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Abstract

The coupled equations of motion are established for the dynamics of the spin-polarization

of an electric �ow and the magnetization of a ferromagnetic sample. The analysis is performed

for isotropic samples, in the long-wavelength limit and with disregard of �nite-size e�ects.

Both quantal and classical motion are investigated. It is shown that magnetostatic modes are

excited in a ferromagnetic sample by a spin-polarized electric �ow, through the spin-transfer

torque. An optical mode is identi�ed, beside spin-waves modes. Similar excitations of a spin

valve are analyzed, and shown to occur in a resonance-like regime.

Spintronics. A spin valve consists of two ferromagnetic, conducting samples separated by an
insulating, non-magnetic thin layer. It is easy to see that the spin-polarized electric �ow in such
a valve exhibits a conductivity which depends on cos θ, where θ is the angle between the two
magnetizations, as a consequence of the spin-magnetization coupling. This has been pointed out
by Julliere[1] and calculated more explicitly by Slonczewski.[2] An additional magnetic exchange
between the two samples does also contribute similarly. The electric resistance of the junction
may vary appreciably with the angle θ, this being the giant magnetoresistance e�ect[3] (distinct
from the colossal magnetoresistance, which is a change of resistance by orders of magnitude in the
presence of a magnetic �eld). The discovery of the giant magnetoresisance is considered to be the
birth of the spintronics.

We deal herein with the excitation of magnetostatic modes in ferromagnetic samples and spin
valves by spin-transfer torques.

Motion of the spin polarization. The motion of a spin s in a magnetic �eld H is governed by
Schrodinger's equation

i~∂ψ/∂t = µHsψ , (1)

where ψ is the spinor wavefunction and sµ is the magnetic moment. For electrons, µ = e~/mc is
twice the Bohr magneton and s = σ/2, where σ are Pauli's matrices.

The spin polarization of an electric �ow is given by

S = (ψ, sψ) , (2)

where the scalar product is taken over the spin coordinates only. Therefore, S is a density of spin
S(r), with a possible spatial dependence on position r. Making use of [si, sj] = iεijksk, where εijk

is the totally antisymmetric unit tensor, it is easy to see that Schrodinger's equation (1) leads to
the motion of the spin polarization as being described by

∂S/∂t = γH× S , (3)
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where γ = µ/~ = e/mc is the gyromagnetic ratio. This is the basic Larmor equation of motion of
a spin under the action of its torque with respect to the magnetic �eld.

We note that m = −µS is the magnetization of the electric �ow (density of the magnetic moment),
and c · curlm is the spin contribution to the electric �ow (charge per unit area per unit time).

With the commutation relations

[Si(r), Sj(r
′)] = iεijkSk(r)δ(r− r′) , (4)

the equation of motion (3) is obtained by the e�ective hamiltonian

H = γ~
∫
dr ·HS = µ

∫
dr ·HS = −

∫
dr ·mH (5)

through ∂S/∂t = (i/~) [H,S].

Ferromagnet. In a ferromagnet the spin experiences a magnetic �eld H = 4πM,1 where M is
the magnetization. It follows that the equation of motion (3) reads

∂S/∂t = 4πγM× S (6)

and the corresponding hamiltonian (5) becomes

H = 4πγ~
∫
dr ·MS . (7)

In a magnetic �eld H the magnetization obeys an equation of motion

∂M/∂t = γfH×M (8)

similar to (3), where γf is the gyromagnetic ratio of the ferromagnetic moments. The magnetic
�eld H in (8) comes from the spin polarization of the electric �ow, through H = 4πm = −4πµS,
so equation (8) becomes

∂M/∂t = −4πµγfS×M . (9)

Equations (6) and (9) describe the coupled motion of the ferromagnetic magnetization of the
sample and the spin polarization of the electric �ow. Equation (9) is given by the same hamiltonian
(7) with the commutation relations

[Mi(r),Mj(r
′)] = −µf · iεijkMk(r)δ(r− r′) , (10)

where µf is the magnetic moment of the ferromagnet (γf = µf/~).

We note that the hamiltonian density given by (7) can also be written as −MH, where H =
4πm = −4πµS, and, in this form, it is the well-known term in the thermodynamic potential
of the ferromagnet. The full contribution to this thermodynamic potential must also include
−H2/8π = −2πµ2S2, which does not a�ect the motion of the spin polarization S.2 Additional
contribution to the feromagnetic energy can also be included, which may only a�ect the motion
of the magnetization.

1By the general relation B = H + 4πM, where B is the magnetic induction and H = 0. We leave aside the
�nite-size e�ects.

