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tThe motion of an ele
tromagneti
 pulse (signal) through the surfa
e of a semi-in�nite(half-spa
e) polarizable body is investigated. The in
ident pulse of ele
tromagneti
 radiationpropagating in va
uum is assumed to be of �nite duration and �nite spatial extension. Asregards its extension along the transverse dire
tions, two 
ases are 
onsidered. First, weassume a large (in�nite) extension (in 
omparison with the wavelength), as for a plane wave(beam, ray); se
ond, a very narrow pulse is assumed (zero thi
kness, 
lose to the difra
tionlimit). In its motion the pulse en
ounters the plane surfa
e of a semi-in�nite polarizablebody (a half-spa
e) and penetrates into the body. The body rea
ts through its polarizationdegrees of freedom, wi
h obey the well-known Drude-Lorentz (plasma) equation of motion.It is shown that the beam obeys the well-known refra
tion law (Fresnel equations), with aspe
i�
 dis
ussion, whi
h is provided. For the narrow pulse, both the normal and obliquein
iden
e are analyzed. It is shown that far away from the in
iden
e dire
tion (large transversedistan
e r) the motion is governed by the polaritoni
 eigenmodes, whi
h yields a pulse,approximately of the same shape as the original one, propagating with the group velo
ityand with an amplitude whi
h de
reases as 1/r2. The group velo
ity is always smaller thanthe speed of light in va
uum c. In the vi
inity of the propagation dire
tion (small distan
e
r), the original pulse is almost entirely preserved, in
luding its propagation velo
ity c, witha distorted amplitude, whi
h depends on the transverse dire
tion. This pi
ture is in fa
tthe di�ra
ton limit of the narow pulse. The transmitted 
oe�
ient is 
omputed for normalin
iden
e. The re�e
ted pulse is also 
omputed, as well as the refra
ted pulse for obliquein
iden
e. While the re�e
tion law is preserved (re�e
tion angle is equal to the in
iden
eangle), the refra
tion law is di�erent from Snell's law of refra
tion of a plane wave, in thesense that the highly lo
alized (narrow) pulse along the transverse dire
tion preserves itspropagation dire
tion on entering into the body.Introdu
tion. In 1914, in two 
lassi
 papers, Sommefeld and Brillouin analyzed the propagationof an ele
tromagneti
 pulse (signal) in dispersive matter, in the 
ontext of a phase velo
ity whi
h,in some 
ases, trespasses the speed of light[1, 2℄ (see also Refs. [3, 4℄). Making use of the saddlepoint method,[5℄ the group velo
ity has been introdu
ed on this o

asion, and non-lo
ality of theele
tromagneti
 waves, sometimes asso
iated with velo
ities higher than the speed of light, hasbeen highlighted for pre
ursors (forerunners). In addition, it was shown that the front of the signalpropagates with the speed of light in va
uum. The treatment has been re�ned in modern times,in
luding experimental measurements of the propagation velo
ity.[6℄-[9℄The treatment is usually simpli�ed, in 
omparison with the experimental situation whi
h is more
omplex. For instan
e, the dependen
e on the transverse 
oordinates with respe
t to the propaga-tion dire
tion of the pulse is very helpful in getting a more 
omplete pi
ture. Se
ond, the presen
e
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e through whi
h the pulse penetrates into the body brings new realisti
 features.Not in the least, the motion of the polarization degrees of freedom of the body exhibits a more
omplex dynami
s (for instan
e indu
ing a longitudinal response) than the usual a

ount basedon a model diele
tri
 fun
tion. Su
h more realisti
 features are in
orporated here, by making useof a method previously introdu
ed for in
luding the motion of the polarization.[10℄ Apart formtheir fundamental interest, the results obtained here may also be of interest for the 
urrent exper-imental investigations of ele
trons a

elerated by fo
alizing laser beams in rare�ed plasmas (see,for instan
e, Refs. [11, 12℄.Uusally, the 
lassi
al treatment rests upon assuming a radiation beam (a ray), of �nite temporalduration (and �nite spatial extension), produ
ed at some point in the body and followed in itspropagation through the body. The �nite duration entails a superposition of frequen
ies and, sin
ethe body is dispersive, a 
orresponding dependen
e of the propagation waveve
tor on frequen
y.Consequently, the propagation lends itself naturally to be analyzed in terms of the group velo
ity,with all its limitations and parti
ularities. We introdu
e here two di�erent features. First, weasssume that the pulse of �nite duration and spatial extension penetrates into the body through aplane surfa
e, either at normal or oblique in
iden
e. The presen
e of the surfa
e for a semi-in�nite(half-spa
e) polarizable body allows the des
ription of the usual re�e
tion and refra
tion laws fora radiation beam (ray),[10℄ for a pulse of �nite duration and extension in the present 
ontext.Next, with the advent of highly-lo
alized laser beams fo
alized in plasma, it is worth investigatinga pulse of a vanishing thi
kness, i.e. a δ-pulse along the transverse dire
tions (narrrow pulse).This is the se
ond distin
t feature we introdu
e in the present paper.We �nd that su
h a zero-thi
kness ele
tromagneti
 pulse enters the body from va
uum almostin its entirety, i.e. it preserves its shape to a large extent; it preserves also the propagationdire
tion and velo
ity, while su�ering a distortion in amplitude. At the same time, the pulseprodu
es an ele
tromagneti
 disturban
e both in the body and outside it (a re�e
ted �eld), whi
his extended spatially along the transverse dire
tions, is vanishing at in�nity as the inverse square ofthe transverse distan
e, has a �nite duration and spatial extension along the propagation dire
tion,is governed by the polaritoni
 eigenmodes and propagates with the group velo
ity. This pi
ture
orresponds in fa
t to the di�ra
tion limit of the narrow pulse. The 
al
ulations are performedwithin the well-known Drude-Lorentz (plasma) model of polarizable (non-magneti
) matter.Polarization eigenmodes. A usual model of polarizable matter assumes the existen
e of (point)mobile 
harges q, with mass m and 
on
entration n (e.g., ele
trons), subje
ted to a displa
ement�eld u(t,R), whi
h is a fun
tion of the time t and position R. The displa
ement �eld produ
esa slight imbalan
e δn = −ndivu in the parti
les density, a 
harge density ρ = −nqdivu and a
urrent density j = nqu̇. These 
harge and 
urrent densities give rise to an ele
tri
 �eld E and amagneti
 �eld H wi
h, for a non-magneti
 matter, obey the Maxwell equations
divE = 4πρ = −4πnqdivu , divH = 0 ,

