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Abstract

The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two par-

ticular circumstances: very high electromagnetic �elds and very short photon pulses. We

consider a typical situation where the (bare) nuclei (fully stripped of electrons) are acceler-

ated to energies ' 1TeV per nucleon (according to the state of the art at LHC, for instance)

and photon sources like petawatt lasers ' 1eV -radiation (envisaged by ELI-NP project, for

instance), or free-electron laser ' 10keV -radiation, or synchrotron sources, etc. In these

circumstances the nuclear scale energy can be attained, with very high �eld intensities. In

particular, we analyze the nuclear transitions induced by the radiation, including both one-

and two-photon proceses, as well as the polarization-driven transitions which may lead to

giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is

shown that the perturbation theory for photo-nuclear reactions is applicable, although the

�eld intensity is high, since the corresponding interaction energy is low and the interaction

time (pulse duration) is short. It is also shown that the description of the giant nuclear dipole

resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.
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1 Introduction. Accelerated ions

It is well known that the nuclear photoreactions occurr in the keV � MeV -energy range. In
particular, the characteristic energy of the giant dipole resonance (which implies oscillations of
protons with respect to neutrons) is 10 � 20MeV .1�4 In order to get this energy scale typi-
cal mechanisms are used, like Compton backscattering (for instance a laser-electron system), or
electron bremsstrahlung (usually with the same nucleus acting both as converter and target),
etc.5�18 High intensity laser pulses can be used for accelerating electrons in compact laser-plasma
con�gurations.3;17 High-power and short-pulsed lasers are pursued nowadays for increasing the in-
tensity of the electromagnetic �eld.19 Photon-ion or photon-photon mediated ion-ion interactions
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are also well known in the so-called peripheral reactions.20;21 Vacuum polarization e�ects have
also been discussed recently in high-energy photon-proton collisions,22 or light-by-light scattering
in multi-photon Compton e�ect.23�25 We describe here a high-energy and high-�eld intensity cou-
pling of the atomic nucleus to photons from various sources (e.g., optical laser, free electron laser,
synchrotron radiation) by using (ultra-) relativistic atomic nuclei.

We consider (ultra-) relativistically acelerated ions moving with velocity v along the x-axis. We
envisage acceleration energies of the order " = 1TeV per nucleon (according to the state of the art
at LHC, for instance).26 At these energies the ion is fully stripped of its electrons, so we have a bare
atomic nucleus. We assume that a beam of photons of frequency !0 is propagating counterwise
(from a laser source, or a free electron laser, or a synchrotron source, etc), such that the photons
su�er a head-on collision with the nucleus. The moving nucleus will "see" a photon frequency

! = !0

s
1 + �

1� �
; � = v=c (1)

in its rest frame, according to the Doppler e�ect. For (ultra-) relativistic nuclei (� ' 1) this
frequency may acquire high values. For instance, we have

� ' 1� "20
2"2

; ! ' 2!0
"

"0
; (2)

where "0 ' 1GeV is the nucleon rest energy; for " = 1TeV we get a photon frequency ! ' 2�103!0
(
 = (1� �2)�1=2 ' "="0 = 103). We can see that for a 1eV -laser we get 2keV -photons in the rest
frame of the accelerated nucleus; for a 10keV -free electron laser we get 20MeV -photons, etc. The
e�ect is tunable by varying the energy of the accelerated ions. This idea has been discussed in
relation to hydrogen-like accelerated heavy ions, which may scatter resonantly X- or gamma-rays
photons.27 Similarly, a frequency up-shift was discussed for photons re�ected by a relativistically
�ying plasma mirror generated by the laser-driven plasma wake�eld,28 or photons in the rest frame
of an ultra-relativistic electron beam.24;29

For a typical laser radiation (see, for instance, ELI-NP project,30) we take a photon energy ~!0 =
1eV (wavelength � ' 1�m), an energy E = 50J and a pulse duration � = 50fs. The pulse
length is l = 15�m (cca 15 wavelengths), the power is P = 1015w (1 pettawatt). For a d2 =
(15�m)2-pulse cross-sectional area the intensity is I = P=d2 = 4 � 1020w=cm2. The electric
�eld is E ' 109statvolt=cm (1statvolt=cm = 3 � 104V=m) and the magnetic �eld is H = 109Gs
(1Ts = 104Gs). These are very high �elds (higher than atomic �elds). The (ultra-) relativistic ion
will see a shortened pulse of length l

0

=
p

1� �2l, with a shortened duration �
0

=
p

1� �2� and

an energy E 0 = Ep(1 + �=(1� �) (the number of photons Nph ' 1020 is invariant). It follows that
the power and intensity are increased by the factor (1� �)�1 (' 2
2) and the �elds are increased
by the factor (1 � �)�1=2; for instance, E

0

= E=
p
1� � =

p
2("="0)E ' 1012statvolt=cm; this

�gure is two orders of magnitude below Schwinger limit.

