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Abstract

The classical theory of motion emerging from the principle of least action and Euler-

Lagrange equations is presented. The associated Hamilton theory is given, and the Hamilton-

Jacobi classical equation for the action is derived. The corresponding theory of quantal

motion, Schrodinger's&Co theory, is also given, as a natural extension of the classical, non-

relativistic, theory of motion. Thereafter, Einstein's theory of relativistic motion is presented,

and the corresponding Hamilton-Jacobi equation is derived. The Klein-Gordon equation

(or Schrodinger's relativistic equation) is introduced as a natural quantal extension of the

relativistic motion, and the Dirac theory of motion is also given. Finally, the generalization

to the �eld motion is brie�y discussed.

This text is dedicated to the memory of the late prof S Titeica, who aimed in his last

years' lectures at the Hamilton-Jacobi equation.

The Theory of Euler, Lagrange, Hamilton and Jacobi. Let q be a coordinate (possibly
multiple), q̇ = dq/dt its velocity and t the time. Let L(q̇, q, t) be the lagrangian (or Lagrange's
function) and

S =

∫
dt · L(q̇, q, t) (1)

the action. The variation reads

δS =
∫
dt · [(∂L/∂q̇)δq̇ + (∂L/∂q)δq] =

=
∫
dt · [− d

dt
(∂L/∂q̇) + (∂L/∂q)]δq + [(∂L/∂q̇)δq] ,

(2)

where the []-bracket takes care of the boundaries. Fixed at the boundaries, the motion obeys the
principle of least action, i.e.

d

dt
(∂L/∂q̇)− (∂L/∂q) = 0 . (3)

These are the Euler-Lagrange equations of motion. They epitomize Newton's law, reading:
the time derivative of themomentum p = ∂L/∂q̇ equals the force ∂L/∂q. For a force-free motion
(uniform motion), as in the absolute space, themomentum is conserved. This is the principle
of inertia. In addition, the motion proceeds such as the momentum is the coordinate derivative
of the action,

p = ∂S/∂q , (4)
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as the boundary bracket in (2) tells.

Let's do the time change of the lagrangian, making use of Euler-Lagrange's equations of motion:

dL/dt = (∂L/∂q̇)dq̇/dt+ (∂L/∂q)q̇ + ∂L/∂t =

= (∂L/∂q̇)dq̇/dt+ d
dt

(∂L/∂q̇)q̇ + ∂L/∂t =

= d
dt

(pq̇) + ∂(L− pq̇)/∂t ,

(5)

or
d

dt
(pq̇ − L) = ∂(pq̇ − L)/∂t , (6)

where
H(p, q, t) = pq̇ − L (7)

is the hamiltonian (or Hamilton's function). Equation (7) de�nes a Legendre transformation.
For an absolute time (conservative motion) ∂L/∂t = 0, and ∂H/∂t = 0, so the hamiltonian is
conserved, dH/dt = 0. It de�nes the energy

E = H(p, q) . (8)

Along the motion and during it, the lagrangian changes according to

dL = (∂L/∂q̇)dq̇ + (∂L/∂q)dq + (∂L/∂t)dt =

= pdq̇ + ṗdq + (∂L/∂t)dt =

= d(pq̇)− q̇dp+ ṗdq + (∂L/∂t)dt ,

(9)

or
dH = q̇dp− ṗdq − (∂L/∂t)dt , (10)

which establishes the canonical (or Hamilton's) equations of motion

q̇ = ∂H/∂p , ṗ = −∂H/∂q , ∂H/∂t = −∂L/∂t . (11)

The later tells also that ∂(pq̇)/∂t = 0.

Finally, the integral in equation (2) can be estimated as follows:∫
dt · [− d

dt
(∂L/∂q̇) + (∂L/∂q)]δq = −pδq + Lδt = −Hδt , (12)

so the variation of the action reads

δS = −Hδt+ pδq . (13)

Hence, the Hamilton-Jacobi equation

∂S/∂t+H(∂S/∂q, q, t) = 0 . (14)

It is worth noting that q and t are here independent variables, and the action is a function S(q, t)
(the velocity does not enter, because S is supposed to be a functional of q(t), though not necessarily
the one for an actual motion, so that q̇ = dq/dt). Indeed, then, according to (1) and (2),

dS/dt = ∂S/∂t+ (∂S/∂q)q̇ = ∂S/∂t+ pq̇ = L , (15)



J. Theor. Phys. 3

hence again the Hamilton-Jacobi equation (14). For a conservative motion, S = −Et+ S1(q), for
a uniform motion S = pq + S2(t).

