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Abstract

It is shown that a random lattice of localized electron states with an inter-site transfer

matrix and a random distribution of on-site energies exhibits localized electron states without

velocity. Nevertheless, these states may conduct the electrical current through the inter-site

transfer matrices. The electrical conductivity is computed under such assumptions.

A random lattice. Let
ψ(r) =

∑
i

aiϕi(r) (1)

be the �eld operator for electrons localized on sites i with wavefunctions ϕi(r). The wavefunctions
are orthogonal and normalized, the ai's are destruction operators and spin is neglected. The
hamiltonian is given by

H =
∑

i

Eia
+
i ai +

∑
ij

Vija
+
i aj (2)

where Ei are on-site energies and

Vij =

∫
dr · ϕ∗i (r)(−~2∆/2m)ϕj(r) (3)

are the matrix elements of the kinetic (transfer) part of the hamiltonian (Vii = 0). They may
also include an external �eld. We assume that the energies Ei are distributed within some range
W around zero. This hamiltonian was introduced by Anderson for localized electron states (or
spin di�usion) in certain random lattices under the assumption that Ei are stochastic variables.

1

We show herein that this hypothesis is not necessary for the existence of the localized states,
i.e. states without velocity. Nevertheless such states exhibit an electrical conductivity under the
action of an external electric �eld. We compute herein such an electrical conductivity.

Electrical current. An external electric �eld F directed along, say, the z-axis has the e�ect of
changing Vij in equation (3) into Vij + ϕij where

ϕij = −eF
∫
dr · ϕ∗i (r)zϕj(r) (4)

−e being the electron charge. A constant on-site contribution may also be brought by the electric
�eld, which is not relevant (it amounts to changing the energies Ei by a constant term). We assume

1P. W. Anderson, Phys. Rev. 109 1492 (1958).
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therefore ϕii = 0. It is convenient to represent the matrix elements in (4) as ϕij = −eFasij where
a is a mean inter-site distance and sij is the corresponding (dimensionless) integral. Similarly, the
density of electrical current (along the �eld) is given by

j =
e~
ma4

∑
ij

tija
+
i aj (5)

where

tij = ia

∫
dr · ϕ∗i (r)(∂/∂z)ϕj(r) (6)

and tii = 0.

Localized states. First, we solve the Schrodinger equation (~ = 1)

iȧi = Eiai +
∑

j

Vijaj (7)

within the second-order of the perturbation theory with the initial conditions ai(0) = Ai = δi0.
To this end it is convenient to use the Laplace transform

fi(s) =

∫
dt · e−stai(t) (8)

with the inverse

ai(t) = −(i/2π)

∫ i∞

−i∞
ds · estfi(s) (9)

where all the singularities are in the lhs of the integration contour. From (7) we get

fi =
iAi

is− Ei

+
1

is− Ei

∑
j

Vijfj (10)

and, for Ai = δi0,

fi =
1

is− Ei

Vi0f0 +
1

is− Ei

∑
j

1

is− Ej

VijVj0f0 + ... , i 6= 0 (11)

and

f0 =
i

is− E0

+
1

is− E0

∑
i

1

is− Ei

∣∣V 2
0i

∣∣ f0... . (12)

From (12) we get

f0 =
i

is− E0 −
∑

i |V0i|2 /(is− Ei)
. (13)

This is a dispersion equation which gives the well-known energy shift

E ′
0 = E0 +

∑
i

|V0i|2

E0 − Ei

(14)

within the second-order of the perturbation theory. According to (9) the corresponding amplitude
is a0 ' e−iE′

0t..., where second-order terms ∼ e−iE0t must be included. Similarly, the amplitudes
ai corresponding to equation (11) are

ai '
Vi0

Ei − E0

(
e−iEit − e−iE0

)
+ ... , i 6= 0 (15)
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to the lowest order. The localization probability

|ai|2 '
2 |Vi0|2

(Ei − E0)2
[1− cos(Ei − E0)t] (16)

exhibits quantum beats. One can see that the amplitudes given above represent a localized state.
The extent of localization depends on the range of the matrix elements Vij and the order of the
perturbation theory. The important thing is that such states do not have a velocity. They are
not traveling waves, nor superpositions of travelling waves. In this sense they are localized. This
phenomenon originates in the dependence of the energies Eion the i-sites. It is easy to see that
the perturbation theory does not apply for a degenerate state Ei = E. The wavepackets obtained
by Anderson in the limit s → 02 are not eigenstates of the hamiltonian (2), and the imaginary
part of f0 (denoted by 1/τ by this author) is a spurios result arising from the s → 0-limit. The
energy shift given by (14) cannot be obtained in the limit s → 0. It is obtained by replacing
(approximately) is in (is− Ei)

−1 in (13) by E0 (which is di�erent from zero).