A higher enhancement can be obtained by taking into account the aberration of light, even from a
collimated laser.31�33 Indeed, for a cross-sectional beam area D2 = (0:5mm)2 we get an intensity
I = P=D2 = 4�1017w=cm2 and an electric �eld E ' 5�107statvolt=cm (all the other parameters
being the same). In the rest frame of the ion the power increases by a factor (1� �)�1, as before,
but the cross-sectional area D

02 of the beam, decreases by a factor (1��)=(1+�) (' 1=4
2), as a
consequence of the "forward beaming" (aberration of light);28 we have D

02 = D2(1� �)=(1 + �),
which leads to an enhancement factor (1+�)=(1��)2 for intensity and a factor (1+�)1=2=(1��)
(' 2

p
2
2) for �eld. We get, for instance, I

0 ' 3�1024w=cm2 and an electric �eld E
0 ' 2

p
2
2E '

1014statvolt=cm.
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Similarly, we can take as typical parameters for a free electron laser the photon energy ~!0 =
10keV , the pulse duration � = 50fs and a much lower energy E = 5 � 10�5J (power P =
10Gw); the �elds may decrease by 3 orders of magnitude, but still they are very high (109 �
1011statvolt=cm) in the rest frame of the accelerated ion.

Under these circumstances, the photons can attain energies su�ciently high for photonuclear re-
actions, or giant dipole resonances, with additional features arising from the electron-positron pair
creation, vacuum polarization, etc; indeed, above ' 1MeV the pair creation in the Coulomb �eld
of the atomic nucleus becomes important. Vacuum polarization e�ects at very high intensity �elds
and high �eld frequency are still insu�ciently explored. Beside, all these happen in two particular
cirumstances: very short times and very high electromagnetic �elds. We discuss here the e�ect of
these particular circumstances on typical phenomena related to photon-nucleus interaction.

2 Nuclear transitions

Let us cosider an ensemble of interacting particles, some of them with electric charge, like protons
and neutrons in the atomic nucleus, subjected to an external radiation �eld. We envisage quantum
processes driven by �eld energy quantum of the order ~
 = 10MeV , as discussed above. First, we
note that the motion of the particles at this energy is non-relativistic, since the particle rest energy
' 1GeV is much higher than the energy quantum (we can check that the acceleration qE=m is
much smaller than the "relativistic acceleration" c
, where q and m is the particle charge and,
respectively, mass and E denotes he electric �eld). Consequently, we start with the classical
lagrangian L = mv2=2� V + qvA=c� q� of a particle with mass m and charge q, moving in the
potential V and subjected to the action of an electromagnetic �eld with potentials � and A; v is
the particle velocity. We get immediately the momentum p = mv + qA=c and the hamiltonian

H =
1

2m
p2 + V � q

mc
pA+

q2

2mc2
A2 + q� : (3)

Usually, the particle hamiltonian p2=2m+ V is separated and quantized (V may be viewed as the
mean-�eld potential of the nucleus), and the remaining terms are treated as a perturbation. In
the �rst order of the perturbation theory we limit ourselves to the external radiation �eld, which
is considered su�ciently weak. Consequently, we put A = A0 and � = 0 in equation (3) and take
approximately p ' mv. We get the well known interaction hamiltonian

H1 = �q
c
vA0 = �1

c
JA0 ; (4)

where J = qv is the current; in the non-relativistic limit we include also the spin currents in
J. If we leave aside the spin currents, the interaction hamiltonian given by equation (4) can
also be written as qr(dA0=dt)=c. Usually, the �eld does not depend on position over the spatial
extension of the ensemble of particles. Indeed, in the present case the wavelength of the quantum
~
 = 10MeV is � ' 10�12cm, which is larger than the nucleus dimension ' 10�13cm; therefore
we may neglect the spatial variation of the �eld and write the interaction hamiltonian as

H1 =
q

c
r
dA0

dt
=
q

c
r
@A0

@t
= �qrE0 = �dE0 ; (5)

where d = qr is the dipole moment. This is the well-known dipole approximation. For an ensemble
of N particles we write the interaction hamiltonian given by equation (4) as

H1 = �1

c

X
i

JiA0 (6)
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(within the dipole approximation) and its matrix elements between two states a and b are given
by

