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Abstract

Electronic edge ("surface") states are investigated in semi-infinite graphene sheets and
graphene ribbons (monolayers) with armchair, zig-zag or horseshoe edges within the nearest-
neighbor tight-binding approximation. The problem is generalized to include edge elements of
the hoping (transfer) matrix distinct from the infinite-sheet ("bulk") ones. Within this model
the semi-infinite graphene sheets with zig-zag or horseshow edges exhibit edge states, while
the semi-infinite graphene sheet with armchair edge does not. Similarly, symmetric graphene
ribbons with zig-zag or horseshoe edges have edges states, while ribbons with asymmetric
edges (zig-zag and horseshoe) have not. It is also shown how to construct the "reflected"
solution for the intervening equations with finite diferences both for semi-infinite sheets and
ribbons, either with modified elements of the hoping matrix at the edges, or with uniform
matrix elements. It is also indicated how to extend the method to rectangular, finite-size
pieces of graphene sheets.
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Graphene sheets (monolayers), described as early as 1947,[1]-[3] have been eventually isolated and
identified in 2004-2005.[4]-[7] They are two-dimensional pieces of carbon (graphite) solids with
honeycomb lattice. As it is well known, (free) two-dimensional solids cannot exist, because of
atomic fluctuations.|[8]-[12] In the case of graphene (as well as other two-dimensional crystals that
may exist), several, more or less unknown, factors may conspire to make free-standing sheets stable,
most likely their non-thermodinamic, small sizes (in this respect, independent, small-size graphene
sheets can be viewed as instances of genuine quantum solids). Graphene sheets exhibit a linear
spectrum of electronic excitations (Dirac massless fermions), arising from carbon m-electrons,
which attracted much interest, especially due to their long lifetime (and mean free path). In
particular, the electronic transport along well-defined sheet edges enjoys a special attention.[13]-
[20] As it is well known, the identification of the edge ("surface") states requires well-defined
boundary conditions. Within the tight-binding approximation, the hoping matrix elements at
the edges are modified with respect to the matrix elements of the infinite sheet (‘bulk'").[21]-[26]
In this respect, the edge states of graphene sheets have been tackled by using the tight-binding
approximation within limited asumptions (see, for instance, Ref. [19]). On the other hand, using
the Dirac equation for identifying edge states in graphene sheets implies the continuum limit of
the solid, which is different from finite-diference equations of the tight-binding approach.[27] We
give here a more advanced description of electronic edge states in graphene sheets, by using the
nereast-neighbour tight-binding approximation with generalized boundary conditions. As it is
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well known, this is an old technique, employed extensively in the past in the ferromagnetism of
thin films|28|-[30] and derived from previous studies of electron dynamics in crystal lattices.|31]
The edge states are the counterpart in two dimensions of the Tamm or Shockley surface states in
three-dimensional crystals.[21]-[23]

First we consider an infinite sheet of carbon hexagons as shown in Figs. 1-3. The position of an
atom is identified by the vectors (m,n) and vy 3. For instance, the vectors vy 3 in Fig. 1 are
given by v; = (1,0), vo = (=1/2,v/3/2) and v3 = (—1/2, -v/3/2) (the hexagon side is taken equal
to unity). It is easy to see that we get the hexagonal periodicity of the lattice by applying twice the
vectors vy o 3. The wavefunction coefficients of the tight-binding approximation (the annihilation
operators of the on-site fermionic states) are denoted by a,,, and b, , where v denotes one of
the vectors vy o 3; coefficients like ay! V2, etc are coefficients of the type a., ./, due to the laticial
periodicity. The equations of motion for a,,, and by within the nearest-neighbour tight-binding
aproximation are given by

Eamn = (b + by + b33)
ebyry, = t*(amn + @™ + ayi¥?)
eby2, = 1" (@gmn + ay2 v+ ayive)
ebys, = t*(amn + ays, ¥ +ayz ™)

where ¢ is the energy (on-site energy included) and ¢ is the transfer (hoping) matrix element.
We get periodic solutions of this system of equations of the form a?, ~ A(K)eXI(mn)+v] pv
B(K)eKI(mn)+v] where the wavevector K has the components K = (k, q), for energies given by

> =3+ 2cos K(vy —vy) +2cos K(vy — v3) + 2cos K(va — v3) (2)

where \ = ¢/t; we get from equation (2)

V3q 2 V3¢

3k
A7 =2/ |t —1+4cos?cos—+4 T (3)
We have also the representation

\A = B(ez’Kvl +6z’sz +eiKV3) . \'B = A(e—in +e—iKV2 +6—iKV3) , (4)

which implies A = B*; under these circumstances we may take ¢ (and \) real and equations (4)

become
f 3q f 3q

M = B(e* + 2e7*/2 cos Z2) | AB = A(e * + 2¢™/2 cos 1) . (5)