Electrical conductivity. We pass now to computing the electrical conductivity. To the �rst-
order of the perturbation theory equations (10) read

fi =
iAi

is− Ei

+
1

is− Ei

∑
j

Vij
iAj

is− Ej

+ ... (17)

where the initial conditions Ai are not restricted now to the zeroth site and Vij contain now the
matrix elements ϕij according to Vij → Vij + ϕij. The corresponding amplitudes are given by

ai = Aie
−iEit +

∑
j

Vij
Aj

Ei − Ej

(
e−iEit − e−iEjt

)
+ ... . (18)

Making use of these amplitudes in ( 5) we can compute the electrical current within this approx-
imation (lowest-order of the perturbation theory). One can see that the products A∗

iAj entering
the result are proportional to the elements of the density matrix at the initial moment. We as-
sume that the ensemble of electrons are at equilibrium at that moment, so the density matrix
is diagonal and A∗

iAj = ρiδij. In addition we may take the occupation number ρi as given by
ρi = ne−βEi in the �rst approximation, where n is the electron density and β = 1/T is the inverse
of the temperature. With this assumption we get the electrical current

j =
e~
ma4

∑
ij

[
ρj

tijVji

Ei − Ej

(
ei(Ei−Ej)t − 1

)
+ h.c.

]
. (19)

This is an adiabatic current, because the Joule heat, which is a second-order e�ect, is neglected.3

We average the above current over the oscillations periods, so the oscillating term in (19) disap-
pears. Then, in order to simplify the discussion, we limit ourselves to the nearest neigbours, and
put for them tij = t, Vij = V and ϕij = ϕ (sij = s and ϕ = −eFas in equation (4)).4 Then, the
current becomes

j =
2e~
ma4

∑
〈ij〉

t(V − eFas)
ρi

Ei − Ej

(20)

2P. W. Anderson, loc. cit.
3See for instance W. Kohn and J. M. Luttinger, Phys. Rev. 108 590 (1957).
4It is worth noting that tijmust have a real part. If it is purely imaginary (as for instance for bound, localized,

atomic orbitals in equation (6)), then the conductivity is vanishing. This requires ϕi(r) to be of the form eiκrui(r),
with κ real and localized (bound, atomic-like orbitals) ui(r).
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and the electrical conductivity is given by

σ = −2e2~
ma3

st
∑
〈ij〉

ρi

Ei − Ej

(21)

(from j = σF ).

First, we note that, according to (20), there exists an electron current even in the absence of
the electrical �eld. This is indeed a natural consequence of our assumption made above for ρi,
which does not correspond to equilibrium of the ensemble with a non-vanishing transfer matrix
Vij. However, we may assume that the transfer matrix Vij is very small, so the electron current
is vanishing and the equilibrium is preserved. At the same time we assume that the electric �eld
F is su��ciently strong in comparison with V in order to have an electrical conductivity as that
given by (21). The conductivity given by (21) can also be writen as

σ = − e2~
ma3

st
∑
〈ij〉

ρi − ρj

Ei − Ej

(22)

or

σ = −2e2~
ma3

st
∑

i

(∂ρi/∂Ei) (23)

if ρi does not vary much from site to site. For ρi = ne−βEi we get

σ =
2e2~
ma3

stNeβ (24)

where Ne is the number of electrons. It is worth noting that it goes like 1/T , which is known
as the Bloch law5 (the equilibrium electrical conductivity for travelling electron wavepackets goes
like 1/T 2 in the high-temperature limit). In the limit of vanishing temperatures the Fermi-Dirac
distribution employed in (23) leads to

σ =
2e2~
ma3

stNe/W (25)

where W is the width of the uniform energy distribution.

Frequency-dependent conductivity. If the electrical �eld is of the form F ∼ eiωt then equation
(10) becomes

fi(s) =
iAi

is− Ei

+
1

is− Ei

∑
j

Vijfj(s) +
1

is− Ei

∑
j

ϕijfj(s− iω) . (26)

This equation can be solved as above within the lowest order of the perturbation theory. Under
the same assumptions as those employed before we get the frequency-dependent (ac) conductivity

σ(ω) = −2e2~
ma3

st
∑
〈ij〉

ρi(Ei − Ej)
2

(Ei − Ej)2 − ω2
(27)

where the frequency ω is assumed to be much smaller than the frequencies Ei −Ej. In the static
limit σ(0) coincides with the (dc) conductivity given by (21). We can have a representation of the
form σ(ω) = σ(0)(1 + ω2/∆2), where ∆ is an energy cuto� such as ω � ∆ � W . It depends on

5F. Bloch, Z. Phys. 59 208 (1930).
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the particular form of the distribution of the energies Ei for an energy scale comparable with ω.
This requires additional hypotheses about such a distribution.