2Making use of the commutation relations (4) we get easily that the net result is proportional to a vanishing
product of the antisymmetric tensor ε by a symmetric one.
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Magnetization (non-uniformity) energy. The exchange energy brings the main contribution
to the magnetization (non-uniformity) energy.3 It comes from terms of the form M(r)M(r± ε) in
the limit ε→ 0.4 It is easy to see that, for an isotropic material, the density of the magnetization
energy looks like (αf/2)(∂M/∂xi)(∂M/∂xi) (where αf must be positive for ferromagnetism). We
introduce similar interactions between the spins in the electric �ow and between the spins in the
electric �ow and the ferromagnetic sample. This leads to the magnetization hamiltonian

Hm =
∫
dr · [1

2
αf (∂M/∂xi)(∂M/∂xi) + 1

2
αµ2(∂S/∂xi)(∂S/∂xi)−

−βµ(∂M/∂xi)(∂S/∂xi)] .
(11)

Making use of the commutation relations (4) and (10) it is easy to see that the �rst two terms
in (11) bring no contribution to the equations of motion.5 The only contribution brought by
the magnetization energy to the equations of motion arises from the mixed term in (11). The
equations of motion (6) and (9) become

∂S/∂t = 4πγM× S + βγ∆M× S ,

∂M/∂t = −4πµγfS×M− βµγf∆S×M .
(12)

Linearization. We write M = M0 + m and S = S0 + s, where M0 and S0 are classical variables
and m and s are quantal ones. That means that we take ~ → 0 and µS0 = finite, and similarly
for the ferromagnetic spins, such as M0 = finite. On the other hand, the (spin) quantization
of m and s are not relevant anymore for solving the equations of motion.6 Their elementary
excitations as resulting from the equations of motion will obey their own quantization. We assume
in addition that M0 and S0 are colinear and uniform and constant. Moreover, we introduce a
susceptibility χ of the spin-polarized electric �ow through −µS0 = 4πχM0. We neglect other
magnetic interactions, like the anisotropy energy or the interaction with an external magnetic
�eld, as being irrelevant for the subsequent discussion. We assume that the ferromagnetic sample
looks like a single ferromagnetic domain, an assumption justi�ed by the weakness of the anisotropy
energy and the correspondingly large width of the domain wall. This assumpption is also valid in
the long-wavelength limit.

The linearized equations of motion read now

∂s/∂t = 4πγM0 × s + 4πγ(4πχ/µ)M0 ×m + βγ(4πχ/µ)M0 ×∆m ,

∂m/∂t = 4πγf (4πχ)M0 ×m + 4πµγfM0 × s + βµγfM0 ×∆s .
(13)

They can be written in a more symmetrical form

∂me/∂t = AM0 ×me − ACM0 ×m−BCM0 ×∆m ,

∂m/∂t = AfCM0 ×m− AfM0 ×me −BfM0 ×∆me ,
(14)

3Other contributions are relativistic e�ects, typically smaller by factors 10−2 − 10−5, with notable exceptions
however (rare-earths).

4Far from the Curie point this energy implies in fact M/M .
5This is in contrast with some claims made occasionally, suggested probably by the de�cient Holstein-Primako�

technique (where the spin waves are rigurously valid only in the long-wavelength limit, or at zero temperature,
see, for instance, F. Dyson, Phys. Rev. 102 1217, 1230 (1956)), or by a completely di�erent situation where the
spins (magnetization) move classically (see the original paper by L. Landau and E. Lifshitz, Phys. Z. Sowjet. 8

153 (1935)).
6It is worth stressing upon the circumstance that the spin �elds do not obey a classical dynamics, as there is

no classical counterpart of them; the correspondence principle allows such a clasical limit for magnetization.
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by introducing the magnetization me = −µs of the electric �ow and the parameters

A = 4πγ , Af = 4πγf ,

B = βγ , Bf = βγf , C = 4πχ .
(15)

Eigenmodes. Equations (14) can easily be solved. We assume M0 oriented along the z-axis
and me ,m in the xy-plane, depending only on the x-coordinate. It is convenient to use the
combinations m+ = mx + imy, etc. Equations (14) become

∂m+
e /∂t = iAM0m

+
e − iACM0m

+ − iBCM0∆m
+ ,

∂m+/∂t = iAfCM0m
+ − iAfM0m

+
e − iBfM0∆m

+
e .

(16)

In the limit of long-wavelengths we get the eigenmodes

ω1 = M0(A+ CAf )− CM0k
2(ABf + AfB)/(A+ CAf ) ,

ω2 = CM0k
2(ABf + AfB)/(A+ CAf ) .