The energy ¢ given by equation (3) is a well-known result;[1, 32] we can write ¢ = 4+t\/S, where

3k 3
S—1+40037005Q+4 2\/2_(]; (6)
the function S is positive over the Brillouin zone defined by the hexagon 3k/2 = +m, V/3¢/2 =
+7/3 and k = 0, v/3¢/2 = £27/3; it ranges from S = 9 at the centre of the Brillouin zone to S = 0
at the hexagon corners; at these points the energy goes like ¢ = £(3t/2)K, where K = (k, q) is
the wavevector referred to the hexagon’s corners. This is a gapless Dirac-like electronic spectrum.
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Figure 2: Semi-infinite graphene sheet with zig-zag edge.

Graphene sheets are zero-gap semiconductors (or zero-overlap semimetals). The linear electronic
spectrum is similar with the electron excitations in a normal Fermi liquid (Landau quasi-particles).
Of course, the degeneracy at the gapless points in the Brillouin zone may be removed by distortions
of the Jahn-Teller type, if other constraints are not present.

We turn now to a semi-infinite graphene sheet with armchair edge, as shown in Fig. 1. We take
the site denoted by m, 0 as a reference site for the edge sites; the elements of the transfer matrix
are modified at the edge, as shown in Fig. 1; in addition, the coefficients corresponding to the sites
lying on the edge line are modified into .37 and b'57"2*%. The relevant equations of motion

are
vy Va—vi ' 'va—vs
8bm0 - t(amg + Qo ) +1 A0 )
— 2vi — Iyl —
ety " = t(bylo + bmg 7)1 bmp TV
! - ! "y _
Eyy " =L by 1 by T

i i
vi—va+vy _ 4 vi—V2 " 'vy—va
6bm[] =1 Amo + i Amo )

or, introducing the notations A =&/t, ¢ =t(1+0) and t = t(1+ p),
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AB = A(e Vs e KV1) 4 (1 4 0)A'e K2
AA = B(e™®2 4 ¢®V1) 4 (14 0)B'e®vs |
M = (14 0)Be™®Y2 + (1 + p)B'e® |

AB' = (1 + 0)Ae=KVs 4 (14 p)A'e~Kv1 |

Making use of equations (4) we get A = (1+0)A", B = (1+0)B’ from the first two equations (8)
and
62KV3 — 0,(2 + U)elKVQ + peszl : 671KV2 — 0,(2 +O,)672KV3 + pefszl (9)

from the last two equations (8). We look for damped solutions of the form K = (k,q) — (k,iq),
corresponding to edge states (¢ > 0); equations (9) become

Vig VA

peiT + (24 0)e T — e =0 (10)

which has no solution (except for a few isolated points in the Brillouin zone). We conclude that
the semi-infinite graphene sheet with armchair edge has no edge state (within the approximation
used here). Similar results have been obtained recently in Ref. [33].

We note that the ideal case of a semi-infinite sheet without edge distortion (¢ =0, p=0, A = A,
B' = B) has the well-known "reflected" solution

AeiK[(m,n)-i-v} _>AleiK[(m,n)+v} +A2eiK’[(m,n)+v}

)

(11)

BeiK[(m,n)Jrv] - BleiK[(m,n)Jrv] +BQeiK,[(m,n)+v}

Y

where K = (k,¢) and K' = (k, —¢). Indeed, the first two equations (8) are satisfied automatically
(by virtue of equations (4)), while from the last two equations (8) we get
BleiKV3 _|_ B2eiK,V3 — ,
(12)
AleiKVQ + AQeiK V2 — ()

which gives A;, By ~ e7V31/2 and A, B; ~ —e®V31/2. The solutions are products of plane waves
along the z-direction (coordinate m) and sin-waves along the y-direction (coordinate n),

At ) sing(n —V3/2+v,) , Be® " sing(n+v3/2+v,) (13)

exhibiting nodes on the sites along the directions perpendicular to the edge (A and B in equation
(13) are undetermined constants).

We discuss now two other semi-infinite graphene sheets, one with a zig-zag edge and another with
a horseshoe edge, as shown in Fig. 2 and, respectively, Fig. 3. The sheet with zig-zag edge is
the sheet with armchair edge rotated by the angle —7/2. Equations (4) for the amplitudes are
preserved, while the energy is given by

5 -

A\ = 1+4cosEcosT+4cos
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Figure 3: Semi-infinite graphene sheet with horseshoe edge.