curlE = −1
c

∂H
∂t

, curlH = 1
c

∂E
∂t

+ 4π
c
j = 1

c
∂E
∂t

+ 4π
c
nqu̇

(1)(where c denotes the speed of light). We 
an see that P = nqu is the polarization (and the �elds
E and H are internal, or polarization �elds of the body). Only two equations (1) are independent(those involving time derivatives), while there are three unknowns (E, H and u) in equations (1).The third (missing) equation is provided by the equation of motion

mü = q(E + E0) − mω2
cu− mγu̇ (2)for the displa
ement �eld u, whi
h is Newton's equation for the 
harges motion. In equation(2) E0 is an external ele
tri
 �eld, ωc is a 
hara
teristi
 frequen
y (for "bound" 
harges) and
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γ is a damping parameter (mu
h smaller than any relevant frequen
y). The 
ontribution of themagneti
 �eld to the law of motion (Lorentz for
e) is left aside, in a

ordan
e with the assumptionof non-magneti
 matter, in view of the fa
t that the parti
le velo
ities are mu
h smaller than thespeed of light and a

ording to the hypothesis of small magnitude u of the displa
ement �eld in
omparison with the relevant wavelengths. The Fourier transform of equatiom (2) with respe
t totime leads to the well-known ele
tri
 sus
eptibility χ(ω) and diele
tri
 fun
tion

ε(ω) = 1 + 4πχ(ω) =
ω2 − ω2

c − ω2
p

ω2 − ω2
c + iωγ

, (3)where ωp =
√

4πnq2/m is 
alled the plasma frequen
y. This is the well-known Drude-Lorentz(plasma) model of polarizable matter (dispersive bodies).[13℄-[15℄ As it is well known, for 
ondu
-tors ωc = 0, for diele
tri
s ωc 6= 0 (and, usually, ωp ≪ ωc, i.e. the band ωc < ω <
√

ω2
c + ω2

pof anomalous dispersion is narrow); ωc is 
alled the frequn
y of transverse modes (ωT = ωc),while ωL =
√

ω2
c + ω2

p is 
alled the frequen
y of the longitudinal modes.[16, 17℄ A

ording to itsde�nition, the 
ondu
tivity is σ(ω) = −iωχ(ω).For an in�nite body it is 
onvenient to use the spatial Fourier transforms, with the waveve
tor
K; it is also 
onvenient to use the longitudinal proje
tion of the ve
tors along the waveve
tor
K, denoted by subs
ript 1, and the transverse proje
tion of the ve
tors, i.e. their proje
tionperpendi
ular to the waveve
tor K, denoted by subs
ript 2. Maxwell equations (1) supplementedby equation (2) 
an then be solved straighforwardly, and we get the polarizabilities

α1 = P1/E01 = −ω2
p

4π
1

ω2−ω2
c−ω2

p+iωγ
,

α2 = P2/E02 = −ω2
p

4π
λ2−K2

(ω2−ω2
c
)(λ2−K2)−ω2

p
λ2+iω(λ2−K2)γ

,

(4)where λ = ω/c. The polarizations P1,2 = nqu1,2 are related to the displa
ements u1,2 and the latter,by equation (2), give the total ele
tri
 �eld Et1,2 = E1,2 +E01,2 = −(m/q)(ω2−ω2
c + iωγ)u1,2. The
orresponding magneti
 �eld is obtained from the Faraday equation curlE = −(1/c)∂H/∂t.The �rst thing we noti
e in equations (4) is the fa
t that a free transverse wave 
annot be propa-gated in matter, sin
e, for λ = K (ω = cK), the total transverse ele
tri
 �eld is vanishing (se
ondeqaution (4)). This is the well-known Ewald-Oseen extin
tion theorem.[18℄-[20℄ It is worth em-phasizing this pe
uliarity of the propagation of the ele
tromagneti
 �eld in matter (known for along time), sin
e, although it implies a vanishing (transverse) displa
ement �eld u and a vanishing(transverse) total �eld, there still exists a polarization (internal) �eld whi
h 
ompensates exa
tlythe external �eld. In the presen
e of a surfa
e (as for a half-spa
e, for instan
e) the polarization�eld gives rise to the refra
ted ray.[10℄Next, we noti
e in equations (4) the singularities arising from the vanishing of the denomina-tors; they de�ne the polarization eigenmodes of matter. From the �rst equation (4) we get thelongitudinal mode

Ω1 = ωL =
√

ω2
c + ω2

p (5)(whi
h is non-dispersive); it is usually 
alled the plasmon mode. From the se
ond equation (4) weget, in general, two transverse eigenmodes, Ω2,3(K), whi
h are dispersive; they are given by theroots of the well-known equation ε(ω)λ2 = K2. In the long-wavelength limit they go like
Ω2(K) ≃

√

ω2
L + c2K2 , Ω3(K) = vK , v = cωc/ωL , (6)
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OFigure 1: The polarization longitudinal eigenmode Ω1 and the two transverse eigenmodes Ω2,3.We note the velo
ity v of the "renormalized" transverse waves (cK is the frequen
y of the freetransverse waves).while in the short-wavelength limit they behave as Ω2(K) ≃ cK and Ω3(K) ≃ ωc = ωT . Theyare usually 
alled the polaritoni
 modes. All these eigenmodes are shown in Fig. 1. We note the"renormalization" of the speed of light c → v for the se
ond polaritoni
 mode Ω3(K). It is worthemphasizing that the polarization eigenmodes are di�erent in di�erent 
onditions (for instan
ein the presen
e of a surfa
e, or in the presen
e of an external uniform magneti
 �eld, et
). Thepropagation of ele
tromagneti
 waves in matter is governed by the polaritoni
 frequen
ies. It wasthe group velo
ity vg2,3 = ∂Ω2,3/∂K whi
h was identi�ed in Refs. [1℄-[4℄ for the propagation oflight in dispersive media. Noteworthy, it is always smaller than the speed of ligh in va
uum c.External pulse. We 
onsider an ele
tri
 �eld
E0(t,R) = E0x(t,R) = E0 cos ω0(t − z/c)θ(ct − z)θ(z − ct + d) · d2

t δ(r) , (7)where ω0 is the main frequen
y, d is the length of the pulse along the propagation z-axis and
dt is the transverse dimension of the pulse. This is a very narrow pulse. We use the notations
R = (r, z) (and K = (k, κ)); θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step fun
tionand δ(r) is the Dira
 δ-fun
tion. The asso
iated magneti
 �eld is H0y = E0x. The pulse 
arriesthe density E2