Approach to equilibrium. We leave aside the normalization factor and de�ne the density
matrix as ρij = a+

i aj. It satis�es the master equation

−i d
dt
ρij = ωijρij +

∑
k

(V ∗
ikρkj − Vjkρik) (28)

corresponding to the hamiltonian given by (2), where ωi = Ei − Ej. One can see that ρij is not
diagonal in general, as for equilibrium. Conversely, if ρ is diagonal (in the energy representation)
then it is constant in time and if it is constant in time then it is diagonal.

We solve this equation up to relevant contributions within the second-order of the perturbation
theory. To this end, the most convenient way is to compute directly ρij. We assume that the
interaction is turned on adiabatically from t = −∞ to t = 0, according to an exponential factor
eαt, α→ 0. Equation (10) remains valid, with Ai = ai(−∞). It is easy to see that it leads to

fi =
iAi +

∑
j Vij [iAj/(is− Ej)]

is− Ei −
∑

j |Vij|2 /(is− Ej)
+O(V 2) . (29)

We can see that the energy is renormalized according to the well-known energy shift

E ′
i = Ei +

∑
j

|Vij|2

ωij

(30)

within the second-order of the perturbation theory (see also (14)). Such corrections to the energy
levels come from closed-loop (ladder) diagrams which contains products of the form VijVjk...Vli.
The amplitudes ai corresponding to (29) are given by

ai = Aie
−iE′

it +
∑

j

Vij
Aj

ωij

(
e−iEit − e−iEjt

)
+O(V 2) . (31)

We get the density matrix

ρij = A∗
iAje

iω′ijt +
∑

k Vjk
A∗

i Ak

ωjk
(eiωijt − eiωikt) +

+
∑

k V
∗
ik

A∗
kAj

ωik
(eiωijt − eiωkjt) +O(V 2) .

(32)

At t = 0 the V -terms in (32) are vanishing and we are left with a density matrix corresponding
to a free ensemble of electrons with energy levels E ′

i. Averaging the oscillating term exp(iω′ijt) in
(32) we get a diagonal density matrix constant in time as corresponding to the equilibrium. It is
therefore justifed to use ρi for equilibrium in computing the electrical current.

Let us assume now that we have equilibrium at t = 0, i.e. A∗
iAj = ρ0

i δij. Then, from (32) we get

ρij = ρ0
i δij − Vji

eiωijt − 1

ωij

(ρ0
i − ρ0

j) . (33)

It is the solution of the equation of motion

i
d

dt
ρij = Vjie

iωijt(ρ0
i − ρ0

j) (34)
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which agrees with (28) within the �rst-order of the perturbation theory. It is worth noting that
the o�-diagonal term in (33) is proportional to the corresponding term in the electrical current
given by (19).

We average the oscillating terms in (33) and (34) over a time τ much longer than the periods E−1
i

according to 〈
eiωijt

〉
=

1

iωijτ

(
eiωijτ − 1

)
. (35)

Then we average again over τ and get 〈
eiωijt

〉
= − 1

iωijτ
. (36)

Equations (33) and (34) become

ρij = ρ0
i δij +

Vji

ωij

(ρ0
i − ρ0

j) (37)

and respectively
d

dt
ρij =

Vji

ωijτ
(ρ0

i − ρ0
j) , (38)

or
d

dt
ρij =

1

τ
(ρij − ρ0

i δij) . (39)

This equation describes the evolution of the ensemble toward non-equilibrium. Making t→ −t it
will describe the approach to equilibrium. The diagonal term reads then

d

dt
ρi = −1

τ
(ρi − ρ0

i ) ; (40)

it is the Boltzmann equation with the collisions term in its rhs. The solution is

ρi − ρ0
i = C0

i e
−t/τ (41)

where C0
i is the initial condition at the moment t = 0 of non-equilibrium. For t→∞ the density

matrix approaches the equilibrium value ρi → ρ0
i . Similarly the o�-diagonal terms in (39) give

ρij = C0
ije

−t/τ . (42)

They are vanishing at equlibrium for t→∞.

The relaxation time τ remains undetermined. Its minimum value is of the order of E−1
i ; it

corresponds to the �uctuations regime.
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