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Abstra
t

Ele
troni
 edge ("surfa
e") states are investigated in semi-in�nite graphene sheets and

graphene ribbons (monolayers) with arm
hair, zig-zag or horseshoe edges within the nearest-

neighbor tight-binding approximation. The problem is generalized to in
lude edge elements of

the hoping (transfer) matrix distin
t from the in�nite-sheet ("bulk") ones. Within this model

the semi-in�nite graphene sheets with zig-zag or horseshow edges exhibit edge states, while

the semi-in�nite graphene sheet with arm
hair edge does not. Similarly, symmetri
 graphene

ribbons with zig-zag or horseshoe edges have edges states, while ribbons with asymmetri


edges (zig-zag and horseshoe) have not. It is also shown how to 
onstru
t the "re�e
ted"

solution for the intervening equations with �nite diferen
es both for semi-in�nite sheets and

ribbons, either with modi�ed elements of the hoping matrix at the edges, or with uniform

matrix elements. It is also indi
ated how to extend the method to re
tangular, �nite-size

pie
es of graphene sheets.
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Graphene sheets (monolayers), des
ribed as early as 1947,[1℄-[3℄ have been eventually isolated and

identi�ed in 2004-2005.[4℄-[7℄ They are two-dimensional pie
es of 
arbon (graphite) solids with

honey
omb latti
e. As it is well known, (free) two-dimensional solids 
annot exist, be
ause of

atomi
 �u
tuations.[8℄-[12℄ In the 
ase of graphene (as well as other two-dimensional 
rystals that

may exist), several, more or less unknown, fa
tors may 
onspire to make free-standing sheets stable,

most likely their non-thermodinami
, small sizes (in this respe
t, independent, small-size graphene

sheets 
an be viewed as instan
es of genuine quantum solids). Graphene sheets exhibit a linear

spe
trum of ele
troni
 ex
itations (Dira
 massless fermions), arising from 
arbon �-ele
trons,

whi
h attra
ted mu
h interest, espe
ially due to their long lifetime (and mean free path). In

parti
ular, the ele
troni
 transport along well-de�ned sheet edges enjoys a spe
ial attention.[13℄-

[20℄ As it is well known, the identi�
ation of the edge ("surfa
e") states requires well-de�ned

boundary 
onditions. Within the tight-binding approximation, the hoping matrix elements at

the edges are modi�ed with respe
t to the matrix elements of the in�nite sheet (`bulk").[21℄-[26℄

In this respe
t, the edge states of graphene sheets have been ta
kled by using the tight-binding

approximation within limited asumptions (see, for instan
e, Ref. [19℄). On the other hand, using

the Dira
 equation for identifying edge states in graphene sheets implies the 
ontinuum limit of

the solid, whi
h is di�erent from �nite-diferen
e equations of the tight-binding approa
h.[27℄ We

give here a more advan
ed des
ription of ele
troni
 edge states in graphene sheets, by using the

nereast-neighbour tight-binding approximation with generalized boundary 
onditions. As it is
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well known, this is an old te
hnique, employed extensively in the past in the ferromagnetism of

thin �lms[28℄-[30℄ and derived from previous studies of ele
tron dynami
s in 
rystal latti
es.[31℄

The edge states are the 
ounterpart in two dimensions of the Tamm or Sho
kley surfa
e states in

three-dimensional 
rystals.[21℄-[23℄

First we 
onsider an in�nite sheet of 
arbon hexagons as shown in Figs. 1-3. The position of an

atom is identi�ed by the ve
tors (m;n) and v

1;2;3

. For instan
e, the ve
tors v

1;2;3

in Fig. 1 are

given by v

1

= (1; 0), v

2

= (�1=2;

p

3=2) and v

3

= (�1=2; -

p

3=2) (the hexagon side is taken equal

to unity). It is easy to see that we get the hexagonal periodi
ity of the latti
e by applying twi
e the

ve
tors v

1;2;3

. The wavefun
tion 
oe�
ients of the tight-binding approximation (the annihilation

operators of the on-site fermioni
 states) are denoted by a

mn

and b

v

mn

, where v denotes one of

the ve
tors v

1;2;3

; 
oe�
ients like a

v

1

�v

2

mn

, et
 are 
oe�
ients of the type a

m

0

n

0

, due to the lati
ial

periodi
ity. The equations of motion for a

mn

and b

v

mn

within the nearest-neighbour tight-binding

aproximation are given by

"a

mn

= t(b

v

1

mn

+ b

v

2

mn

+ b

v

3

mn

) ;

"b

v

1

mn

= t

�

(a

mn

+ a

v

1

�v

2

mn

+ a

v

1

�v

3

mn

) ;

"b

v

2

mn

= t

�

(a

mn

+ a

v

2

�v

1

mn

+ a

v

2

�v

3

mn

) ;

"b

v

3

mn

= t

�

(a

mn

+ a

v

3

�v

2

mn

+ a

v

3

�v

1

mn

) ;

(1)

where " is the energy (on-site energy in
luded) and t is the transfer (hoping) matrix element.

