
1

Journal of Theoretical Physics

Founded and Edited by M. Apostol 162 (2007)

ISSN 1453-4428

On some di�raction problems for a scalar wave

M. Apostol
Department of Theoretical Physics, Institute of Atomic Physics,

Magurele-Bucharest MG-6, POBox MG-35, Romania
email: apoma@theory.nipne.ro

Abstract

An approximate method is devised for estimating scalar waves di�racted on various ob-

stacles. It is applied to a semi-in�nite circular pipe, a small aperture in an in�nite screen

and a semi-in�nite plane screen. The method is based upon approximating the e�ect of the

boundary conditions with a surface distribution of sources.

Introduction. We consider �rst a semi-in�nite circular pipe of radius a extending to the half-
plane z < 0 and a scalar �eld ψ obeying the wave (Helmholtz) equation

(∆ + k2)ψ = 0 (1)

where k = ω/c is the wave number, ω is the frequency and c is the velocity of the wave. The
problem is to �nd the �eld ψ with suitable boundary conditions at in�nity and on the surface of the
pipe. We consider the most interesting case ak < 1. This case was considered by Lord Rayleigh[1]
and by Levine and Schwinger[2] for the propagation of sound. The re�ection coe�cient and the
scattering amplitude have been expressed exactly by Levine and Schwinger[2] by quadratures.

Pipe modes. With cylindrical coordinates equation (1) reads

(∂2/∂%2 + ∂/ρ∂%+ ∂2/%2∂ϕ2 + ∂2/∂z2 + k2)ψ = 0 . (2)

Its solutions can be written as ψ = e±iqzeinϕχ(%), where χ satis�es the equation{
%2d2/d%2 + %d/d%+ [(k2 − q2)%2 − n2]

}
χ = 0 (3)

The regular solutions of this equation are the Bessel functions Jn(κ%) of the �rst kind, with n
integer and κ2 = k2 − q2.

These solutions can be used inside the pipe with boundary conditions J
′
n(κa) = 0 (vanishing

normal "velocity") or similar ones. κ is then determined by the zeros of the derivatives of the
Bessel functions which impose lower bounds to the modes frequencies. For instance, the �rst
mode, corresponding to J0(κ%), starts at ka = κa = z1, where z1 ' 3.85 is the �rst zero of
J
′
0(z1) = −J1(z1) = 0. Since we are interested in ak < 1 we choose the plane waves solution

ψ = eikz +Re−ikz (4)

which is the dominant (fundamental) solution of equation (2). It sati�es the boundary condition.
In (4) R is a re�ection coe�cient.
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This solution can be used near the mouth of the pipe (z → −∞). Near the open end of the
pipe the �eld is substantially modi�ed by the open-end boundary condition. There, the wave
propagates in the free space (ouside the pipe). In general, the inside �eld near the open end of the
pipe is given by a superposition of Bessel functions, both of higher order and higher wavevectors,
and imaginary q.

Free space. Outside the pipe it is convenient to use spherical coordinates. The laplacean in
spherical coordinates reads ∆ = ∂(r2∂/∂r)/r2∂r − L2/r2, where L2 = −∂(sin θ∂/∂θ)/ sin θ∂θ −
∂2/ sin2 θ∂ϕ2 is the angular momentum. Its eigenfunctions are the spherical harmonics Ylm,
L2Ylm = l(l + 1)Ylm. With ψ = R(r)Ylm(θ, ϕ) the wave equation (1) becomes

[d(r2d/dr)/r2dr − l(l + 1)/r2 + k2]R = 0 . (5)

The regular solutions of this equation are the spherical Bessel functions jl(kr) of the �rst kind,

jl =
√
π/2krJl+1/2, where Jl+1/2 are the Bessel functions of half-integer order satisfying equation

(3) .