0/8π of ele
tromagneti
 energy along the z-xis with velo
ity c. Equation (7) 
an be
onsidered as giving an adequate representation of an ele
tromagneti
 pulse (signal) of a vanishingthi
kness (δ-fun
tion along the transverse dire
tions). Due to its limitation in time (and spa
e)the pulse given by equation (7) 
ontains many other frequen
ies beside the main frequen
y ω0, aswell as many other wavelengths beside the main wavelength c/ω0. Inded, the Fourier transform
E0(t, r, z) =

1

(2π)3

∫

dω
∫

dkE0(ω,k; z)e−iωteikr (8)gives
E0(ω,k; z) = E0(ω)d2

te
iωz/c , (9)where

E0(ω) = E0

[

ei(ω−ω0)d/2c sin(ω − ω0)d/2c

ω − ω0

+ (ω0 → −ω0)

]

. (10)We 
an see that the pulse 
onsists of a superposition of frequen
ies in a band of approximate half-width ∆ω ≃ 2πc/d around the main frequen
ies ±ω0; a further Fourier transform with respe
t
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oordinate z gives ω = cκ, whi
h implies a similar superposition of wavelengths; this is awell-known wavepa
ket. In the limit d → ∞ it be
omes a superposition of two mono
hromati
waves, E0(ω) = πE0[δ(ω − ω0) + δ(ω + ω0)], while in the opposite limit d → 0 we get a δ-pulse
E0(ω) = E0d/c, i.e. E0(t, r,z) = E0V δ(z − ct)δ(r), where V = dd2

t is the volume of the pulse.In the subsequent dis
ussion we des
ribe the propagation of su
h an ele
tromagneti
 pulse in apolarizable half-spa
e, i.e. a (homogeneous) semi-in�nite body with a plane surfa
e at z = 0.We 
onsider �rst the normal in
iden
e, whi
h 
ontains the most relevant features; the obliquein
iden
e is treated thereafter, espe
ially with the aim of investigating the law of pulse refra
tionand re�e
tion.A te
hni
al note is worth introdu
ing here. The fun
tion in equation (10) is �nite for ω = ω0.However, we may need to integrate over ω the expression of sin(ω−ω0)d/2c with exponentials, inwhi
h 
ase we get fun
tions of the type (ω ± ω0)
−1, whi
h have singularities (poles) at ω = ±ω0.In this 
ase, in order to have a "good 
ausality", we should take the poles as being pla
ed in thelower half-plane, 
orresponding to ω → ±ω0 − i0+, or ω → ω + i0+; indeed, the temporal fa
tors

e−iωt appearing in su
h integrations over ω have a good behaviour for the "past" 
ontributions
orresponding to t < 0. This point is emphasized in Ref. [1, 2℄ (see also Ref. [21℄).Half-spa
e. The motion of the polarization in a half-spa
e was given in Refs. [10, 22℄. Herewe in
lude a few results from Ref. [22℄ whi
h are ne
essary for des
ribing the propagation of anele
tromagneti
 pulse. The polarization for a half-spa
e is taken as
P = nq(u, uz)θ(z) , (11)giving rise to 
harge and 
urrent densities

ρ = −nq(divu + ∂uz

∂z
)θ(z) − nquz(z = 0)δ(z) ,j = nq(u̇, u̇z)θ(z) .

(12)We use Fourier de
ompositions of the type given by equation (8) and may omit o
assionallythe arguments k, ω, writing simply u(z), or u, for instan
e. We 
ompute the ele
tromagneti
potentials given by
Φ(t,R) =

∫

dR′ ρ(t−|R−R′|/c,R′)
|R−R′| ,

A(t,R) = 1
c

∫

dR′ j(t−|R−R′|/c,R′)
|R−R′|

(13)by using the well-known de
omposition[23℄
eiλ|R−R′|

|R −R′| =
i

2π

∫

dk
1

κ
eik(r−r′)eiκ|z−z′| , (14)for the "retarded" Coulomb potential ei ω

c
|R−R′|/ |R − R′|, where λ = ω/c and κ =

√
λ2 − k2. Itis more 
onvenient to 
ompute �rst the ve
tor potential A and then derive the s
alar potential Φfrom the gauge equation divA − iλΦ = 0. The 
al
ulations are straightforward and we get theFourier tranforms of the potentials

Φ(ω,k; z) == 2π
κ

∫∞
0 dz′kueiκ|z−z′| − 2πi

κ
∂
∂z

∫∞
0 dz′uze

iκ|z−z′| ,

A(ω,k; z) = 2πλ
κ

∫∞
0 dz′(u, uz)e

iκ|z−z′| ,
(15)
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tor nq; it is restored in the �nal formulae. In order to 
ompute theele
tri
 �eld (E = iλA− gradΦ) it is 
onvenient to use the ve
tors k and k⊥ = ez ×k as referen
eaxes, where ez is the unit ve
tor along the z-dire
tion; for instan
e, we write
u = u1

k

k
+ u2

k⊥
k

(16)as above, and a similar representation for the ele
tri
 �eld parallel with the surfa
e of the half-spa
e. We note that in order to satisfy the 
ondition u∗(−ω,−k; z) = u(ω,k; z) the 
oordinates
u1,2 should in
lude a fa
tor ±i; we 
hoose −i. We get the ele
tri
 �eld

E1 = 2πiκ
∫∞
0 dz′u1e

iκ|z−z′| − 2πk
κ

∂
∂z

∫∞
0 dz′uze

iκ|z−z′| ,

E2 = 2πiλ2

κ

∫∞
0 dz′u2e

iκ|z−z′| ,

Ez = −2πk
κ

∂
∂z

∫∞
0 dz′u1e

iκ|z−z′| + 2πik2

κ

∫∞
0 dz′uze

iκ|z−z′| − 4πuzθ(z) .