(compare with equation (3)). The equations for the relevant edge sites in this case are given by
St = thmo + £ by TV bV

I [ [ _
e =ty +tagy T (15)

I Iy I e —
gbmovz-i-va —¢ am\éz 1t am\éz vi+vs ,

or

AA = Be®V2 4 (1 4 0)B'e®V 4 (1 + o) B'eXVv2 |

(16)
AB' = (1 4+ 0)A(e=Kv1 4 ¢=iKvs)
Making use of equations (4) we get B = (1 + ¢)B'from the first equations (16) and
0(24 0)(e BV 4 fo KYs) = g KW (17)
from the second equations (16). Equation (17) can also be written as
20(2 + o) cos @ =77, (18)

For ¢ — iq (damped solutions along the direction perpendicular to the edge) this equation becomes

20(2+ o) cos @ =e2 (19)

wlg

it admits solutions for —1 —v/2/2 < 0 < =1+ +v2/20r 0 < -1 —6/2, 0 > —1 +/6/2.
We conclude that the semi-infinite graphene sheet with zig-zag edge has electronic edge states,
which are propagating, plane waves along the direction parallel with the edge (wavevector k) and
damped waves along the direction perpendicular to the edge (~ e~%™+"))  for values of (k,q)
given by equation (19). The energy of these edge states is given by

V3k V3k

3q 1 1
A =14 4cosh — ~—— 44cos’ —— = |1+ —-| |1 + ——e 20
+4cosh == cos —— + dcos” — [ —|—0(2+0)] [ +U(2+U)e (20)
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for 0 < ¢ < 2In|20(2+ 0)]; for each value of ¢ there exist two values of k in the Brillouin zone
which satisfy equation (19). The energy given by equation (20) lies in the band gap. The usual
case treated previously (see, for instance, Ref. [19]) corresponds to o = —1(t' = 0 and vanishing
energy from equation (20)).

Similarly, equations (4) and (14) hold for the semi-infinite sheet with a horseshoe edge (Fig. 3)
(this is a rather unrealistic situation, since the dangling bonds terminate usually with hydrogen
which does not contribute to electronic states[20]). The equations for the edge sites in this case
are given by

by = Hamo + aly ™) + s ™

(21)
ea, b7V = t'bY, .
Using the same technique as for the preceding case we get the equation
1 3k
50(2 + 0)67%‘1 = cos \/_T (22)

for the edge states. Equation (22) has two solutions for k for each value of ¢ in the interval
0<¢g<Z2In ‘%a(+0) , provided 0 < —1 — /3 or 0 > —1 + /3. The energy (equation (14)) is
given by

V3k V3k

3
A\? =1+ 4cosh Eq cos —— + 4 cos® = (1+0)° [1 +o(2+ 0')673(]] : (23)

A graphene ribbon can be treated in a similar way. Let us assume such a ribbon with n-rows
running from n = 0 to n = N and with both zig-zag edges. We note that a-type unknown
functions pertain to one edge, while b-type unknown functions pertain to the other edge. The
solutions consist of "reflected" waves of the form (11), which are superpositions of direct waves
of the form (A, By)e~® and reflected waves of the form (Ay, By)e® (i.e., ¢ — iq in K and K'in
equations (11)). The desired behaviour of the reflected solutions is ensured by the factor e™9",
i.e. we set (As, BQ)e_Q(N_"). The relevant equations for the N-edge are given by

\'& _ " Ive—vi1 ! va—v3
ebyi N =taomn Ftag N "+t agin

! ! !
V2—Vvi __ \& Vo—Vi+Vv3
Elgmy ' =T hopn + 1050 N ) (24)
! ! ’
Va—V3 __ \' V2+V]—V3
€a2mN =t meN +1 meN

(compare with equations (15)); the energy given by equation (14) remains the same, as do the
equations (4) for bulk amplitudes. Equations (24) lead to the complex conjugate of equation (18),
i.e. to the same equation (19) and the same energy for the edge states, as expected. Ribbons
with armchair edges do not exhibited edge states, ribbons with horseshoe edges can be treated in
likewise manner; a non-symmetric ribbon with one zig-sag edge and another horseshoe edge implies
two conditions of the type of equations (19) and (22) (two distinct purely imaginary wavevectors
q), which restrict appreciably the edge states.

In conclusion we may say that semi-infinite graphene sheets with zig-zag or horseshoe edges exhibit
electronic edge states within the nearest-neighbour tight-binding approximation, as do the ribbons
with these same edges, while the semi-infinite graphene sheet with armchair edge does not, within
the same approximation. We have assumed here an infinite length along one axis (x-axis); this
condition can be removed, by considering a finite length along this axis too, as for a rectangular
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piece of graphene sheet. The tight-binding treatment can be conducted in this case along the
same lines as described above.
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