In view of the cylindrical symmetry we can limit ourselves to Yl0 = il
√

(2l + 1)/4πPl(cos θ), where
Pl are the Legendre polyonomials. We can write therefore the wave outside the pipe as a general
superposition

ψ = 2ik
∞∑
l=0

il(2l + 1)flPl(cos θ)jl(kr) . (6)

Having in mind the decompostion of the plane wave in spherical Bessel functions we can see that
the above �eld is a superposition of plane waves. The asymptotic behaviour of this function for
r →∞ is

ψ ∼ 2ik
∞∑
l=0

il(2l + 1)flPl(cos θ) · 1

kr
sin(kr − lπ/2) , (7)

or

ψ ∼
∞∑
l=0

(2l + 1)flPl(cos θ)

[
eikr

r
− (−1)l e

−ikr

r

]
. (8)

The outgoing part of this wave is the scattering wave

ψ ∼ f(θ) · e
ikr

r
(9)

with the scattering amplitude

f(θ) =
∞∑
l=0

(2l + 1)flPl(cos θ) (10)

where fl are the partial scattering amplitudes. Such a �eld can be used outside the pipe, providing
the boundary conditions (vanishing normal derivative on the surface of the pipe) are satis�ed.
Equations (9) and (10) together with (4) provide the framework of the radiation (di�raction)
problem for a scalar wave (fundamental mode) propagating in a semi-in�nite circular pipe.

Approximations. In view of the great di�culties related to satisfying the boundary conditions
it is hopeless (and even useless) to try to get the �eld directly by analytical methods. However,
some reasonable approximations can be made for the radiation problem.

The wave equation with a δ-source

(∆ + k2)ψ = −δ(r− r′) (11)
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has the Green function

G(r− r′) = eik|r−r′|/4π |r− r′| (12)

as a solution (outgoing part). We consider a distribution of sources g(r− r′) on the surface S of
the pipe and write the �eld generated by them as

ψ(r) =
1

4π

∫
S
dr′ · g(r′)G(r− r′) . (13)

This idea was probably �rst used by Bethe,[3] related of course to the Green theorem. In view
of (11) the �eld and its derivatives may have discontinuities on crossing the surface S. Since the
normal derivative is vanishing on both sides of the surface S the �eld has a discontinuity in this
case (the �eld is higher inside than outside, as expected). The method used here is to identify the
asymptotic �eld given by (13) for z → −∞ with the asymptotic wave given by (4) at the mouth
of the pipe (outgoing part). This matching condition gives an integral equation for g, which,
together with the boundary conditions, would solve the problem. This illustrates the principle
that the �eld is entirely determined by its values on the boundaries. The principle of the method
is essentially due to Kircho�. The source function g(r′) may be taken as depending only on z.

There is however a great di�culty in having a useful representation of the integral in (13), due
to the presence of sources near the mouth of the pipe. Since r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)
and r′ = (a cosϕ′, a sinϕ′, z) we have

|r− r′| =
[
r2 + a2 + z2 − 2ar sin θ cos(ϕ′ − ϕ)− 2zr cos θ

]1/2
; (14)

we can see that a power expansion in (13) involves powers of cos θ and sin2 θ (since the ϕ′-
integration leaves only even powers of sin θ). Therefore, we may suggest an expansion of the �eld
given by (13) in Legendre polynomials. Since we want to use this �eld near the open end of the
pipe it is advisable to limit ourselves to a few terms in such an expansion, of the lowest order in
cos θ (in accordance also with ak < 1). We choose therefore a representation of the form

ψ = (f0 + 3f1 cos θ) · e
ikr

r
(15)

for the asymptotic �eld given by (13) and identify it with the corresponding part of the asymptotic
wave given by (4). The coe�cients f0, f1 are related to the source function g. The �eld given
by (15) satis�es the boundary condition near the mouth of the pipe, as it and its derivatives are
vanishing in the limit z → −∞.

Matching condition. The decomposition of the plane wave in spherical Bessel functions is

eikz =
∞∑
l=0

il(2l + 1)Pl(cos θ)jl(kr) . (16)

Its asymptotic form is given by

eikz ∼
∞∑
l=0

il(2l + 1)Pl(cos θ) · 1

kr
sin(kr − lπ/2) (17)

or

eikz ∼ 1

2ik

∞∑
l=0

(2l + 1)Pl(cos θ)

[
eikr

r
− (−1)l e

−ikr

r

]
. (18)
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From the matching condition

[
eikz +Re−ikz

]
out

= (f0 + 3f1 cos θ) · e
ikr

r
(19)

we get the equations
1 +R = 2ikf0 , 1−R = 2ikf1 . (20)

It follows that the re�ection coe�cient can be represented as

R = −1 + 2ikf0 (21)

or R = |R| eiα, where

|R| = (1 + 4kImf0 + 4k2 |f 2
0 |)

1/2
,

α = − arctan [2kRef0/(1 + 2kImf0)] .