(17)Making use of equations (17), we 
an 
he
k easily the equalities
ikE1 +

∂Ez

∂z
= −4π

(

iku1 +
∂uz

∂z

)

θ(z) − 4πuz(z = 0)δ(z) , (18)whi
h is an expression of Gauss's law, and
k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z) , (19)whi
h re�e
ts Faraday's and Maxwell-Ampere's equations. From equation (18), we 
an 
he
kthe transversality 
ondition divE = 0 for the ele
tri
 �eld outside the half-spa
e (z < 0). Themagneti
 �eld 
an be obtained either from H = curlA or from curlE = (−1/c)∂H/∂t.Fresnel equations. We use now the equation of motion (2) (with γ = 0) for E2 given by equation(17) and for the 
ombinations iku1 +∂uz/∂z and k∂u1/∂z + iκ2uz in the region z > 0. In general,we get equations whi
h 
ontains 
ontributions from the external �eld E0. Assuming that E0 is aradiation �eld we have divE0 = 0 and k∂E01/∂z + iκ2E0z = 0 (for a plane wave) and

iku1 +
∂uz

∂z
= 0 , k

∂u1

∂z
+ iκ′2uz = 0 , (20)or

∂2u
∂z2 + κ′2u = 0 , (21)where

κ′2 = κ2 − λ2ω2
p

ω2 − ω2
c

. (22)The 
omponents u1,2 of the displa
ement �eld are given by u1,2 = A1,2e
iκ′z, where A1,2 are 
on-stants, while uz = −(k/κ′)A1e

iκ′z (we restri
t ourselves to outgoing waves, κ′ > 0). The totalele
tri
 �eld inside the half-spa
e is given by the equation of motion (2):
Et = −m

q
(ω2 − ω2

c )u (23)for z > 0. We 
an see that the �eld propagates in the half-spa
e with a modi�ed waveve
tor κ′,a

ording to the Ewald-Oseen extin
tion theorem. The modi�ed waveve
tor κ′ given by equation(22) 
an also be written as
κ′2 = ελ2 − k2 = ε

ω2

c2
− k2 , (24)
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tri
 fun
tion (as given by equation (3)). We 
an 
he
k the well-known polari-toni
 dispersion relation εω2 = c2K
′2, where K′ = (k, κ′) is the waveve
tor.The amplitudes A1,2 
an be derived from the original equation (2) and the �eld equations (17)(for z > 0). We get
1
2
A1ω

2
p

κκ′+k2

κ′(κ′−κ)
eiκz = q

m
E01 ,

1
2
A2ω

2
p

λ2

κ(κ′−κ)
eiκz = q

m
E02 .

(25)The (polarization) ele
tri
 �eld, both inside and outside the half-spa
e, 
an be 
omputed fromequations (17). We get
E1 = −4πnqA1

ω2−ω2
c

ω2
p

eiκ′z − 2πnqA1
κκ′+k2

κ′(κ′−κ)
eiκz , z > 0 ,

E2 = −4πnqA2
ω2−ω2

c

ω2
p

eiκ′z − 2πnqA2
λ2

κ(κ′−κ)
eiκz , z > 0 ,

Ez = 4πnqA1
k(ω2−ω2

c
)

κ′ω2
p

eiκ′z + 2πnqA1
k(κκ′+k2)
κκ′(κ′−κ)

eiκz , z > 0 .

(26)
for z > 0. It is worth noting that the polarization ele
tri
 �eld, as given by equations (26), in
ludesboth the external �eld ∼ eiκz (with opposite sign) and the displa
ement �eld u ∼ eiκ′z. This 
anbe 
he
ked easily by using equations (25) and (26). The (polarization) ele
tri
 �eld outside thehalf-spa
e (in the region z < 0) is given by

E1 = −2πnqA1
κκ′−k2

κ′(κ′+κ)
e−iκz , z < 0 ,

E2 = −2πnqA2
λ2

κ(κ′+κ)
e−iκz , z < 0

(27)and Ez = (k/κ)E1 for z < 0. We 
an see that it is the �eld re�e
ted by the half-spa
e (κ → −κ).Making use of equations (25) and (27) we get the total ele
tri
 �eld Et = E + E0 outside thehalf-spa
e, as well as the asso
iated magneti
 �eld everywhere.A

ording to the results given above a half-spa
e subje
ted to an external radiation �eld
E0(ω;k, z) = E0e

iκz , (28)where E0 is the amplitude of the (transverse) ele
tri
 plane wave, develops an ele
tri
 �eld (z > 0)
Et1(ω;k, z) = −ω2−ω2

c

ω2
p

· 2κ′(κ′−κ)
κκ′+k2 E01e

iκ′z ,

Et2(ω;k, z) = −ω2−ω2
c

ω2
p

· 2κ(κ′−κ)
λ2 E02e

iκ′z ,

Etz(ω;k, z) = ω2−ω2
c

ω2
p

· 2k(κ′−κ)
κκ′+k2 E01e

iκ′z

(29)
(where kE01 +κE0z = 0) and the asso
iated magneti
 �eld (whi
h 
an be obtained from curlEt =
−(1/c)∂Ht/∂t); we 
an see that it is a transverse plane wave with the waveve
tor 
omponent
κ normal to the surfa
e 
hanged into κ′. This is the refra
ted �eld, whi
h obeys the extin
tiontheorem. We note that the external �eld goes like eiκz, while the displa
ement �eld and thepolarization go like eiκ′z, whi
h makes it di�
ult to de�ne a polarizability (it be
omes lo
al).Snell's refra
tion law reads sin r/ sin i = K/K ′ = 1/

√
ε (for ω satisfying κ′ =

√
ελ2 − k2, i.e.
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ελ2 = K ′2). It is worth noting that the denominators in equations (29) do not vanish for those ωwhere the denominators of equations (4) for in�nite matter do; i.e., the polarization eigenmodesare di�erent for a half-spa
e than for in�nite matter. We get an eigenmode in equations (29)for both κ and κ′ purely imaginary, whi
h means that both the in
ident and the refra
ted wavesare lo
alized at the surfa
e and propagates only along the surfa
e. We 
all this mode a surfa
eplasmon-polariton mode. Its frequen
y is given by

ω2 =
2(2ω2

c + ω2
p)c

2k2

ω2
c + ω2

p + 2c2k2 +
√

(ω2
c + ω2

p + 2c2k2)2 − 4(2ω2
c + ω2

p)c
2k2

(30)for c2k2 > ω2
c ; it goes from ωc (ck = ωc) to √ω2

c + ω2
p/2 (k → ∞).The 
omponent denoted by 2 
orresponds to the s- ("senkre
ht") wave (i.e. the wave whosepolarization ve
tor is perpendi
ular to the in
iden
e plane). Sin
e κ′2 = κ2 − λ2ω2

p/(ω2 − ω2
c ) weget from equations (29)

