmitted and re�eted �eld at large transverse distanes. Part of thepulse energy is transmitted into the small transverse distane region, aording to the transmissionoe�ient given above, another part is transmitted and re�eted through the osillations of thepolaritoni eigenmodes in the region of larger transverse distanes; and another part of the energyis transferred to the mehanial energy of the polarization degrees of freedom. Indeed, it is worthnoting in this ontext that Maxwell equations (1) (for the total �eld) and the equation of motion(2) leads to the law

∂

∂

[

1

8π
(E2

t + H2
t ) +

1

2
nm(u̇2 + ω2

cu
2)
]

+
c

4π
div(Et × Ht) = 0 (56)of energy onservation. We an see the mehanial energy of the mobile harges in equation (56),whose variation is equal to the mehanial work done by the �eld upon the mobile harges.Oblique inidene. We refer to the oordinates introdued by equations and onsider a pulseof the from

E0(t,R) = E0η(t,R) = E0 cos ω0(t − ξ/c)θ(ct − ξ)θ(ξ − ct + d) · d2
t δ(η)δ(y) ; (57)equation (57) desribes a pulse of zero thikness and length d, propagating in vauum along the

ξ-diretion whih makes an inidene angle α with a plane surfae plaed at z = 0; the mainfrequeny is ω0 and the eletri �eld is direted along the transverse η-axis, whih is perpendiularto the y-axis and the diretion of propagation ξ; the assoiated magneti �eld is direted alongthe y-axis.The Fourier transform of this �eld is given by
E0x,z(ω,k; z) = E0x,z(ω)eiλz , (58)where

E0x(ω) = E0(ω)d2
t , E0z(ω) = −E0(ω)d2

t tan α , (59)
λ = (λ − kx sin α)/ cosα (60)and E0(ω) is given by equation (10). We use this external �eld in equations (17) and introduethe internal (polarization) �eld obtained this way in the equation of motion (2) to get the dis-plaement �eld u and, espeially, the total eletri �eld Et inside the body. Making use of the



14 J. Theor. Phys.displaement �eld u in equations (17) we get also the re�eted �eld for z < 0. The alulationsare straightforward and go in the same manner as before. We get
u1 = Aeiκ′z + A1e

iλz , u2 = Beiκ′z + B1e
iλz ,

uz = − k
κ′Aeiκ′z + kλ

κ′2 Ceiλz ,

(61)where
A = − κκ′

κκ′+k2 · κ′−κ
λ−κ

(

A1 + k2λ
κκ′2 C

)

,

A1 = − q
m
· 1

ω2−ω2
c
−ω2

p

· (ελ
2−κ′2)E01(ω)+(εκ2λ/k−κ′2)E0z(ω)

λ
2−κ′2

,

(62)
B = −κ′−κ

λ−κ
B1 ,

B1 = − q
m
· 1

(ω2−ω2
c
)

λ
2−κ2

λ
2−κ′2

E02(ω)

(63)and
C = −A1 −

q

m

E01(ω) + (κ2/kλ)E0z(ω)

ω2 − ω2
c

. (64)We are interested in inverse Fourier transforms of the type given by equation (48). We note that
u(ω,k; z) given by equations (61) are of the form

u(ω,k; z) = ue(ω,k)eiκ′z + up(ω,k)eiλz , (65)where ue,p(ω,k) are ontributions oming from the polaritoni eigenmodes (wavevetor κ′) and,respetively, the pulse (wavevetor λ) in equations (61)-(64). It is onvenient to introdue theoordinates ξ and η and write the Fourier transform as
u(ω; r, z) = 1

(2π)2

∫

dkxdky·

·{ue(ω,k)ei(κ′ cos α+kx sin α)ξei(−κ′ sinα+kx cos α)η+

+up(ω,k)eiλξei(−λ tan α+kx/ cos α)η}eikyy .