H1(a; b) = �1

c
J(a; b)A0 =

= �1

c
[
P

i

R
dr1:::dri:::drN 

�

a(r1::ri::rN)Ji b(r1::ri::rN)]A0 ;
(7)

where  a;b are the wavefunctions of the two states a and b; the notation ri in equation (7) includes
also the spin variable. As it is well known, the transition amplitude is given by

cab = � i

~

Z
dtH1(a; b)e

i!abt ; (8)

where !ab = (Ea � Eb)=~ is the frequency associated to the transition between the two states a
and b with energies Ea and, respectively, Eb: We take

A0(t) = A0e
�i
t +A�

0e
i
t (9)

(with 
 > 0) and note that the pulse duration �
0

=
p

1� �2� ' 5� 10�17s is much longer than
the transition time 1=
 ' 10�22s; we can extend the integration in equation (8) to in�nity and
get

cab =
2�i

~c
J(a; b)A0�(!ab � 
) ; (10)

making use of �(! = 0) = t=2�, we get the number of transitions per unit time

Pab = jcabj2 =t = 2�

����J(a; b)A0

~c

����
2

�(!ab � 
) : (11)

This is a standard calculation. Usually, the �eld and the wavefunctions of the atomic nuclei
are decomposed in electric and magnetic multiplets, and the selection rules of conservation of
the parity and the angular momentum are made explicit (see, for instance,34). It relates to the
absorption (emission) of one photon.

It is worth estimating the number of transitions per unit time as given by equation (11). First, we
may approximate J(a; b) by qv. For an energy ~
 = 10MeV and a rest energy 1GeV we have v=c =
10�1. Next, from E0 = (�1=c)@A0=@t we deduce A0 ' 10�3statvolt (for E0 = 109statvolt=cm
and 
 = 1022s�1); it follows that the particle energy in this �eld is qA0 ' 1eV (which is a very
small energy). We get from equation (11) Pab ' (1028=�
)s�1, where �
 ' 1=�

0 ' 1016s�1

is the uncertainty in the pulse frequency, such that the number of transitions per unit time is
Pab ' 1012s�1(much smaller than 
 = 1022s�1). We can see that, under these circumstances, the
�rst-order calculations of the perturbation theory are justi�ed.

For higher �elds we should include the second-order terms in the interaction hamiltonian given
by equation (3); this second-order interaction hamiltonian reads

H2 = � q2

2mc2
A2

0 : (12)

We can see that within the dipole approximation this interaction does not contribute to the transi-
tion amplitude, since the �eld does not depend on position and the wavefunctions are orthogonal.
For �eld wavelengths shorter than the dimension of the ensemble of particles (i.e., beyond the
dipole approximation) we write

A0(r; t) = A0e
�i
t+ikr +A�

0e
i
t�ikr ; (13)
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where k = 
=c is the wavevector, and get

H2(a; b) = � q2

2mc2
�
A2
0(a; b)e

�2i
t + A�2
0 (b; a)e2i
t

�
; (14)

where

A2
0(a; b) = [

X
i

Z
dr1:::dri:::drN 

�

a(r1::ri::rN)e
2ikri b(r1::ri::rN)]A

2
0 : (15)

This interaction gives rise to two-photon pocesses, with the transition amplitude

cab =
2�i

~

q2

2mc2
A2
0(a; b)�(!ab � 2
) : (16)

Comparing the transition amplitudes produced by the interaction hamiltonians H1 (equation (10))
and H2 (equation (16)) we may get an approximate criterion: qA0=mc

2 (two-photons) compared
with v=c (one photon). Since v=c ' 10�1 (as estimated above), we should have qA0 > 10�1 �
1GeV = 100MeV in order to get a relevant contribution from two-photon processes. As estimated
above, qA0 ' 1eV , so we can see that the second-order interaction hamiltonian and the two-photon
processes bring a very small contribution to the transition amplitudes.