Et2(ω;k, z) =
2κ

κ′ + κ
E02e

iκ′z ; (31)we 
an 
ompute the 
orresponding magneti
 �eld (from curlEt = −(1/c)∂Ht/∂t) and get thePoynting ve
tor; the transmission 
oe�
ient is the ratio of the z-
omponents of the refra
ted(transmitted) to the in
ident Poynting ve
tors, i.e.
Ts =

κ′

κ
|Et2/E02|2 =

∣

∣

∣

∣

∣

4κκ′

(κ′ + κ)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4
√

ε cos i cos r

(cos i +
√

ε cos r)2

∣

∣

∣

∣

∣

, (32)where we use κ = K cos i, κ′ = K ′ cos r and sin r/ sin i = K/K ′ = 1/
√

ε.The 
omponent denoted by 1 and the z-
omponent 
orrespond to the p-wave (the polarization isparallel with the in
iden
e plane). Making use of equations (29) we 
ompute the magneti
 �eldfor the p-wave and the z-
omponent of the Poynting ve
tor; its ratio to the z-
omponent of thePoynting ve
tor of the in
ident wave gives the transmission 
oe�
ient
Tp =

∣

∣

∣

∣

∣

4κκ′ελ4

(κ + κ′)2(κκ′ + k2)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4κκ′ε

(εκ + κ′)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

4
√

ε cos i cos r

(
√

ε cos i + cos r)2

∣

∣

∣

∣

∣

. (33)The re�e
tion 
oe�
ients are given by Rs,p = 1 − Ts,p; they 
an be obtained dire
tly from there�e
ted �eld (z < 0)
E1(ω;k, z) = − (κ′−κ)(κκ′−k2)

(κ′+κ)(κκ′+k2)
E01e

−iκz ,

E2(ω;k, z) = −κ′−κ
κ′+κ

E02e
−iκz ,

(34)
Ez = kE1/κ, given by equations (27); we get

Rs =
∣

∣

∣

cos i−√
ε cos r

cos i+
√

ε cos r

∣

∣

∣

2
, Rp =

∣

∣

∣

√
ε cos i−cos r√
ε cos i+cos r

∣

∣

∣

2
. (35)These are Fresnel's formulae (∼ 1820). It is worth noting that the re�e
ted p-wave is vanishingfor κκ′ − k2 = 0, whi
h means tan2 i = ε and Rp = 0; this gives the angle of total polarization(Brewster's angle), be
ause it remains re�e
ted only the s-wave (whi
h is "totally polarized").The total re�e
tion is obtained for r = π/2 (i.e. sin i =

√
ε), where the transmission 
oe�
ientsare vanishing (transparen
y edge). The dependen
e of the re�e
tion and transmission 
oe�
ientson the in
iden
e angle and frequen
y exhibits interesting features, espe
ially related to sharpshoulders.
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O

η

z

x

ξ

α

Figure 2: Pulse propagating along the ξ-dire
tion against a half-spa
e.Pulsed plane wave (beam, ray).We 
onsider a ξ, η, y-frame asso
iated with a half-spa
e, as in Fig. 2, with the transformation of
oordinates
x = ξ sin α + η cos α , z = ξ cos α − η sin α ,

ξ = x sin α + z cos α , η = x cos α − z sin α
(36)(rotation by angle α about the y-axis ). We 
onsider also a radiation pulse with an ele
tri
 �eld

E0(t,R) = E0η(t,R) = E0 cos ω0(t − ξ/c)θ(ξ − ct + d)θ(ct − ξ) ; (37)it is a pulse of length d, with the main fequen
y ω0, propagating in va
uum with phase velo
ity c,along the ξ-dire
tion, with an in
iden
e angle α. It is a p-wave; similarly, we 
an take an s-wave,with the ele
tri
 �eld oriented along the y-axis. It is worth noting that the �eld does not dependon the transverse 
ooordinates η and y, as for a plane wave (beam, ray). With the notations usedbefore, the Fourier transform of this external �eld is given by
E0(ω,k; z) = E0(ω,k)eiκz , (38)where

E0(ω,k) = (2π)2E0

[

e−i(ω0−ω)d/2c sin(ω0−ω)d/2c
ω0−ω

+ (ω0 → −ω0)
]

·

·δ(kx − ω
c

sin α)δ(ky)

(39)and κ = (ω/c) cosα. The �eld has the 
omponents E0x = E0 cos α, E0z = −E0 sin α and E0yfor the s-wave. We are in the situation des
ribed before, where the external �eld is a transversemono
hromati
 plane wave, with the only di�eren
e that here we have many frequen
ies ω, ea
hwith its 
orresponding waveve
tor K = (k, κ), ω = cK; in parti
ular, ky = 0. We 
an applyequations (29) given before:
Et1(ω;k, z) = 2κ′λ2

(κ′+κ)(κκ′+k2)
E01(ω,k)eiκ′z = 2κ′

κ′+εκ
E01(ω,k)eiκ′z ,

Et2(ω;k, z) = 2κ
κ′+κ

E02(ω,k)eiκ′z ,

Etz(ω;k, z) = − 2kλ2

(κ′+κ)(κκ′+k2)
E01(ω,k)eiκ′z = − 2k

κ′+εκ
E01(ω,k)eiκ′z ,

(40)where κ′ =
√

κ2 − λ2ω2
p/(ω2 − ω2

c ) =
√

ελ2 − k2. This is the (total) ele
tri
 �eld inside thesemi-in�nite body (the refra
ted �eld). A

ording to equations (39) we may put ky = 0, so
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ωc ωL ω

1

(ωL/ωc)
2

ε

O

Figure 3: Diele
tri
 fun
tion ε vs frequen
y ω, as given by equation (3).that E01 = E0x and E02 = E0y. We are interested in the �eld in the dire
t spa
e, i.e. in theinverse Fourier transforms of equations (40). The integrations with respe
t to k 
an be performedstraightforwardly, due to the presen
e of the δ-fun
tions in equations (40). We get, for instan
e,
Et1(ω;R) = E01(ω)