We get periodi
 solutions of this system of equations of the form a

v

mn

� A(K)e

iK[((m;n)+v℄

, b

v

mn

�

B(K)e

iK[((m;n)+v℄

, where the waveve
tor K has the 
omponents K = (k; q), for energies given by

j�j

2

= 3 + 2 
osK(v

1

� v

2

) + 2 
osK(v

1

� v

3

) + 2 
osK(v

2

� v

3

) ;

(2)

where � = "=t; we get from equation (2)

j�j

2

= "

2

= jtj

2

= 1 + 4 
os

3k

2


os

p

3q

2

+ 4 
os

2

p

3q

2

: (3)

We have also the representation

�A = B(e

iKv

1

+ e

iKv

2

+ e

iKv

3

) ; �

�

B = A(e

�iKv

1

+ e

�iKv

2

+ e

�iKv

3

) ; (4)

whi
h implies A = B

�

; under these 
ir
umstan
es we may take t (and �) real and equations (4)

be
ome

�A = B(e

ik

+ 2e

�ik=2


os

p

3q

2

) ; �B = A(e

�ik

+ 2e

ik=2


os

p

3q

2

) : (5)

The energy " given by equation (3) is a well-known result;[1, 32℄ we 
an write " = �t

p

S, where

S = 1 + 4 
os

3k

2


os

p

3q

2

+ 4 
os

2

p

3q

2

; (6)

the fun
tion S is positive over the Brillouin zone de�ned by the hexagon 3k=2 = ��,

p

3q=2 =

��=3 and k = 0,

p

3q=2 = �2�=3; it ranges from S = 9 at the 
entre of the Brillouin zone to S = 0

at the hexagon 
orners; at these points the energy goes like " = �(3t=2)K, where K = (k; q) is

the waveve
tor referred to the hexagon's 
orners. This is a gapless Dira
-like ele
troni
 spe
trum.
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Figure 1: Semi-in�nite graphene sheet with "arm
hair" edge.
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Figure 2: Semi-in�nite graphene sheet with zig-zag edge.

Graphene sheets are zero-gap semi
ondu
tors (or zero-overlap semimetals). The linear ele
troni


spe
trum is similar with the ele
tron ex
itations in a normal Fermi liquid (Landau quasi-parti
les).

Of 
ourse, the degenera
y at the gapless points in the Brillouin zone may be removed by distortions

of the Jahn-Teller type, if other 
onstraints are not present.

We turn now to a semi-in�nite graphene sheet with arm
hair edge, as shown in Fig. 1. We take

the site denoted by m; 0 as a referen
e site for the edge sites; the elements of the transfer matrix

are modi�ed at the edge, as shown in Fig. 1; in addition, the 
oe�
ients 
orresponding to the sites

lying on the edge line are modi�ed into a

0

v

3

�v

2

m0

and b

0

v

1

�v

2

+v

3

m0

. The relevant equations of motion

are

"b

v

3

m0

= t(a

m0

+ a

v

3

�v

1

m0

) + t

0

a

0

v

3

�v

2

m0

;

"a

v

1

�v

2

m0

= t(b

v

1

m0

+ b

2v

1

�v

2

m0

) + t

0

b

0

v

1

�v

2

+v

3

m0

;

"a

0

v

3

�v

2

m0

= t

0

b

v

3

m0

+ t

00

b

0

v

3

�v

2

+v

1

m0

;

"b

0

v

1

�v

2

+v

3

m0

= t

0

a

v

1

�v

2

m0

+ t

00

a

0

v

3

�v

2

m0

;

(7)

or, introdu
ing the notations � = "=t, t

0

= t(1 + �) and t

00

= t(1 + �),



4 J. Theor. Phys.

�B = A(e

�iKv

3

+ e

�iKv

1

) + (1 + �)A

0

e

�iKv

2

;

�A = B(e

iKv

2

+ e

iKv

1

) + (1 + �)B

0

e

iKv

3

;

�A

0

= (1 + �)Be

iKv

2

+ (1 + �)B

0

e

iKv

1

;

