
1Journal of Theoretial PhysisFounded and Edited by M. Apostol 166 (2008)ISSN 1453-4428Density osillations in a model of water and other similar liquidsM. Apostol and E. PreoteasaInstitute of Atomi Physis,Magurele-Buharest MG-6, POBox MG-35, Romaniaemail: apoma�theory.nipne.roAbstratIt is suggested that the dynamis of liquid water has a omponent onsisting of O−2z(oxygen) anions and H+z (hydrogen) ations, like an eletrolyte, where z is a (very small)redued e�etive eletron harge. Suh a model may apply to other similar liquids. Theeigenmodes of density osillations are derived for suh a two-speies ioni plasma, inludedthe sound waves, and the dieletri funtion is alulated. The plasmons may ontribute tothe elementary exitations in a model introdued reently for the thermodynamis of liquids.It is shown that the sound anomaly in water an be understood on the basis of this model.The results are generalized to an asymmetri short-range interation between the ioni speiesas well as to a multi-omponent plasma, and the struture fator is alulated.Introdution. As simple as it may appear, water is still a omplex liquid involving variousinterations as well as kinemati and dynami orrelations. It is widely agreed that the watermoleule in liquid water preserves to some extent its integrity, espeially the diretionality of the
sp3-oxygen orbitals, though it may be a�eted substantially by hydrogen bonds.1 As suh, it isoneived that water has a moleular eletri moment, an intrinsi polarizability and hinderedrotations (librations) whih may a�et its orientational polarizability. We examine herein anotherpossible omponent of the dynamis of the liquid water, as resulting from the dissoiation of thewater moleule.The water moleule H2O has two H − O (hydrogen-oxygen) bonds whih make an angle of a
109◦ in aordane with the tetragonal symmetry of the four hybridized sp3-oxygen orbitals.The "spherial" diameter of the water moleule is approximately 2.75Å and the inter-moleularspaing in liquid water under normal onditions is a ∼ 3Å. This suggests that the water moleulein liquid water, while preserving the diretionality of the oxygen eletroni orbitals, might bedissoiated to a great extent, like in an eletrolyte. Dissoiation models whih assume OH−−H+or OH− − H3O

+ pairs are known for water. This indiates a ertain mobility of hydrogens(and oxygens). We analyze herein the hypothesis that water may onsist of O−2z anions of mass
M = 16amu and density n and H+z ations (protons) of mass m = 1amu and density 2n, where
z is a very small redued e�etive eletron harge (the atomi mass unit is 1amu ≃ 1.7×10−24g.).We shall see that suh a hypothesis adds another dimension to the dynamis of water. Suh amodel may apply to other similar liquids.Due to their large mass the ions have a lassial dynamis. Herein, we limit ourselves to onsideringthe ions motion in water under the ation of the Coulomb potentials ϕOO = 4z2e2/r, ϕHH = z2e2/r1L. Pauling, General Chemistry, Dover, NY (1982); Water: A Comprehensive Treatise, ed. by F. Franks,Plenum, NY (1972).



2 J. Theor. Phys.and ϕOH = −2z2e2/r, where −e (≃ −4.8 × 10−10esu) is the eletron harge and r denotes thedistane between the ions. For stability, it is neessary also to introdue a short-range repulsive(hard-ore) potential χ.2 It is shown that in the limit z → 0 water may exhibit an anomaloussound-like mode beside both the ordinary (hydrodynami) one and the non-equilibrium sound-like exitations governed by short-range interations. We ompute the density osillations for thismodel, the dieletri funtion, the struture fator, and extend the model to a multiomponentplasma, inluding an asymmetri short-range interation between ion speies.Plasmons in a jellium model. Let us onsider one speies of harged partiles, with harge
−ze, ontinuously distributed with density n in a neutralising rigid ontinuous bakground ofpositive harge. This is the well-known jellium model.3 The Coulomb interation reads

U =
1

2

∫

drdr′ϕ(r− r′)δn(r)δn(r′) , (1)where δn(r) denotes a small disturbane of density (whih preserves the global neutrality). Weintrodue the Fourier representation
δn(r) =

1√
N

∑

q

δn(q)eiqr , δn(q) =
n√
N

∫

drδn(r)e−iqr , (2)where N = nV is the total number of partiles in volume V . Similarly,
ϕ(r) =

