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Abstract

The quanta of electrical conductance is derived for a one-dimensional electron gas both by

making use of the quasi-classical motion of a quantum �uid and by using arguments related to

the uncertainty principle. The result is extended to a nanowire of �nite cross-section area and

to electrons in magnetic �eld, and the quantization of the electrical conductance is shown.

Recently, there is a considerable deal of interest in the quantized electrical conductance of atomic
and molecular conductors like nanowires, narrow atomic constrictions, quantum dots, carbon nan-
otubes, etc.[1]-[11] The e�ect was originally predicted by Landauer.[12]-[14] We present here a new
derivation of the quanta of electrical conductance for a one-dimensional electron gas, by making
use of two procedures: the quasi-classical approach to the one-dimensional quantum electron �uid
and by using arguments related to the uncertainty principle. We extend the results to the quan-
tization of the electrical conductance in a quasi one-dimensional nanowire of �nite area of the
cross-section, where the electron motion is con�ned to the transversal direction while the free
longitudinal motion is subjected to the action of the electric �eld. We apply also the present
approach to electrons in a magnetic �eld.

We consider �rst a purely one-dimensional (free) electron gas in a conductor of length l and cross-
section area A. We consider a purely quantum transport in such a conductor, without scattering or
thermal e�ects. The electron density is given by n = gkF /πA, where kF is the Fermi wavevector
and g is a degeneracy factor (e.g. g = 2 for spin 1/2). In the presence of an electric �eld E
along the conductor the density is modi�ed at the Fermi level by δn, such that, locally, higher
energy levels are occupied for the electrons moving oppositely the �eld and Fermi energy levels
are depleted for electrons moving along the �eld. We take the �eld oriented along the negative
x-direction, so the net �ow of electrons takes place along the positive x-direction. The electric
�eld is su�ciently weak and slowly varying such that the electrons acquire a displacement u(x)
which obeys the quasi-classical equation of motion mü = eE, where m is the electron mass and
−e is the electron charge. The change in the electron density is given by δn = −n∂u/∂x, such
that the density of electrons participating in the electrical �ow is −δn. From these two equations
we get straightforwardly

m
d

dt
δn = −enE/vF (1)

for a constant �eld, where vF is the Fermi velocity. This is the basic equation for computing the
electrical current.1 Indeed, the electrical �ow (charge per unit area of the cross-section and per unit

1The quasi-classsical motion of the one-dimensional quantum electron gas was previously discussed in more
detail in Ref. 15.



2 J. Theor. Phys.

time) is given by j = −e(− ˙δn)l = −e2nEl/mvF , hence the well-known electrical conductivity σ =
e2nl/mvF . The electrical �ow is negative, i.e. it is oriented along the electrical �eld as it should
be. For the one-dimensional gas n = gkF /πA and vF = ~kF /m, so we get σ = g(2e2/h)(l/A),
where h is Planck's constant (~ = h/2π). The electrical conductance is G = σA/l = g(2e2/h).
We can see that the electrical conductance is quantized in units G0 = 2e2/h, according to the
degeneration factor g.

It is worth noting that the same result can be obtained by applying the uncertainty principle.
Indeed, the equation of motion mdu̇/dt = eE can also be written as mu̇ = eEτ , where τ is
the time of motion. The electrical �ow can be written as j = −eu̇δn, where δn = gδkF /πA
is the density of electrons participating in conduction. Combining these two equations we get
j = −e2Eτδn/m and σ = e2τδn/m = ge2τδkF /πAm, which is another representation for the
electrical conductivity. Now, we use the uncertainty principle in the form τ = δnF (h/δE), where
δnF = lδkF /2π and the change in energy is given by

δE =
~2

2m
(kF + δkF )2 +

~2

2m
(kF − δkF )2 − ~2

m
k2

F =
~2

m
(δkF )2 . (2)

The motion time given by the uncertainty principle corresponds to δnF cycles of quanta of action
h. The change in energy given by (2) is also δE = −eV , where V is the voltage drop, which shows
that the voltage is also quantized. We consider the energy levels su�ciently dense as to allow a
continuous change in the electrical potential. Combining all these formula given above we arrive
again at the conductance G = gG0.