It is worth noting that the Hamilton-Jacobi equation has no relevance at all upon the original
motion. It enlarges considerably the original lagrangian formulation of the theory of motion, and,
actually, reveals a di�erent aspect of the action function, not included in the original formulation.
It consists in assuming the action as a function of two independent variables, the coordinate q
and the time t. The derivation of the Hamiltonian-Jacobi equation as given in (12) and (13) does
not imply any equations of motion, nor the principle of least action, but only de�nitions and the
assumption that S depends on q and t. For actual motion, the action de�ned by (1) is a function
of time (the end time of the trajectory). This is an appreciable generalization, which remains to
be given a sense for any actual motions. The Hamilton-Jacobi equation is a general description of
the motion, based solely upon the distinction between time and coordinates.

Indeed, the original motion can be recovered from the Hamilton-Jacobi equation (14) as follows.
The solution of the Hamilton-Jacobi equation depends on constants of integration α; it reads
S(q, t;α). We take the derivative of the Hamilton-Jacobi equation with respect to α:

∂S ′/∂t+ (∂H/∂p)(∂S ′/∂q) = 0 , (16)

where S ′ = ∂S/∂α. Now, we employ the equation of motion q̇ = ∂H/∂p, as for the actual motion
we wish to describe. Equation (16) becomes

∂S ′/∂t+ q̇(∂S ′/∂q) = dS ′/dt = 0 , (17)

which tells that S ′ = const. The motion is therefore described by

∂S(q, t;α)/∂α = const . (18)

It gives the trajectory q(t). Equation (18) is only the form the equations of motion take in
terms of the action function. For instance, the free motion of a particle of mass m has the
solution S = −Et+

√
2mEq, according to the Hamilton-Jacobi equation (14). Equation (18) gives

−t+
√
m/2Eq = const, which indeed is the trajectory of a free paricle with velocity v =

√
2E/m.

We emphasize that it is only through the Euler-Lagrange, or the canonical equations of motion
(q̇ = ∂H/∂t used in deriving (17)), that we have given here a meaning to the Hamilton-Jacobi
equation. This meaning is called the classical motion.

The Theory of Schrodinger&Co. Equation (13) gives the change of a phase. It is one of the
most general motion. Then, it seems reasonable to introduce a wavefunction

ψ(q, t) = eiS(q,t)/~ , (19)

where ~ is Planck's constant of action and action S is allowed to assume imaginary values too.
By S = −i~ lnψ, the Hamilton-Jacobi equation (14) reads

i~∂ψ/∂t = Hψ , (20)

where pψ = −i~∂ψ/∂q and Eψ = i~∂ψ/∂t. This is Schrodinger's eigenvalues equation, and
motion can now have a meaning. This meaning is the quantal motion. Noteworthy, the classical
trajectory is lost.

The wavefunctions may linearly be superposed, and we get interference, as for waves. The physical
quantities are operators, like energy and momentum, for the wavefunctions. Any measurement
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gives an eigenvalue, which may be continuous or discrete, and we may have a reduction of the
original wavefunction. The measurements are therefore statistical, and we have mean values
and deviations. The probability of localization is |ψ|2 for instance, and it must be normalized.
Those operators that do not commute produce measurements whose deviations obey Heisenberg's
uncertainty principle. The operators are matrices for eigenfunctions. Writing ψ = A exp(iS/~)
with S the real action, we recover the Hamilton-Jacobi equation (14) in the classical limit ~ → 0,
and, in addition, we get also the conservation of the probability �ow for amplitude A. This is
practically all of the philosophy of the quantal motion. It is derived by giving a wavelike sense to
the Hamilton-Jacobi equation (14).

It is worth noting that an independent principle of least action can also be formulated for
Schrodinger's equation, which implies (and originates in) the stationarity of the energy eigen-
functions.

Relativistic particle. Einstein's theory. The principle of relativity imposes a certain re-
striction on the motion. This restriction consists in the invariance under linear transformations
of the world-line element squared ds2 = c2dτ 2 = c2dt2 − dr2, where c is the velocity of light,
τ is the proper time of the particle at rest and v = dr/dt is the velocity of the moving particle.
For v = const the equations of motion (as well as the equations of the electromagnetic �eld) are
invariant under the corresponding Lorentz transformations, thus satisfying the Galilean prin-
ciple of relativity for inertial frames. The principle is extended by the theory of gravitation,
by requiring the invariance under local linear transformations of the general world-line element
squared ds2 = gijdx