3 Giant dipole resonance

There is another process of excitation of the ensemble of particles described by the hamiltonian
given by equation (3). Indeed, let us write the interaction hamiltonian

Hint = � q

mc
pA+

q2

2mc2
A2 + q� ; (17)

or

Hint = �q
c
vA� q2

2mc2
A2 + q� : (18)

Under the action of the electromagnetic �eld the mobile charges (e.g., protons in atomic nucleus)
acquire a displacement u, which, in general, is a function u(r; t) of position and time. This is
a collective motion associated with the particle-density degrees of freedom; in the limit of long
wavelengths (i.e. for u independent of position) it is the motion of the center of mass of the
charges. Therefore, an additional velocity _u should be included in equation (18). It is easy to
see that this u-motion implies a variation �p = �nqdivu of the (volume) charge density and a
current density jp = nq _u, where n is the concentration of mobile charges. Obviously, these are
polarization charge and current densities (the su�x p comes from "polarization"). The charge
and current densities �p and jp give rise to an internal, polarization electromagnetic �eld, with
the potentials Ap and �p (related through the Lorenz gauge divAp + (1=c)@�p=@t = 0), which
should be added to the potential of the external �eld in equation (18). Indeed, the retardation
time tr = a=c ' 10�23s, where a ' 10�13cm is the dimension of the atomic nucleus, is shorter
than the excitation time 
�1 = 10�22s, so the atomic nucleus gets polarized. In particular the
scalar potential � in equation (18) is the polarization scalar potential �p. We get

Hint = H1 � 1

c
JAp � q

c
_u(A0 +Ap)� q2

2mc2
(A0 +Ap)

2 + q�p ; (19)

where H1 is given by equation (4). Within the dipole approximation we may take u independent
of position, except for the surface of the particle ensemble, where the density falls abruptly to zero.
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A similar behaviour extends to the vector and scalar polarization potentials (inside the ensemble);
in addition, through the Lorenz gauge, the scalar potential �p can be taken independent of time
within this approximation. The surface e�ects can be neglected as regards the scalar product
of two orthogonal wavefunctions. All these simpli�cations amount to neglecting all the terms in
equation (19) except the �rst two; therefore, we are left with

Hint ' H1 +H1p ; H1p = �1

c
JAp ; (20)

in order to get Ap we need a dynamics for the displacement �eld u.

We can construct a dynamics for the displacement �eld u by assuming that it is subjected to
internal forces of elastic type, characterized by frequency !c; the (non-relativistic) equation of
motion is given by

m�u = q(E0 + Ep)�m!2
cu ; (21)

where E0 = �(1=c)@A0=@t is the external electric �eld and Ep is the polarization electric �eld.
Within the dipole approximation, Gauss's equation divEp = 4��p = �4�nqdivu gives Ep =
�4�nqu for matter of in�nite extension (polarization P = nqu). For polarizable bodies of �nite
size there appears a (de-) polarizing factor f within the same dipole approximation, as a conse-
quence of surface charges (for instance, f = 1=3 for a sphere). Therefore, we can write equation
(21) as

�u+ (!2
c + f!2

p)u =
q

m
E0 ; (22)

where !p =
p

4�nq2=m is the plasma frequency. For nucleons we can estimate ~!p ' Z1=2MeV ,
where Z is the atomic number. An estimation for the characteristic frequency !c can be obtained
from m!2

cd
2=2 = Ec(d=a), where d is the displacement amplitude, a is the dimension of the

nucleus and Ec (' 7� 8MeV ) is the mean cohesion energy per nucleon; the maximum value of d
is the mean inter-particle separation distance d = a=A1=3, where A is the mass number. We get
~!c ' 10A1=6MeV . It is convenient to introduce the frequency 
0 = (!2

c + f!2
p)

1=2, which, as
we can see from the preceding estimations, is of the order of 10MeV , and write the equation of
motion (22) as

�u+ 
2
0u =

q

m
E0 : (23)

This is the equation of motion of a linear harmonic oscillator under the action of an external force
qE0. Making use of equation (9), we get the external �eld

E0 =
i


c
A0e

�i
t � i


c
A�

0e
i
t ; (24)

for frequency 
 approaching the oscillator frequency 
0 the motion described by equation (23) is
a classical motion, and we get

u = �iq

mc

� 1


2 � 
2
0

�
A0e

�i
t �A�

0e
i
t
�
: (25)

According to the discussion made above, the polarization �eld is

Ep = �4�fnqu =
if!2

p


c
� 1


2 � 
2
0

�
A0e

�i
t �A�

0e
i
t
�

(26)

and the corresponding vector potential is

Ap =
f!2

p


2 � 
2
0

�
A0e

�i
t +A�

0e
i
t
�
: (27)
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A damping factor � can be included in equation (23),

�u+ 
2
0u+ � _u =

q

m
E0 ; (28)

and we can write the solution as

u = � q

m
E0

1


2 � 
2
0 + i
�

e�i
t + c:c: ; (29)

the polarization reads

P = nqfu = �f!
2
p

4�

1


2 � 
2
0 + i
�

E0e
�i
t + c:c: ; (30)

so that we can de�ne the polarizability

� = �f!
2
p

4�

1


2 � 
2
0 + i
�

: (31)