2κ′

κ′ + εκ
e

i ω

c

[

x sinα+z
√

ε−sin2 α

]

, (41)where
E01(ω) = E01

[

e−i(ω0−ω)d/2c sin(ω0 − ω)d/2c

ω0 − ω
+ (ω0 → −ω0)

]

, (42)
κ′ = λ

√
ε − sin2 α and E01 is in fa
t E0x (and Et1 is Etx); and similar expressions for the other
omponents of the �eld. We note �rst that the refra
ted �eld propagates along the refra
tiondire
tion (it does not propagate anymore along the original, in
iden
e ξ-dire
tion), as expe
ted.In general, this dire
tion depends on ω (through ε(ω) in the expression of κ′). We are now leftwith performing the integral

Etx(t,R) =
1

2π

∫

dωE0x(ω)
2κ′

κ′ + εκ
e

i ω

c

[

x sinα+z
√

ε−sin2 α−ct

]

. (43)The main 
ontribution to E0x(ω) (equation (42)) 
omes from ω ≃ ω0, over an interval ∆ω ∼ c/d;it is worth noting that there is no singularity in the wave amplitude 
oming from the zeros of thedenominator κ′ + εκ; therefore, the polarization eigenmodes do not drive the propagation (as theydo in the 
ase of in�nite matter). For ω0 ≪ ωc, the diele
tri
 fun
tion given in Fig. 3 has a slowvariation; the integration in equation (43) gives a waves group propagating along the refra
tiondire
tion and of spatial extension ≃ c/∆ω = d, i.e. the original pulse preserves approximately itsshape and is refra
ted. The same happens also for ω0 ≫ ωc, ex
ept that the propagation dire
tionis the original one, as expe
ted (ε → 1). For ω0 near ωc there is a great dispersion, and, sin
e
ε → ∞, the phase fa
tors in equation (43) 
an
el out; the transmitted �eld is vanishing; while inthe region of anomalous dispersion ωc < ω < ωL, where ε < 0, we have a great absorption. Asimilar dis
ussion 
an be done for the re�e
ted �eld.Narrow pulse. We use now the equation of motion (2) (with γ = 0) with E1,2,z given by equations(17) for u2 and the 
ombinations iku1 + ∂uz/∂z and k∂u1/∂z + iκ2uz in the region z > 0. The
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al
ulations are straightforward. We get
u1 = Aeiκ′z + A1e

iλz , u2 = Beiκ′z + B1e
iλz ,

uz = − k
κ′Aeiκ′z +

λω2
p

k(ω2−ω2
c
)
A1e

iλz ,

(44)where
A =

λ2ω2
p

k2 · λ+κ
κ′+κ

· κ′[κ(ω2−ω2
c )−λω2

p]

(κκ′+k2)(ω2−ω2
c
)2

A1 ,

A1 = − q
m
· ω2−ω2

c

ω2−ω2
c−ω2

p

· k2

(ω2−ω2
c )k2+λ2ω2

p

E01(ω)d2
t ,

(45)
B =

λ2ω2
p

k2(ω2−ω2
c
)
· λ+κ

κ′+κ
B1 ,

B1 = − q
m
· k2

(ω2−ω2
c )k2+λ2ω2

p

E02(ω)d2
t

(46)and
κ′2 = κ2 − λ2ω2

p

ω2 − ω2
c

= ελ2 − k2 . (47)By equation (2) the total ele
tri
 �eld Et = E + E0 (transmitted �eld) is given by (ω2 − ω2
c )u =

−(q/m)Et.We note that the pulse propagating in matter 
onsists of two distin
t parts: 1) the original partof the external pulse proportional to eiλz, with a modi�ed amplitude, 
orresponding to 
oe�
ients
A1 and B1 in equations (44) and 2) an ele
tromagneti
 �eld proportional to eiκ′z, 
orrespondingto the polaritoni
 eigenmodes given by ελ2 = κ′2 + k2 in equation (47). In addition, we notethat, in 
ontrast with the external pulse whi
h is transverse, the �eld propagating in matter has alongitudinal 
omponent 
orresponding to a non-vanishing uz in equations (44). This longitudinal
omponent arises from the presen
e of the surfa
e.The results given above 
an be spe
ialized to an external mono
hromati
 plane wave, 
orrespond-ing to a single frequen
y ω and a single waveve
tor K = (k, κ) (as we did in the pre
edingse
tions). In this 
ase, sin
e the external �eld is transverse, the displa
ement �eld given by equa-tions (44) has only the polaritoni
 
ontribution ∼ eiκ′z; we 
an 
he
k easily the refra
tion law
sin r/ sin i = ω/cK ′ = 1/

√

ε(ω), where r is the refra
tion angle, i is the in
iden
e angle and
K′ = (k, κ′) (κ′ =

√
ελ2 − k2). A superposition of su
h waves with di�erent frequen
ies ω and isa beam (ray) of �nite duration and spatial extension along its propagation dire
tion; a

ording tothe above results, the refra
tion of su
h a pulse exhibits dispersion.We are interested now in taking the inverse Fourier transforms of equations (44) in order to getthe spa
e and time dependen
e of the �eld. We noti
e now that, in 
ontrast with the externalpulse, we have a transverse dispersion, through the k-dependen
e. We fo
us �rst on the angularintegration in the Fourier transform with respe
t to k, taking advantage of the fa
t that the �elddepends only on the magnitude k. In the partial Fourier transform

u(ω; r, z) =
1

(2π)2

∫

dku(ω,k; z)eikr (48)we take r = r(cos θ, sin θ), k = k(cos ϕ, sin ϕ) and k⊥ = k(− sin ϕ, cosϕ) and integrate over angle
ϕ. We get easily that u1,2 
orresponds to the radial and, respe
tively, tangential 
omponents ofthe �eld,

ur,θ(ω; r, z) =
i

2π

∫

0
dk · ku1,2(ω,k; z)J1(kr) , (49)
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uz(ω; r, z) =

1

2π

∫

0
dk · kuz(ω,k; z)J0(kr) , (50)where J0,1 are the Bessel fun
tions of the zeroth and, respe
tively, �rst order.1) Large transverse distan
e. It is easy to see from equations (49) and (50) that for largedistan
es r the �eld goes like 1/r2, as expe
ted for a lo
alized ele
tromagneti
 perturbation. In this
ase only the k ≃ 0 
omponents 
ontribute to the integrals. Taking the limit k → 0 in equations(44)-(47) we see that the original, external pulse is lost in this 
ase (A1, B1 → 0), as well asthe longitudinal 
omponent uz, whi
h is vanishing in this limit. For large transverse distan
esthe propagation is governed by the polaritoni
 eigenmodes (with the longitudinal waveve
tor

