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Abstract

The quanta of electrical conductance is derived for a one-dimensional electron gas both by
making use of the quasi-classical motion of a quantum fluid and by using arguments related to
the uncertainty principle. The result is extended to a nanowire of finite cross-section area and
to electrons in magnetic field, and the quantization of the electrical conductance is shown.

Recently, there is a considerable deal of interest in the quantized electrical conductance of atomic
and molecular conductors like nanowires, narrow atomic constrictions, quantum dots, carbon nan-
otubes, etc.[1]-[11] The effect was originally predicted by Landauer.[12]-[14] We present here a new
derivation of the quanta of electrical conductance for a one-dimensional electron gas, by making
use of two procedures: the quasi-classical approach to the one-dimensional quantum electron fluid
and by using arguments related to the uncertainty principle. We extend the results to the quan-
tization of the electrical conductance in a quasi one-dimensional nanowire of finite area of the
cross-section, where the electron motion is confined to the transversal direction while the free
longitudinal motion is subjected to the action of the electric field. We apply also the present
approach to electrons in a magnetic field.

We consider first a purely one-dimensional (free) electron gas in a conductor of length [ and cross-
section area A. We consider a purely quantum transport in such a conductor, without scattering or
thermal effects. The electron density is given by n = gkr/mA, where kg is the Fermi wavevector
and ¢ is a degeneracy factor (e.g. g = 2 for spin 1/2). In the presence of an electric field £
along the conductor the density is modified at the Fermi level by dn, such that, locally, higher
energy levels are occupied for the electrons moving oppositely the field and Fermi energy levels
are depleted for electrons moving along the field. We take the field oriented along the negative
x-direction, so the net flow of electrons takes place along the positive x-direction. The electric
field is sufficiently weak and slowly varying such that the electrons acquire a displacement u(x)
which obeys the quasi-classical equation of motion miu = eFE, where m is the electron mass and
—e is the electron charge. The change in the electron density is given by on = —ndu/0x, such
that the density of electrons participating in the electrical flow is —dn. From these two equations
we get straightforwardly

m%én = —enk/vp (1)
for a constant field, where vg is the Fermi velocity. This is the basic equation for computing the
electrical current.! Indeed, the electrical flow (charge per unit area of the cross-section and per unit

!The quasi-classsical motion of the one-dimensional quantum electron gas was previously discussed in more
detail in Ref. 15.
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time) is given by j = —e(—dn)l = —e*nEl/muvp, hence the well-known electrical conductivity o =
e*nl/mur. The electrical flow is negative, i.e. it is oriented along the electrical field as it should
be. For the one-dimensional gas n = gkp/mA and vp = hkr/m, so we get o = g(2¢*/h)(1/A),
where h is Planck’s constant (i = h/27). The electrical conductance is G = 0 A/l = g(2€?/h).
We can see that the electrical conductance is quantized in units Gy = 2¢2?/h, according to the
degeneration factor g.

It is worth noting that the same result can be obtained by applying the uncertainty principle.
Indeed, the equation of motion mdi/dt = eE can also be written as mu = eET, where 7 is
the time of motion. The electrical flow can be written as j = —eudn, where on = gdkp/mA
is the density of electrons participating in conduction. Combining these two equations we get
j = —e’Etén/m and 0 = e27én/m = ge?tékp/mAm, which is another representation for the
electrical conductivity. Now, we use the uncertainty principle in the form 7 = dnp(h/JE), where
ong = l0kr/27 and the change in energy is given by
2 2 2 2

58 = 2 (hy 0k + o (ke — 0 — kg = (k2 2)
The motion time given by the uncertainty principle corresponds to dnpg cycles of quanta of action
h. The change in energy given by (2) is also ' = —eV/, where V' is the voltage drop, which shows
that the voltage is also quantized. We consider the energy levels sufficiently dense as to allow a
continuous change in the electrical potential. Combining all these formula given above we arrive
again at the conductance G = gGj.