Therefore, the vector potential Ap given by equation (27) can be written as

Ap = �4�
�
�A0e

�i
t + ��A�

0e
i
t
�
: (32)

Now, we can estimate the transition amplitude between two states a and b, making use of the
interaction hamiltonian H1p given by equation (20). We get the amplitude

cab = �8�2i

~c
�J(a; b)A0�(!ab � 
) (33)

and the number of transitions per unit time

Pab = 32�3
����J(a; b)A0

~c

����
2

j�j2 �(!ab � 
) : (34)

Comparing this result with equation (11) we can see that, apart from a numerical factor, the rate
of polarization-driven transitions are modi�ed by the factor

j�j2 =
�
f!2

p

4�

�2
1

(
2 � 
2
0)

2 + 
2
2
: (35)

This is a typical resonance factor, which indicates that the polarization of the particle ensemble
is important for 
 ' 
0 (at resonance), where the ensemble can be disrupted. Obviously, this is
a giant dipole resonance.35;36 For 
 far away from the resonance frequency 
p the polarization is
practically irrelevant, and it may be neglected in comparison with the transitions brought about
by the interaction hamiltonian H1 (equation (11)). It is worth noting that we can de�ne an electric
susceptibility � and a dielectric function " for the polarizable ensemble of particles, by combining
equations (4), (20) and (32). We get

H1 +H1p = �1

c
J
�
(1� 4��)A0e

�i
t + c:c:
�
= �1

c
J

�
1

"
A0e

�i
t + c:c

�
; (36)

since 1�4�� = (1+4��)�1 = 1=", as expected (according to their de�nitions, we have P = �E0 =
�(E0 � 4�P), where P is the polarization, i.e. the dipole moment per unit volume). Therefore,
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the total interaction hamiltonian is proportional to 1=" = (
2�!2
c )=(


2�
2
0), and we note that,

beside the 
0-pole, it has a zero for 
 = !c, where the transitions are absent.

A similar description holds for ions (or neutral atoms) in an external electromagnetic �eld. Perhaps
the most interesting case is a neutral, heavy atom, for which we can estimate the plasma energy
~!p ' 10Z1=2eV . For the cohesion energy per electron we can use the Thomas-Fermi estimation
16Z7=3=ZeV = 16Z4=4eV , which leads to ~!c ' 13Z5=6eV . We can see that the typical scale
energy where we may expect to occur a giant dipole resonance is ~
0 ' 1keV . However, the
motion of the electrons under the action of a high-intensity electromagnetic �eld is relativistic
(see, for instance,37).

4 Discussion and conclusions

The direct photon-nucleus coupling processes described here are hampered by electron-positron
pairs creation in the Coulomb �eld of the nucleus. For photons of energy ~
 = 10MeV we may
consider the (ultra-) relativistic limit of the pair creation cross-section. As it is well known,38;39

in this case the cross-section is derived within the Born approximation, the pair partners are
generated mainly in the forward direction, they have not very di�erent energies from one another
and the recoil momentum (energy) trasmitted to the nucleus is small. For bare nuclei (absence of
screening) the total cross-section of pair production is given by

�pair =
Z2r20
137

�
28

9
ln

2~


mc2
� 218

27

�
' 10�28Z2cm2 ; (37)

where r0 = e2=mc2 is the classical electron radius, �e is the electron charge and m is the electron
mass. We can get an order of magnitude estimation of the e�ciency of the processes described
here by comparing this cross-section with the nuclear cross-section a2' 10�26cm2. We can see
that �pair=a

2 ' 10�2Z2, which may go as high as 102 for heavy nuclei.

In conclusion, we may say that in the rest frame of (ultra-) relativistically accelerated heavy ions
(atomic nuclei) the electromagnetic radiation �eld produced by high-power optical or free elec-
tron lasers may acquire high intensity and high energy, suitable for photonuclear reactions. In
particular, the excitation of dipole giant resonance may be achieved. Nuclear transitions are an-
alyzed here under such particular circumstances, including both one- and two-photon processes.
It is shown that the perturbation theory is applicable, although the �eld intensity is high, since
the interaction energy is low (as a consequence of the high frequency) and the interaction time
(pulse duration is short). It is also shown that the giant nuclear dipole resonance is driven by the
nuclear (electrical) polarization degrees of freedom, whose dynamics may lead to disruption of the
atomic nucleus when resonance conditions are met. The concept of nuclear (electrical) polariza-
tion is introduced, as well as the concept of nuclear electrical polarizability and dielectric function.
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