κ′ ≃ λ
√

ε), as expe
ted. It is 
onvenient to give the expression of the total ele
tri
 �eld
Et(ω; r, z) ≃ 1√

ε + 1
E0(ω)

d2
t

r2
eiλ

√
εz , r ≫ dt . (51)The inverse temporal Fourier of equation (51) pro
eeds in a similar manner as for the externalpulse. First, we note that κ′ ≃ λ

√
ε may have purely imaginary values, 
orresponding to the band

ωc < ω < ωc + ωp of anomalous dispersion. In this 
ase, the �eld is damped with respe
t to thelongitudinal 
oordinate z. In this respe
t, it is worth noting that κ′ arises from ελ2 = κ′2, and λin equation (51) is in fa
t |λ|; 
onsequently, a 
orresponding sign should be atta
hed to √
ε whenit is purely imaginary. More 
onvenient is to use the expression given by equation (51) for ω near

ω0 and to add the 
omplex 
onjugate (
orresponding to ω near −ω0). Leaving aside the dampedmode, the inverse Fourier transform in equation (51) gives a pulse of, pra
ti
ally, the same length
d as the original, external pulse, propagating with the group velo
ity vg = c/[∂(λ

√
ε)/∂ω]ω=ω0

, orthe more familiar form vg = ∂(ω/∂κ′)κ′=κ
′

0

, where √
ελ = κ′ for ω = ω0 and κ

′

= κ
′

0. This groupvelo
ity is always smaller than the speed of light. As usually, if the dispersion is too high (as forinstan
e for a temporal δ-pulse), a group propagation 
annot be de�ned any longer.2) Small transverse distan
e. In the region of small tranverse distan
es the Fourier 
omponentswith large waveve
tors k 
ontribute to the integrals in equations (49) and (50). We take the limit
k → ∞ in equations (44)-(47) and get

Etr(ω; r, z) ≃ 1
ε
E0r(ω)eiλz , Etθ(ω; r, z) ≃ E0θ(ω)eiλz , r ≃ dt . (52)Therefore, in the 
entral region r ≃ dt → 0 the original, external pulse penetrates into the bodypra
ti
ally with the same shape and the amplitude a�e
ted by the diele
tri
 fun
tion ε(ω0). Themotion of the pulse in this region is not a�e
ted by the polaritoni
 eigenmodes, whi
h give onlya damped �eld; it is governed mainly by the external pulse; it propagates with the speed oflight c. It is reminis
ent of the propagation of the front of the signal.[1℄-[4℄ However, it is worthnoting that the radial 
omponent of the �eld is 
hanged. We 
an 
ompute the (average) densityof energy trasmitted by this pulse, ut ≃ E2

0(1 + 1/2ε2)/4π (the radial 
omponent of the ele
tri
�eld has not an asso
iated magneti
 �eld), whi
h should be 
ompared with the in
ident density ofenergy E2
0/8π (the same ralationship holds also for energy �ows). We get a transmission 
oe�
ient

T ≃ [1 + 1/2ε2(ω0)]/2, whi
h is valid for ε2 > 1/2. In the opposite 
ase, where ε is vanishing, weare approa
hing a resonant regime 
orresponding to the ex
itation of the longitudinal mode ωL.Re�e
ted pulse. Equations (17) give also the re�e
ted �eld for z < 0. Making use of thedispla
ement �eld given by equations (44) we get
E1 = 2π{λ2ω2

p

k2 · (λ+κ)(κκ′−k2)
(κ′+κ)2(κκ′+k2)

· κ(ω2−ω2
c
)−λω2

p

(ω2−ω2
c )2

+

+
κ(ω2−ω2

c
)+λω2

p

(λ+κ)(ω2−ω2
c )
}A1e

−iκz

(53)
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Ez = kE1/κ and

E2 =
2πλ2

κ

[

λ2ω2
p

k2(ω2 − ω2
c )

· λ + κ

(κ′ + κ)2
+

1

λ + κ

]

B1e
−iκz , (54)where A1 and B1 are given by equations (45) and (46). We note that that this is indeed a re�e
ted�eld (∼ e−iκz), whi
h is transverse (divE = 0 sin
e kE1 − κEz = 0), as expe
ted. The analysisgoes in the same manner as for the transmitted �eld. At large transverse distan
es we get

E(ω; r, z) ≃ − ω2
p

(
√

ε + 1)2(ω2 − ω2
c )

E0(ω)
d2

t

r2
e−iλz , r ≫ dt , (55)while for small transverse distan
es the �eld is damped (it goes like ekz for z < 0).Therefore, we 
an say that the external pulse penetrates almost entirely in the body in the regionof small transverse distan
es where it is lo
alized, while the body responds through its polaritoni
eigenmodes both in the transmitted and re�e
ted �eld at large transverse distan
es. Part of thepulse energy is transmitted into the small transverse distan
e region, a

ording to the transmission
oe�
ient given above, another part is transmitted and re�e
ted through the os
illations of thepolaritoni
 eigenmodes in the region of larger transverse distan
es; and another part of the energyis transferred to the me
hani
al energy of the polarization degrees of freedom. Indeed, it is worthnoting in this 
ontext that Maxwell equations (1) (for the total �eld) and the equation of motion(2) leads to the law

∂

∂

[

1

8π
(E2

t + H2
t ) +

1

2
nm(u̇2 + ω2

cu
2)
]

+
c

4π
div(Et × Ht) = 0 (56)of energy 
onservation. We 
an see the me
hani
al energy of the mobile 
harges in equation (56),whose variation is equal to the me
hani
al work done by the �eld upon the mobile 
harges.Oblique in
iden
e. We refer to the 
oordinates introdu
ed by equations and 
onsider a pulseof the from

E0(t,R) = E0η(t,R) = E0 cos ω0(t − ξ/c)θ(ct − ξ)θ(ξ − ct + d) · d2
t δ(η)δ(y) ; (57)equation (57) des
ribes a pulse of zero thi
kness and length d, propagating in va
uum along the