idxj, where gij, i, j = 0, 1, 2, 3, dx0 = cdt, dx1,2,3 = dr, is the metric tensor
of the curved space-time. The equations of motion are invariant in this case, providing they are
corespondingly modi�ed. For a "�at" space, gij = ηiδij, where ηi = (+ − −−) is the signature
of the metric tensor. The corresponding contravariant metric tensor is given by gij = ηiδij, such
that gikgkj = δi

j, as for a general metric tensor. The covariant displacement is dxi = (cdt,−dr)
and the contravariant one is dxi = (cdt, dr). The labels are lowered or raised as gijA

j or gijAj,
for any tensor A, and the scalar product is AiA

i, etc. Another form of relativistic constraint is
seen in the fact that energy E and mometum p are related by E =

√
m2c4 + c2p2, where m is the

mass of the particle.

As it is well-known, the consequences of the principle of relativity are the contraction of lengths,
dilation of time, Doppler e�ect, aberration of light and the light drag, and the energy
of inertia (or inertia of energy) mc2.

The invariant action of a particle of massm and electric charge e subjected to an electromagnetic
�eld of potentials Ai = (ϕ,−A), where ϕ is the electrostatic potential and A is the vector
potential, reads

S =

∫
[−mcds− (e/c)Aidx

i] , (21)

where ds =
√
dxidxi, dxi = gijdx

i, gij = ηiδij. Making use of the relativistic velocity ui =
dxi/ds, uiu

i = 1, and δds = dxid(δx
i)/ds = uid(δx

i), its variation reads

δS =

∫
ds ·

{
−mcdui/ds+ (e/c)[∂Ai/∂x

k − ∂Ak/∂x
i]uk
}
δxi −

[
[mcui + (e/c)Ai]δx

i
]
, (22)

where the []-bracket takes care of the boundaries of the motion. Hence, the Euler-Lagrange
equations of motion

mc
dui

ds
= (e/c)Fiju

j , (23)
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for a relativistic particle, where

Fij = ∂Ai/∂x
j − ∂Aj/∂x

i = ∂jAi − ∂iAj (24)

is the (antisymmetric) tensor of �elds, and

Pi = mcui + (e/c)Ai = −∂S/∂xi (25)

are the relativistic momenta of motion.

The Euler-Lagrange equations of motion given by (23) are generalized, according to Newton's
law of motion, to

mc
dui

ds
= gi , (26)

where gi are forces. Moreover, pi = mcui are the momenta of motion, as distinct from the
relativistic momenta Pi, so the equations of motion, in their most general form, read

dpi

ds
= gi . (27)

Making use of

ui =

(
1√

1− β2
,− v/c√

1− β2

)
, (28)

where β = v/c, and introducing the energy through

pi = (E/c,−p) =

(
mc√
1− β2

,− mv√
1− β2

)
, (29)

we get
pip

i = E2/c2 − p2 = m2c2 , (30)

which is the relativistic energy. Similarly, from (25), we get

pi = Pi − (e/c)Ai = ((E − eϕ)/c,−P + (e/c)A) , (31)

and
(E − eϕ)2/c2 − [P− (e/c)A]2 = m2c2 . (32)

According to (25), E = −∂S/∂t and P = ∂S/∂r, so

(∂S/∂t+ eϕ)2/c2 − [∂S/∂r− (e/c)A]2 = m2c2 . (33)

This is the Hamilton-Jacobi equation for a relativistic particle in an electromagnetic �eld.
With S = S ′ −mc2t and c→∞ we get its non-relativistic limit

∂S ′/∂t+H(∂S ′/∂r, r) = 0 , (34)

where the hamiltonian is given by

H = [P− (e/c)A]2/2m+ eϕ , (35)

and P = ∂S ′/∂r. It is worth noting that the energy in equation (33) may get negative values too,
corresponding to S = S ′ +mc2t and e→ −e. These antiparticles move backwards in time.
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Making use of the de�nition of the electric �eld E = −∂ϕ/∂r−(1/c)∂A/∂t and of themagnetic
�eld H = curlA, we get the �eld tensor

Fij =


0 E1 E2 E3

−E1 0 −H3 H2

−E2 H3 0 −H1

−E3 −H2 H1 0

 , (36)

and its contravariant version F ij = gikgjlFkl, which di�ers from the covariant one by the sign of
the electric �eld. One can check easily that the equations of motion (23) are the Lorentz law of
motion

dp/dt = eE + (e/c)v ×H (37)

and the rate of change
dEkin/dt = evE (38)

of the kinetic energy Ekin = cp0 = mc2/
√

1− β2 = c
√
m2c2 + p2, which is equal, according to the

rhs of equation (38), to the mechanical work done by the �eld per unit time, as the Lorentz law
of motion tells.