(22)

In addition we have f1 = 1/ik − f0.

Conservation of the current. The total amount of incident �eld is given by Ninc = πa2 · 2D,
where D → ∞. Similarly, the amount of re�ected �eld is Nr = πa2 |R|2 · 2D. We identify the
scattered �eld with the �eld given by (15). Its main defect is that it is not valid very close to

the open end of the pipe. The amount of this scattered �eld is Nsc = 2πD
(
2 |f0|2 + 6 |f1|2

)
. The

conservation of the total amount of �eld reads

a2k2 (1− |R|)2 = 2k2 |f0|2 + 6 |1− ikf0|2 + C (23)

where the constant C is necessary to correct for the approximations made. It will be determined
from the condition to have conservation in the limit ak → 0. Equation (23) can also be written as

a2k2 (1− |R|)2 = 12kImf0 + 8k2 |f0|2 + 6 + C . (24)

It is more convenient to write this equation in terms of R, by making use of (21); we get

(2 + a2k2) |R|2 − 2 |R| cosα+ (2− a2k2) + C = 0 . (25)

In the limit ak → 0 we must have |R| = 1 and α = 0; these conditions set the constant C = −2.
Equation (25) is solved for

α = A · ak , |R| = 1− 1

2
A2 · a2k2 . (26)

The coe�cient A remains undetermined. We get also kRef0 = Aak/2 and kImf0 = −1+A2a2k2 .
α is usually written as α = 2ak(l/a), where l is a �ctitious additional length of the pipe (introduced
by Lord Rayleigh). We get l/a = A/2. The exact value is ' 0.6,[2] so A ∼ 1. Indeed, for large
values of k the re�ection coe�cient is vanishing and the continuity of the plane wave eikz and the
forward-scattered wave (Aa/2)(−2)(1/a) at the open end gives A = −1. The phase goes to π with
respect to our conventions and we get A = 1. The results given by (26) agree qualitatively with
the exact results given by Levine and Schwinger.[2]

Cross-section. Making use of f0 = Aa/2 − i/k and f1 = −Aa/2 derived above the scattering
amplitude given by (15) becomes

f(θ) =
Aa

2
(1− 3 cos θ)− i/k . (27)
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The imaginary term in (27) coming from f0 accounts for the re�ected wave R = 1 in the �rst
equation (20). Therefore, it must be omitted from the scattering wave. The cross-section reads
then

|f(θ)|2 = (Aa/2)2(1− 3 cos θ)2 . (28)

It has an extinction point at cos θ = 1/3 and an in�exion point near θ ' π/4. It is large for large
angles θ > π/2), where the approximation is not valid.

As we said above, higher-order Legendre polynomials in the scattering amplitude are more suitable
for larger values of ak. In the limit ak → 0 the cross-section is practically independent of θ, and
we can limit ourselves to f0 in the expansion of the scattering amplitude.

A small circular aperture in an in�nite screen. The related problem of di�raction of a
scalar wave through a small aperture in an in�nite screen was considered by Bethe[3] and also by
Levine and Schwinger,[4] especially for resonant cavities of microwaves. An exact representation
of the solution has been given by Bouwkamp.[5] An approximate solution is also known as the
Kircho� solution and another as the Rayleigh solution.

We consider a small circular aperture of radius a in an in�nite screen and an incident plane
wave perpendicular to the screen. The boundary conditions consist in the vanishing of the �eld
on the screen. Due to these boundary conditions the re�ection coe�cient has a phase near π
(corresponding to nodes on the screen), so we use the asymptotioc wave (4) in the form

ψ = eikz −Re−ikz . (29)

We consider the screen thin, but still of a �nite length, so a cos θ-term is present in (14). The
scattered wave is therefore assumed to be of the form given by (15). The matching condition gives
the same equations (20) with R changed into −R:

1−R = 2ikf0 , 1 +R = 2ikf1 . (30)

The conservation of the current (equation (25)) gives the equation

(2 + a2k2) |R|2 + 2 |R| cosα+ (2− a2k2) + C = 0 (31)

with C = −6 for |R| = 1 and α = 0 in the limit ak → 0, i.e.