ξ-dire
tion whi
h makes an in
iden
e angle α with a plane surfa
e pla
ed at z = 0; the mainfrequen
y is ω0 and the ele
tri
 �eld is dire
ted along the transverse η-axis, whi
h is perpendi
ularto the y-axis and the dire
tion of propagation ξ; the asso
iated magneti
 �eld is dire
ted alongthe y-axis.The Fourier transform of this �eld is given by
E0x,z(ω,k; z) = E0x,z(ω)eiλz , (58)where

E0x(ω) = E0(ω)d2
t , E0z(ω) = −E0(ω)d2

t tan α , (59)
λ = (λ − kx sin α)/ cosα (60)and E0(ω) is given by equation (10). We use this external �eld in equations (17) and introdu
ethe internal (polarization) �eld obtained this way in the equation of motion (2) to get the dis-pla
ement �eld u and, espe
ially, the total ele
tri
 �eld Et inside the body. Making use of the
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ement �eld u in equations (17) we get also the re�e
ted �eld for z < 0. The 
al
ulationsare straightforward and go in the same manner as before. We get
u1 = Aeiκ′z + A1e

iλz , u2 = Beiκ′z + B1e
iλz ,

uz = − k
κ′Aeiκ′z + kλ

κ′2 Ceiλz ,

(61)where
A = − κκ′

κκ′+k2 · κ′−κ
λ−κ

(

A1 + k2λ
κκ′2 C

)

,

A1 = − q
m
· 1

ω2−ω2
c
−ω2

p

· (ελ
2−κ′2)E01(ω)+(εκ2λ/k−κ′2)E0z(ω)

λ
2−κ′2

,

(62)
B = −κ′−κ

λ−κ
B1 ,

B1 = − q
m
· 1

(ω2−ω2
c
)

λ
2−κ2

λ
2−κ′2

E02(ω)

(63)and
C = −A1 −

q

m

E01(ω) + (κ2/kλ)E0z(ω)

ω2 − ω2
c

. (64)We are interested in inverse Fourier transforms of the type given by equation (48). We note that
u(ω,k; z) given by equations (61) are of the form

u(ω,k; z) = ue(ω,k)eiκ′z + up(ω,k)eiλz , (65)where ue,p(ω,k) are 
ontributions 
oming from the polaritoni
 eigenmodes (waveve
tor κ′) and,respe
tively, the pulse (waveve
tor λ) in equations (61)-(64). It is 
onvenient to introdu
e the
oordinates ξ and η and write the Fourier transform as
u(ω; r, z) = 1

(2π)2

∫

dkxdky·

·{ue(ω,k)ei(κ′ cos α+kx sin α)ξei(−κ′ sinα+kx cos α)η+

+up(ω,k)eiλξei(−λ tan α+kx/ cos α)η}eikyy .

(66)We 
an see from equation (66) that for small distan
es along the y- and η-dire
tions it is su�
ientto retain the 
ontributions 
oming from large values of the transverse waveve
tor k. It is easy tosee in this 
ase that κ and κ′ are almost equal to ea
h other (approximately ik). Consequently,the amplitude 
oe�
ients A and B given by equations (62) and (63) are vanishing, sin
e they
ontain the fa
tor κ′ − κ. This means that the polaritoni
 eigenmodes do not 
ontribute, whilethe external, original pulse preserves its shape and propagation dire
tion, as expe
ted. However,the amplitude of the pulse, governed by the 
oe�
ients A1,B1 and C, is 
hanged. Although thisamplitude depends on the position in a 
ompli
ated way, it is easy to see that it does not varymu
h in the neigbourhood of the propagation dire
tion, where the �eld 
an be approximated byequation (52), as for normal in
iden
e.For large distan
es along the transverse y- and η-dire
tions, we noti
e that the 
ontributions arisingfrom ky → 0 and kx → λ sin α bring the main 
ontribution to the integral in equation (66) (at �rstsight we should 
onsider also the 
ase kx → ελ sinα, but the 
orresponding amplitudes are mu
hsmaller in this 
ase). Under these 
ir
umstan
es we have λ ≃ κ ≃ λ cosα, so that the leading
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ontributions arise from the 
oe�
ients A and B in equations (62) and (63), 
orresponding to thepolaritoni
 eigenmodes, as expe
ted (note the fa
tor λ−κ in the denominator of these 
oe�
ientsin equations (62) and (63)). We may say, in 
on
lusion, that the main features of the propagationof the pulse at oblique in
iden
e are the same as for normal in
iden
e.The re�e
ted �eld 
an be 
omputed from equations (17) for z < 0, making use of the displa
ement�eld given by equations (61). For both the eingenmodes and pulse 
ontributions we get a re�e
tionfa
tor e−iκz in the �eld. For small transverse distan
es the transverse waveve
tor k goes to in�nityand, 
onsequently, the re�e
ted �eld is damped i.e. the original pulse penetrates pra
ti
ally inits entirety into the body. At large distan
e from the pulse the re�e
ted �eld is 
ontrolled by thepolaritoni
 response of the body. We note that a 
hange z → −z in equations (57) 
orrespondsindeed to a re�e
tion of the 
oordinates ξ and η with respe
t to the plane z = 0.Con
luding remarks. The propagation of an ele
tromagneti
 pulse in a semi-in�nite body (half-spa
e) was investigated here, taking into a
ount the dispersion 
aused by the body polarization.The pulse 
onsidered in this investigation was of �nite duration and of �nite spatial extensionalong its propagation dire
tion. Along the transverse dire
tions we 
onsidered two 
ases: a large(plane wave, beam, ray) extension and a vanishing thi
kness (narrow δ-pulse along transversedire
tions). For a pulsed plane wave we found that the law of refra
tion is respe
ted. For anarrow pulse the propagation was 
onsidered both at normal and oblique in
iden
e. It was shownthat the pulse preserves approximately its shape and propagation velo
ity (the speed of light inva
uum) in the body, with a distorted amplitude 
ontrolled by the diele
tri
 fun
tion, while, atlarge distan
es from the propagation dire
tion the pulse produ
es a disturban
e whi
h is governedby the polaritoni
 eigenmodes. This disturban
e extends over all the spa
e along the transversedire
tions, vanishing rapidly at in�nity (as the inverse square of the distan
e), has a �nite extensionalong the propagation dire
tion and propagates with the group velo
ity 
orresponding to thepolaritoni
 eigenmodes.A
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