All these can be obtained, naturally, if we start with the action (21) in the form

S =

∫
dt · L =

∫
dt · [−mc2

√
1− β2 − eϕ+ (e/c)vA] . (39)

The momentum is then given by

P = ∂L/∂v = mv/
√

1− β2 + (e/c)A = p + (e/c)A = ∂S/∂r , (40)

and the equations of motion are the Euler-Lagrange equations

d

dt
(∂L/∂v)− ∂L/∂r = 0 . (41)

The space derivative of the lagrangian reads

∂L/∂r = (e/c)vi∂Ai/∂r− e · gradϕ , (42)

where i = 1, 2, 3, and it is easy to see that

vi∂Ai/∂r = (vgrad)A + v × curlA (43)

by direct calculation. We have therefore

∂L/∂r = (e/c)(vgrad)A + (e/c)v ×H− e · gradϕ , (44)

and
d

dt
[p + (e/c)A] = (e/c)(vgrad)A + (e/c)v ×H− e · gradϕ . (45)

On the other hand,
d

dt
A = ∂A/∂t+ (vgrad)A , (46)

so that we get the Lorentz law of motion

d

dt
p = eE + (e/c)v ×H . (47)
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Equation (40) serves to extract v as function of P. We get easily the hamiltonian

H = Pv − L = c
√
m2c2 + [P− (e/c)A]2 + eϕ , (48)

which is constant in time, the corresponding canonical equations of motion v = ∂H/∂P, dP/dt =
−∂H/∂r, and H = −∂S/∂t. The derivations go perfectly similar with the classical theory of
Euler, Lagrange, Hamilton and Jacobi given above. The Hamilton-Jacobi equation reads ∂S/∂t+
H(∂S/∂r, r) = 0, which agrees with the one given by equation (33), up to the squared energy.

Klein-Gordon equation. The natural quantal extension of the Hamilton-Jacobi equation (32)
or (33) is

(i~∂/∂t+ eϕ)2ψ − c2[i~∂/∂r + (e/c)A]2ψ = m2c4ψ . (49)

It is the Klein-Gordon equation for a relativistic particle in en electromagnetic �eld (or rel-
ativistic Schrodinger equation, as derived �rst by Schrodinger). It gives approximately rel-
ativistic corrections to the Hydrogen spectrum, known as the �ne-structure corrections, in
terms of powers of the �ne-structure constant α = e2/~c = 1/137 (contributions of order 1/c2).
It was soon, however, realized, that, obviously, it does not include the spin of the electron, as
suggested by atomic spectra.

Moreover, the non-relativistic Schrodinger equation (20) conserves probability |ψ|2, through the
continuity equation

∂ |ψ|2 /∂t− (i~/2m)div(ψ∗gradψ − ψgradψ∗) = 0 , (50)

so the space integral of |ψ|2 is constant in time. The Klein-Gordon equation leads to ∂ρ/∂t+divj =
0 with ρ = Im[ψ∗(∂/∂t − ieϕ/~)ψ] and j = c2Im[ψ∗(∂/∂r − ieA/~c)ψ], and density ρ, with or
without �eld, is not always positive. Such a motion would not make therefore any sense.

Dirac's theory of motion. The original idea of Dirac was to arrive at the quadratic Klein-
Gordon, or Schrodinger relativistic equation, by iterating a �rst-order di�erential equation. The
iteration of di�erential operators for linear sets of wavefunctions is essential for quantal motion.
Consequently, he started with

i~∂ψ/∂t = Hψ (51)

for a free relativistic particle and a linear hamiltonian

H = αcp + βmc2 , (52)

where α and β remain to be determined. Iterating this equation one gets

(i~∂/∂t)2ψ = αiαjc
2pipj + (αiβ + βαi)mc

3pi + β2m2c4 , (53)

whence one can see that α and β must be matrices satisfying

αiαj + αjαi = 2δij , αiβ + βαi = 0 , β2 = 1 , (54)

i, j = 1, 2, 3, and ψ must be a column wavefunction with several components. For instance,

α =

(
0 σ
σ 0

)
, β =

(
1 0
0 −1

)
, (55)

where σ are Pauli's matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
, (56)
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and ψ is a four-component column. The iterated equation (53) takes then the form of the Klein-
Gordon eqation for a free relativistic particle. Moreover, Dirac's equation given by (51) and (52)
reads

(γ0∂/∂x0 + γi∂/∂xi)ψ = (mc/~)ψ , (57)

where γ0 = iβ, γ = iβα, and one can check directly that γi, i = 0, 1, 2, 3 is a vector under
linear transformations which preserve the world-line element squared, i.e. Dirac's equation is
relativistically invariant. If Λ is such a linear transform, then γ′ = S(Λ)γS−1(Λ) and ψ′ =
S(Λ)ψ, where S is the corresponding unitary transform.