�B

0

= (1 + �)Ae

�iKv

3

+ (1 + �)A

0

e

�iKv

1

:

(8)

Making use of equations (4) we get A = (1+�)A

0

, B = (1+�)B

0

from the �rst two equations (8)

and

e

iKv

3

= �(2 + �)e

iKv

2

+ �e

iKv

1

; e

�iKv

2

= �(2 + �)e

�iKv

3

+ �e

�iKv

1

(9)

from the last two equations (8). We look for damped solutions of the form K = (k; q) ! (k; iq),


orresponding to edge states (q > 0); equations (9) be
ome

�e

i

3k

2

+ �(2 + �)e

�

p

3q

2

� e

p

3q

2

= 0 ; (10)

whi
h has no solution (ex
ept for a few isolated points in the Brillouin zone). We 
on
lude that

the semi-in�nite graphene sheet with arm
hair edge has no edge state (within the approximation

used here). Similar results have been obtained re
ently in Ref. [33℄.

We note that the ideal 
ase of a semi-in�nite sheet without edge distortion (� = 0, � = 0, A

0

= A,

B

0

= B) has the well-known "re�e
ted" solution

Ae

iK[(m;n)+v℄

! A

1

e

iK[(m;n)+v℄

+ A

2

e

iK

0

[(m;n)+v℄

;

Be

iK[(m;n)+v℄

! B

1

e

iK[(m;n)+v℄

+B

2

e

iK

0

[(m;n)+v℄

;

(11)

where K = (k; q) and K

0

= (k;�q). Indeed, the �rst two equations (8) are satis�ed automati
ally

(by virtue of equations (4)), while from the last two equations (8) we get

B

1

e

iKv

3

+B

2

e

iK

0

v

3

= 0 ;

A

1

e

iKv

2

+ A

2

e

iK

0

v

2

= 0

(12)

whi
h gives A

1

; B

2

� e

�i

p

3q=2

and A

2

B

1

� �e

i

p

3q=2

. The solutions are produ
ts of plane waves

along the x-dire
tion (
oordinate m) and sin-waves along the y-dire
tion (
oordinate n),

Ae

ik(m+v

x

)

sin q(n�

p

3=2 + v

y

) ; Be

ik(m+v

x

)

sin q(n+

p

3=2 + v

y

) ; (13)

exhibiting nodes on the sites along the dire
tions perpendi
ular to the edge (A and B in equation

(13) are undetermined 
onstants).

We dis
uss now two other semi-in�nite graphene sheets, one with a zig-zag edge and another with

a horseshoe edge, as shown in Fig. 2 and, respe
tively, Fig. 3. The sheet with zig-zag edge is

the sheet with arm
hair edge rotated by the angle ��=2. Equations (4) for the amplitudes are

preserved, while the energy is given by

�

2

= 1 + 4 
os

3q

2


os

p

3k

2

+ 4 
os

2

p

3k

2

: (14)
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Figure 3: Semi-in�nite graphene sheet with horseshoe edge.

(
ompare with equation (3)). The equations for the relevant edge sites in this 
ase are given by

"a

�v

2

m0

= tb

m0

+ t

0

b

0

�v

2

+v

1

m0

+ t

0

b

0

�v

2

+v

3

m0

;

"b

0

�v

2

+v

1

m0

= t

0

a

�v

2

m0

+ t

0

a

�v

2

+v

1

�v

3

m0

;

"b

0

�v

2

+v

3

m0

= t

0

a

�v

2

m0

+ t

0

a

�v

2

�v

1

+v

3

m0

;

(15)

or

�A = Be

iKv

2

+ (1 + �)B

0

e

iKv

1

+ (1 + �)B

0

e

iKv

3

;

�B

0

= (1 + �)A(e

�iKv

1

+ e

�iKv

3

) :

(16)

Making use of equations (4) we get B = (1 + �)B

0

from the �rst equations (16) and

�(2 + �)(e

�iKv

1

++e

�iKv

3

) = e

�iKv

2

(17)

from the se
ond equations (16). Equation (17) 
an also be written as

2�(2 + �) 
os

p

3k

2

= e

�i

3q

2

: (18)

For q ! iq (damped solutions along the dire
tion perpendi
ular to the edge) this equation be
omes

2�(2 + �) 
os

p

3k

2

= e

3q

2

; (19)

it admits solutions for �1 �

p

2=2 < � < �1 +

p

2=2 or � < �1 �

p

6=2, � > �1 +

p

6=2.