(17)

The optical mode ω1 corresponds approximately to anti-phase oscillations of the two magnetiza-
tions m and me; hence we may say that magnetostatic modes in the ferromagnetic sample are
excited by the spin-transfer torque in the spin-polarized electric �ow. Both modes have a strong
dispersion, since typical value for parameter β are β ∼ 10−12cm2. A numerical estimation for
the optical mode is given by ω1 ∼ M0µ/~, which leads to ω1 ∼ 10GHz for M0 = 0.1Ts and
µ ∼ µB ' 10−23J/Ts, where µB = e~/2mc is the Bohr magneton.7

Spin valve. In the long-wavelength limit we may neglect the terms involving derivatives in
equations (16). Then, we have magnetostatic modes excited in the rhs ferromagnetic sample of
the spin valve by the spin-polarized electric current �owing from the lhs of the valve into the rhs

of the valve, of the form m+0
e ∼ eiω1t, where ω1 = M0(A+CAf ) is the optical mode given by (17)

for the lhs sample.

If we rede�ne m+ → Cm+ it is easy to see that equations (16) reduce to

∂(me −m)/∂t = iω2(me −m) , (18)

where we have omitted the upper su�x + and ω2 = M0(A+CAf ) corresponds to the rhs sample.
We introduce me → me +m0

ee
iω1t in the lhs of this equation, which accounts for an external force,

and get

∂d/∂t = iω2d− iω1m
0
ee

iω1t , (19)

where d = me −m. The solution of this equation is a typical resonance one,

d = d0e
iω2t − ω1

ω1 − ω2

eiω1t . (20)

We may say that magnetostatic modes are excited in the spin valve by the spin-polarized electric
�ow, through the spin-transfer torque, in a resonance regime. A similar conclusion was probably
pointed out by Berger.[4]

7For χ ∼ 1 and M0 = 0.1Ts we get the spin-density S0 ∼ M0/µ ∼ 1016cm−3.
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Classical motion. The above treatment pertains to the quantal motion of the spins and magne-
tization. In macroscpic ferromagetic samples and for macroscopic electric currents the magnetiza-
tion and spin polarization are classical variables. The commutation relations (4) and (10) vanish.
The magnetization energy Hm given by (11) rests the same, but the interacting energy given by
(5) or (7) should now be completed to the full interaction energy, which is given by

H = −(1/8π)

∫
dr · (4π)2(M + Me)

2 , (21)

where Me = −µS denotes now the magnetization of the electric �ow (associated to the spin
polarization). The mixed term in (21) coincides with the previous hamiltonian given by (7).
Similarly, we write the hamiltonian (11) as

Hm =
∫
dr · [1

2
αf (∂M/∂xi)(∂M/∂xi) + 1

2
α(∂Me/∂xi)(∂Me/∂xi)+

+β(∂M/∂xi)(∂Me/∂xi)] .
(22)

We write the variation of the energy as δ(H +Hm) = −
∫
dr ·HmδM = −

∫
dr ·HeδMe, where

Hm,e are the corresponding magetic �elds experienced by the two magnetizations. In the classical
limit these magnetizations can be represented as being produced by torques of currents, so they
obey the Larmor equation of motion ∂Mm,e/∂t = γm,eHm,e ×Mm,e. Alternately, the equation of
motion (3) holds also in the classical limit. This way, we get the Landau-Lifshitz equations of
motion (without relaxation)

∂Me/∂t = γ(α∆Me + 4πM + β∆M)×Me

∂M/∂t = γf (αf∆M + 4πMe + β∆Me)×M .
(23)

We solve these equations as before, by linearizing them with respect to small deviations m ,me in
the (x, y)-plane, which depend only on the x-coordinate. We get �nally the equations

∂m+
e /∂t = iAM0m

+
e − iACM0m

+ − iDCM0∆m
+
e − iBCM0∆m

+ ,

∂m+/∂t = iAfCM0m
+ − iAfM0m

+
e − iDfM0∆m

+ − iBfM0∆m
+
e ,

(24)

where D = αγ and Df = αfγf . They di�er from equations (16) only by the D-terms . In the long
wavelength limit the eigenfrequencies are given by

ω1 = M0(A+ CAf )−M0k
2[A(CBf −Df ) + CAf (B − CD)]/(A+ CAf ) ,

ω2 = CM0k
2[A(Bf +D) + Af (B +Df )]/(A+ CAf ) .

(25)

All the above discussion made for quantal spins remains qualitatively valid. There is only slight
quantitative changes in the spectrum. It is worth noting that in the absence of the current the
magnetization of the sample moves by spin-density waves given by ω1 = MoDfk

2.
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