Within the quasi-classical description by means of the displacement �eld u the electrical �eld
is given by E = dϕ/du, where ϕ is the electrical potential, such that the equation of motion
mü = eE ensures the conservation of energy. This equation of motion can also be written as
Π̇ = eE = edϕ/du, or u̇ = edϕ/dΠ, where Π = mu̇ is the momentum associated to the �eld
u. One may check indeed that Π = ~δkF by making use of equation (2), so we may also write
u̇ = edϕ/dp = edϕ/~dkF . Now, the electrical �ow j = −eu̇δn becomes j = −e2(dϕ/~dkF )δn =
−e2(dn/~dkF )V (since δn = (dn/dϕ)V ), hence the electrical current I = jA = −gG0V . This was,
in essence, the original argument of Landauer.[14] One can see that the conductance is proportional
to the density of states.2

We consider next a nanowire of thickness d (A = d2) and a con�ned transversal motion of the
electrons, such that the energy levels are given by

E =
~2k2

2m
+

π2~2

2md2
(n2

1 + n2
2) , (3)

where n1,2 are positive integers.
3 We have now multiple branches of one-dimensional electron gas

and the Fermi wavevector depends on the duplex (n1, n2). Therefore, the electron density is given
by

n = (g/πA)
∑

(n1,n2)

kF (n1, n2) (4)

and the electrical conductivity σ = e2nl/mvF becomes now

σ = (ge2l/πAm)
∑

(n1,n2)

kF (n1, n2)/vF (n1, n2) . (5)

2See in this respect Ref. 3.
3We impose �xed-ends boundary conditions for the transversal motion as for electrons con�ned in a potential

well (see Refs. 1-3).
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By equation (3), the Fermi velocity is vF = ~kF /m, such that the above electrical conductivity
becomes σ = gG0(l/A)M and the electrical conductance is quantized according to G = gG0M ,
where

M =
∑

(n1,n2)

1 (6)

is the number of branches in the electron spectrum (number of channels).

Now we want to compute the number of channels M for this model. We assume a dense distribution
of spectrum branches and write n2

1 + n2
2 = ρ2 in equation (3). The chemical potential µ is

established by the equalities

µ =
~2k2

F

2m
+

π2~2

2md2
ρ2 , (7)

hence the Fermi wavevector kF which is used in equation (4). The number of channels is then given
by M = πN2

t , where Nt is the highest integer ρ satisfying equation (7). It is given approximately
by N2

t = 2md2µ/π2~2. Equation (4) can then be written as

n = (2g/A)

∫ Nt

0

dρ · ρ
√

2mµ/~2 − π2ρ2/d2 . (8)

This equation gives a relationship between Nt and µ, which, together with the equation N2
t =

2md2µ/π2~2 written above, serves to determine both the chemical potential µ and the number
Nt of transverse channels, hence the number total of channels M , as a function of the density
of the electron gas. The integral in equation (8) can be performed straightforwardly. We get
Nt = (3N/2πg)1/3 and M = π1/3(3N/2g)2/3, where N is the total number of electrons. The
electrical conductance reads G = G0(πg)1/3(3N/2)2/3.

As it is well-known, for electrons in a magnetic �eld H we can write the energy levels as

E =
~2k2

2m
+ ~ωc(n + 1/2) + µBHσ , (9)

where ωc = eH/mc is the cyclotron frequency, µB = e~/2mc is the Bohr magneton and σ = ±1.
Equation (5) gives now G = G0M , where

M =
∑
nσ

1 . (10)

It is approximately M = 2nl, which is in fact twice the number of spectrum branches. We have
also µ = ~ωcnl, where µ is the chemical potential given by

n =
4eH

πch

∫ nl

0

√
2mµ/~2 − 2mωcn/~ , (11)

which is similar with equation (8). Here it is worth noting the well-known transversal degeneracy
2eHA/ch (� 1) of the energy levels in the magnetic �eld. We get M = (3

√
π/4

√
2)2/3n2/3ch/eH

(which should be much larger than unity). It is worth emphasizing that the electrical conductance
(or magnetoresistance) can be varied in quantum steps by varying the magnetic �eld, as it is
well-known.

The inclusion in such a treatment of interaction, scattering or thermal e�ects (or �nite-size bound-
ary e�ects), as well as other particularities,4 renders the problem a bit more complicated. Generally
speaking, the starting point in such a treatment is the notion of elementary excitations and their
lifetime. Particularly interesting is this problem for multi-wall carbon nanotubes, due to their
speci�c electron energy structure.[6]

4
e.g. for specular re�ection in a cylindrical conductor in magnetic �eld see Ref. 8.
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