We 
on
lude that the semi-in�nite graphene sheet with zig-zag edge has ele
troni
 edge states,

whi
h are propagating, plane waves along the dire
tion parallel with the edge (waveve
tor k) and

damped waves along the dire
tion perpendi
ular to the edge (� e

�q(n+v

y

)

), for values of (k; q)

given by equation (19). The energy of these edge states is given by

�

2

= 1 + 4 
osh

3q

2


os

p

3k

2

+ 4 
os

2

p

3k

2

=

"

1 +

1

�(2 + �)

# "

1 +

1

�(2 + �)

e

3q

#

(20)
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for 0 < q <

2

3

ln j2�(2 + �)j; for ea
h value of q there exist two values of k in the Brillouin zone

whi
h satisfy equation (19). The energy given by equation (20) lies in the band gap. The usual


ase treated previously (see, for instan
e, Ref. [19℄) 
orresponds to � = �1(t

0

= 0 and vanishing

energy from equation (20)).

Similarly, equations (4) and (14) hold for the semi-in�nite sheet with a horseshoe edge (Fig. 3)

(this is a rather unrealisti
 situation, sin
e the dangling bonds terminate usually with hydrogen

whi
h does not 
ontribute to ele
troni
 states[20℄). The equations for the edge sites in this 
ase

are given by

"b

v

1

m0

= t(a

m0

+ a

v

1

�v

3

m0

) + t

0

a

0

v

1

�v

2

m0

;

"a

0

v

1

�v

2

m0

= t

0

b

v

1

m0

:

(21)

Using the same te
hnique as for the pre
eding 
ase we get the equation

1

2

�(2 + �)e

�

3q

2

= 
os

p

3k

2

(22)

for the edge states. Equation (22) has two solutions for k for ea
h value of q in the interval

0 < q <

2

3

ln

�

�

�

1

2

�(+�)

�

�

�, provided � < �1 �

p

3 or � > �1 +

p

3. The energy (equation (14)) is

given by

�

2

= 1 + 4 
osh

3q

2


os

p

3k

2

+ 4 
os

2

p

3k

2

= (1 + �)

2

h

1 + �(2 + �)e

�3q

i

: (23)

A graphene ribbon 
an be treated in a similar way. Let us assume su
h a ribbon with n-rows

running from n = 0 to n = N and with both zig-zag edges. We note that a-type unknown

fun
tions pertain to one edge, while b-type unknown fun
tions pertain to the other edge. The

solutions 
onsist of "re�e
ted" waves of the form (11), whi
h are superpositions of dire
t waves

of the form (A

1

; B

1

)e

�qn

and re�e
ted waves of the form (A

2

; B

2

)e

qn

(i.e., q ! iq in K and K

0

in

equations (11)). The desired behaviour of the re�e
ted solutions is ensured by the fa
tor e

�qN

,

i.e. we set (A

2

; B

2

)e

�q(N�n)

. The relevant equations for the N -edge are given by

"b

v

2

2mN

= ta

2mN

+ t

0

a

0

v

2

�v

1

2mN

+ t

0

a

0

v

2

�v

3

2mN

;

"a

0

v

2

�v

1

2mN

= t

0

b

v

2

2mN

+ t

0

b

v

2

�v

1

+v

3

2mN

;

"a

0

v

2

�v

3

2mN

= t

0

b

v

2

2mN

+ t

0

b

v

2

+v

1

�v

3

2mN

(24)

(
ompare with equations (15)); the energy given by equation (14) remains the same, as do the

equations (4) for bulk amplitudes. Equations (24) lead to the 
omplex 
onjugate of equation (18),

i.e. to the same equation (19) and the same energy for the edge states, as expe
ted. Ribbons

with arm
hair edges do not exhibited edge states, ribbons with horseshoe edges 
an be treated in

likewise manner; a non-symmetri
 ribbon with one zig-sag edge and another horseshoe edge implies

two 
onditions of the type of equations (19) and (22) (two distin
t purely imaginary waveve
tors

q), whi
h restri
t appre
iably the edge states.

In 
on
lusion we may say that semi-in�nite graphene sheets with zig-zag or horseshoe edges exhibit

ele
troni
 edge states within the nearest-neighbour tight-binding approximation, as do the ribbons

with these same edges, while the semi-in�nite graphene sheet with arm
hair edge does not, within

the same approximation. We have assumed here an in�nite length along one axis (x-axis); this


ondition 
an be removed, by 
onsidering a �nite length along this axis too, as for a re
tangular
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pie
e of graphene sheet. The tight-binding treatment 
an be 
ondu
ted in this 
ase along the

same lines as des
ribed above.
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