For a relativistic particle in an electromagnetic �eld an obvious extension of Dirac's equation is

(i~∂/∂t+ eϕ)ψ = c[p− (e/c)A]αψ +mc2βψ , (58)

where p = −i~∂/∂r. Obviously, it preserves the relativistic invariance. However, by iteration, it
does not reproduce exactly the Schrodinger equation (Klein-Gordon equation) (49) for a relativistic
particle in an electromagnetic �eld. It contains two new terms, describing the interaction of the
spin with the magnetic �eld (Zeeman interaction, Pauli equation, correction of the order 1/c)
and an interaction with the electric �eld (of the same order 1/c). These new terms appear as a
consequence of the noncommutativity of the Dirac matrices and of the action of the momentum
di�erential operator on the electromagnetic �eld. This quadratic equation reads

(i~∂/∂t+ eϕ)2ψ = c2[p− (e/c)A]2ψ − ec~ΣHψ + iec~αEψ +m2c4ψ , (59)

where

Σ =

(
σ 0
0 σ

)
. (60)

(Noteworthy, charge e is − |e|for an electron). In a central �eld, equation (58) shows that the
conservation of the angular momentum is, in fact,

[H, r× p + ~Σ/2] = 0 , (61)

which tells that the particle described by Dirac's equation has indeed a one-half spin. In addition,
Dirac's equation (58) satis�es the continuity equation ∂ρ/∂t + divj for probability with ρ = ψ∗ψ
and j = cψ∗αψ. Contributions of the order of 1/c2 are also present in the quadratic form of the
Dirac equation, which account for the �ne-structure of atomic spectra (spin-orbit interaction and
a contact interaction).

However, spin-spin interaction (which is also a 1/c2-contribution to the �ne-structure, as well
as the hyper�ne interaction both betwen electrons and electrons and nuclei) would require an
equation for many particles. In addition, the Lamb shift seen in the atomic spectra (as well as the
"anomalous" magnetic moment) is beyond Dirac's equation. Both would require a fundamental
change in the philosophy of the motion, corresponding to interacting �elds.

Concluding remarks. Fields. Dirac's equation raises another important, related di�culty,
which consists in its predicting states of negative energy (as expected). Though originally
solved by Dirac by the �lled sea of negative-energy levels, according toPauli exclusion principle,
such negative states appear also for relativistic bosons (as expected), where the exclusion principle
does not work. The notion of �elds is once more needed; they solve this di�culty by the assumption
of the antiparticles, by the concept of elementary excitations and, of course, by viewing the
interacting motion as an act of scattering. Basically for �elds is the unde�ned number of particles.

The notion of elementary excitations reveals the importance of the vacuum. Bound states and
composite particles may be viewed as new vacua appearing through symmetry braeking and



J. Theor. Phys. 9

macroscopic occupation. It they are non-relativistic, they have a (quantal) structure. If they
are relativistic, they do not extend beyond their Compton length, and the question of structure
becomes meaningless. Indeed, a bound motion of frequency ω is such that ω ∼ c/a, where a is the
linear size, hence the energy mc2 ∼ ~ω ∼ ~c/a, and the Compton length a ∼ ~/mc; below a there
is no structure. This is why the con�ned quarks are not observable. It is a profound aspect of
the positivist view, according to which only what is observable is meaningful and lends itself to
a theory.

In this respect, the divergencies and in�nities experienced by the �eld theories, and their renor-
malization cure re�ect the same inadequacy of our desires to the unobservability of the Natural
World in the limit of the high energies and small distances. Working �elds are therefore sort of
low-energy "e�ective theories".

Also in this connection, the strong and weak interactions introduced new �elds by non-
commutative gauge invariance, as required by the "observability" (or the "covariance") princi-
ple. We may note that only bilinear forms in �elds (or composites of bilinear forms) are meaningful
in this respect, and this is why the gravitational �eld is not amenable to a quantal treatment.

Final note. I wrote this text out of my conviction that we are in a permanent need of recon-
structing logically our Physical Theories.
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