(66)We an see from equation (66) that for small distanes along the y- and η-diretions it is su�ientto retain the ontributions oming from large values of the transverse wavevetor k. It is easy tosee in this ase that κ and κ′ are almost equal to eah other (approximately ik). Consequently,the amplitude oe�ients A and B given by equations (62) and (63) are vanishing, sine theyontain the fator κ′ − κ. This means that the polaritoni eigenmodes do not ontribute, whilethe external, original pulse preserves its shape and propagation diretion, as expeted. However,the amplitude of the pulse, governed by the oe�ients A1,B1 and C, is hanged. Although thisamplitude depends on the position in a ompliated way, it is easy to see that it does not varymuh in the neigbourhood of the propagation diretion, where the �eld an be approximated byequation (52), as for normal inidene.For large distanes along the transverse y- and η-diretions, we notie that the ontributions arisingfrom ky → 0 and kx → λ sin α bring the main ontribution to the integral in equation (66) (at �rstsight we should onsider also the ase kx → ελ sinα, but the orresponding amplitudes are muhsmaller in this ase). Under these irumstanes we have λ ≃ κ ≃ λ cosα, so that the leading



J. Theor. Phys. 15ontributions arise from the oe�ients A and B in equations (62) and (63), orresponding to thepolaritoni eigenmodes, as expeted (note the fator λ−κ in the denominator of these oe�ientsin equations (62) and (63)). We may say, in onlusion, that the main features of the propagationof the pulse at oblique inidene are the same as for normal inidene.The re�eted �eld an be omputed from equations (17) for z < 0, making use of the displaement�eld given by equations (61). For both the eingenmodes and pulse ontributions we get a re�etionfator e−iκz in the �eld. For small transverse distanes the transverse wavevetor k goes to in�nityand, onsequently, the re�eted �eld is damped i.e. the original pulse penetrates pratially inits entirety into the body. At large distane from the pulse the re�eted �eld is ontrolled by thepolaritoni response of the body. We note that a hange z → −z in equations (57) orrespondsindeed to a re�etion of the oordinates ξ and η with respet to the plane z = 0.Conluding remarks. The propagation of an eletromagneti pulse in a semi-in�nite body (half-spae) was investigated here, taking into aount the dispersion aused by the body polarization.The pulse onsidered in this investigation was of �nite duration and of �nite spatial extensionalong its propagation diretion. Along the transverse diretions we onsidered two ases: a large(plane wave, beam, ray) extension and a vanishing thikness (narrow δ-pulse along transversediretions). For a pulsed plane wave we found that the law of refration is respeted. For anarrow pulse the propagation was onsidered both at normal and oblique inidene. It was shownthat the pulse preserves approximately its shape and propagation veloity (the speed of light invauum) in the body, with a distorted amplitude ontrolled by the dieletri funtion, while, atlarge distanes from the propagation diretion the pulse produes a disturbane whih is governedby the polaritoni eigenmodes. This disturbane extends over all the spae along the transversediretions, vanishing rapidly at in�nity (as the inverse square of the distane), has a �nite extensionalong the propagation diretion and propagates with the group veloity orresponding to thepolaritoni eigenmodes.Aknolwedgments. The author is indebted to the members of the Laboratory of TheoretialPhysis and Condensed Matter at Magurele-Buharest for their interest in the subjet and to themembers of the Seminar of the Institute for Atomi Physis, Magurele-Buharest for a thoroughanalysis of the results presented here. This work was supported by the Romanian GovernmentCore Researh Programme PN 09/37/0102/2009, partly allotted to the international ExtremeLight Infrastruture-Nulear Physis initiative, and by Romanian Government Researh AgenyGrant "Classial and Semilassial Eletromagnetism" ERP #4/0524.Referenes[1℄ A. Sommerfeld, "Uber die Fortp�anzung des Lihtes in dispergierenden Medien", Ann. Phys.44 177�202 (1914).[2℄ L. Brillouin, "Uber die Fortp�anzung des Lihtes in dispergierenden Medien", Ann. Phys. 44203-240 (1914).[3℄ L. Brillouin, Wave Propagation and Group Veloity, Aademi Press, NY (1960).[4℄ A. Sommerfeld, Vorlesungen uber Theoretishe Physik, Band IV, (Optik), Akademishe Ver-lag, Leipzig (1964).[5℄ P. Debye, "Näherungsformeln für die Zylinderfunktionen für groÿe Werte des Arguments undunbeshränkt veränderlihe Werte des Index", Mathematishe Annalen 67 535�558 (1909).
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