Within the quasi-classical description by means of the displacement field u the electrical field
is given by E = dp/du, where ¢ is the electrical potential, such that the equation of motion
mii = elE ensures the conservation of energy. This equation of motion can also be written as
Il = ¢E = edp/du, or @ = edyp/dIl, where II = mu is the momentum associated to the field
u. One may check indeed that IT = hdkp by making use of equation (2), so we may also write
u = edyp/dp = edp/hdkp. Now, the electrical flow j = —eudn becomes j = —e?(dyp/hdkp)dn =
—e2(dn/hdkr)V (since dn = (dn/dp)V), hence the electrical current [ = jA = —gGoV. This was,
in essence, the original argument of Landauer.|14] One can see that the conductance is proportional
to the density of states.?

We consider next a nanowire of thickness d (A = d?) and a confined transversal motion of the
electrons, such that the energy levels are given by

n2k?  w2h?
E=—+ " (p? 2
2m + 2md2 (nl + n?) ? (3)

where n; 5 are positive integers.®> We have now multiple branches of one-dimensional electron gas
and the Fermi wavevector depends on the duplex (ny,ny). Therefore, the electron density is given
by

n=(g/rA) 3 kp(ni,n) (4)

(n1,n2)

and the electrical conductivity o = e?nl/muvp becomes now

o = (ge’l/mAm) Z kr(ni,ng)/ve(ny,ne) . (5)

(nl ,TLQ)

2See in this respect Ref. 3.
3We impose fixed-ends boundary conditions for the transversal motion as for electrons confined in a potential
well (see Refs. 1-3).



J. Theor. Phys. 3

By equation (3), the Fermi velocity is vp = hkp/m, such that the above electrical conductivity
becomes o0 = gGo(I/A)M and the electrical conductance is quantized according to G = gGoM

where

M= )1 (6)

(n1,m2)

is the number of branches in the electron spectrum (number of channels).
Now we want to compute the number of channels M for this model. We assume a dense distribution
of spectrum branches and write n? + n3 = p? in equation (3). The chemical potential p is
established by the equalities
R’k: mh? .
om ' 2ma2” (™
hence the Fermi wavevector kr which is used in equation (4). The number of channels is then given
by M = wN?, where N; is the highest integer p satisfying equation (7). It is given approximately
by N? = 2md*n/m*h?. Equation (4) can then be written as

H =

n=(20/4) [ dp- o/l =] ®)

This equation gives a relationship between N; and pu, which, together with the equation N? =
2md?u/m*h? written above, serves to determine both the chemical potential y and the number
N, of transverse channels, hence the number total of channels M, as a function of the density
of the electron gas. The integral in equation (8) can be performed straightforwardly. We get
N; = (3N/27g)'/? and M = 7'/3(3N/29)%3, where N is the total number of electrons. The
electrical conductance reads G = Go(7g)'/3(3N/2)%/3.

As it is well-known, for electrons in a magnetic field H we can write the energy levels as
h2k?
2m

where w. = eH/mc is the cyclotron frequency, ug = eh/2mec is the Bohr magneton and o = +1.
Equation (5) gives now G = GoM, where
M=)1. (10)

It is approximately M = 2n;, which is in fact twice the number of spectrum branches. We have
also = hw.n;, where p is the chemical potential given by

4€H/ V2mp/h2 — 2mwen/h | (11)

mch
which is similar with equation (8). Here it is worth noting the well-known transversal degeneracy
2eH A/ch (> 1) of the energy levels in the magnetic field. We get M = (3/7/4v/2)?/*n?/3ch/eH
(which should be much larger than unity). It is worth emphasizing that the electrical conductance
(or magnetoresistance) can be varied in quantum steps by varying the magnetic field, as it is
well-known.

E = + hwe(n+1/2) + ugHo (9)

The inclusion in such a treatment of interaction, scattering or thermal effects (or finite-size bound-
ary effects), as well as other particularities,* renders the problem a bit more complicated. Generally
speaking, the starting point in such a treatment is the notion of elementary excitations and their
lifetime. Particularly interesting is this problem for multi-wall carbon nanotubes, due to their
specific electron energy structure.|[6]

4e.g. for specular reflection in a cylindrical conductor in magnetic field see Ref. 8.
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