(2 + a2k2) |R|2 + 2 |R| cosα− (4 + a2k2) = 0 . (32)

Since the tickness of the screen is assumed to be very small the shift l is vanishing; therefore we
put α = A · (ak)2. We get from (32) |R| = 1 + A2(ak)4/6 and f0 = −f1 = −A(ak)2/2k. The
scattering amplitude is therefore

f(θ) = −(A/2k)(ak)2(1− 3 cos θ) (33)

and the cross-section goes like (ak)4 in agreement with Rayleigh scattering. The re�ection coe�-
cient |R| is increased in order to compensate for the transmitted wave when the aperture is open.
It follows that the transmission coe�cient is t2 = A2(ak)4/6, in agreement with previous results.

A semi-in�nite plane screen. We consider a semi-in�nite plane screen with the edge along the
x-axis and an incident plane wave propagating perpendicular to the screen along the z-axis. The
problem does not depend on the coordinate x, so it is convenient to use cylindrical coordinates
z = % cos θ and y = ρ sin θ. The boundary conditions are either a vanishing �eld (nodes) or a
vanishing normal derivative on the screen. This is a famous problem, because it has been solved
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exactly, in the sense that an integral representation has been given for the �eld (in the more
general case of a wedge), by Sommerfeld;[6] additional asymptotic terms has been computed by
Pauli.[7]

The asymptotic form of the wave for z → −∞ is

ψ = eikz +Re−ikz (34)

where R equals 1 or −1 depending on the boundary conditions. We choose R = 1. The di�racted
wave, created by sources on the screen, is a superposition of adequate solutions of the Bessel
equation (3) (with q = 0). We choose the outgoing waves which are given by Hankel's functions
Hn(kρ) of the �rst kind. Their asymptotic behaviour is given by

Hn(kρ) ∼
√

2/πkρei(kρ−πn/2−π/4) (35)

(for n > 0; H−n = (−1)nHn; the factor (−1)n is incorporated in fn below). It is important to
stress upon the fact that this behaviour is valid for �xed n and kρ → ∞. In addition, these
functions are divergent at the origin. We take therefore for the di�racted �eld

ψ =
∑
n

fnHn(kρ)einθ (36)

where fn are partial scattering amplitudes.

We use the expansion of the plane wave

eikz = eikρ cos θ =
∞∑

n=−∞
inJn(kρ)einθ (37)

and its asymptotic behaviour

eikz ∼
√

2/πkρ
∞∑

n=−∞
in cos(kρ− πn/2− π/4)einθ . (38)

If we extend formally this asymptotic behaviour to n→ ±∞ we would get

eikz ∼
√

2π/kρ
[
δ(θ)ei(kρ−π/4) + δ(π − θ)e−i(kρ−π/4)

]
. (39)

According to the matching principle we identify the asymptotic forms (34) and (36) for z → −∞
(θ ∼ π) and get fn = (−i)n/2. The scattering wave is given therefore by

ψ =
1

2

∑
n

(−i)nHn(kρ)einθ ∼ 1√
2πkρ

∑
n

(−1)nei(kρ−π/4)einθ . (40)

The scattering amplitude f(θ) normalized by |ψ|2 ρdρdθ = |f(θ)|2 dρdθ can be represented as

f(θ) =
1√
2πk

e−iπ/4
∑
n

(−1)neinθ . (41)

As said above, this representation is valid for a limited number of indices n for any �xed ρ,
say n < kρ. For �xed ρ and large k many n enter the scattering amplitude, and we have a
rapid succession of extinctions (di�raction fringes); it corresponds to particle scattering. For low
k we have a few di�raction fringes. For instance, the �rst-order contributons to the scattering
amplitude give the angular dependence 1 − 2 cos θ; it has an extinction point at θ = π/6. It is
a Fraunhofer di�raction. For large kρ we may integrate over n in (41) up to n ∼ kρ; we get
f ∼ [sin kρ(π − θ)] /(π − θ) which gives Fresnel fringes near the classical path.

Acknowledgments. All the mathematical formulae used herein are taken from Abramowitz and
Stegun[8] and from Gradshteyn and Ryzhik.[9]
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