1

V

∑

q

ϕ(q)eiqr , ϕ(q) =

∫

drϕ(r)e−iqr , (3)where ϕ(q) = 4πz2e2/q2 is the Fourier transform of the Coulomb potential (interation). TheCoulomb interation given by (1) beomes
U =

1

2n

∑

q

ϕ(q)δn(q)δn(−q) (4)(where the q = 0- term is exluded by the positive bakground).The small variations δn(r) in density an be represented as δn = −ndivu, where u is a dis-plaement vetor.4 We emphasize that suh a representation holds for qu(r) ≪ 1. It follows
δn(q) = −inqu(q), and one an see that the Coulomb interation involves only longitudinalomponents of the displaement vetor u(q) along the wavevetor q. Therefore, we may write
u(q) = (q/q)u(q), with δn∗(−q) = δn(q), u∗(−q)=u(q) and u∗(−q) = −u(q). The Coulombinteration (4) beomes

U = −n

2

∑

q

q2ϕ(q)u(q)u(−q) . (5)The kineti energy assoiated with the oordinates u(q) is given by
T =

1

2

∫

drnmu̇2 = −1

2
m
∑

q

u̇(q)u̇(−q) , (6)2See also in this respet E. Teller, Revs. Mod. Phys. 34 627 (1962); E. H. Lieb and B. Simon, Phys. Rev.Lett. 31 681 (1973); Adv. Math. 23 22 (1977); L. Spruh, Revs. Mod. Phys. 63 151 (1991). As it is well-known,a lassial plasma with Coulomb interation only is unstable.3See, for instane, D. Pines, Elementary Exitations in Solids, Benjamin, NY (1963).4M. Apostol, Eletron Liquid, apoma, MB (2000).



J. Theor. Phys. 3where m denotes the partile mass. The equations of motion obtained from the Lagrange funtion
L = T − U are

mü(q) + nq2ϕ(q)u(q) = 0 , (7)whih leads to the well-known plasma osillations with frequeny given by ω2
p = 4πnz2e2/m.Plasma osillations with two speies of ions. We apply the above model to the two speiesof ions O−2z and H+z. The hange in density is assoiated with a displaement vetor v in theformer and a displaement vetor u in the latter. First we note that the Fourier transforms ofthe Coulomb potentials are given by ϕOO = 4ϕ(q), ϕHH = ϕ(q) and ϕOH = −2ϕ(q), where

ϕ(q) = 4πz2e2/q2. Therefore, the interations an be written as
UOO = −n

2

∑

q
q2 [4ϕ(q) + χ(q)] v(q)v(−q) ,

UHH = −2n
∑

q
q2 [ϕ(q) + χ(q)]u(q)u(−q) ,

UOH = n
∑

q
q2[2ϕ(q) − χ]u(q)v(−q) ,

(8)where n = N/V is the density of water moleules and the Fourier transform χ of a hard-orepotential has been introdued (the same for both speies). The kineti energy is given by
T = −1

2
M
∑

q

v̇(q)v̇(−q) − m
∑

q

u̇(q)u̇(−q) , . (9)and the equations of motion read
mü + 2nq2(ϕ + χ)u − nq2(2ϕ − χ)v = 0

Mv̈ + nq2(4ϕ + χ)v − 2nq2(2ϕ − χ)u = 0 ,
(10)where we have dropped out the argument q.The solutions of these equations an be obtained straightforwardly. In the long wavelength limit

q → 0 there are two branhes of eigenfrequenies, one given by
ω2

p =
16πnz2e2

µ
(11)orresponding to plasma osillations and another given by

ω2
s =

9nχ

M + 2m
q2 = v2

sq
2 (12)orresponding to sound-like waves propagating with veloity vs given by (12). µ = 2mM/(2m+M)is the redued mass. The plasma osillations are assoiated with antiphase osillations of therelative oordinate (2mu+Mv = 0), while the sound waves are assoiated with in-phase osillationsof the enter-of-mass oordinate (u − v = 0).Polarization. An external eletri �eld arising from a potential φ(r) gives an additional energy

Ui = qi

∫

drφ(r)δni(r) = −i(niqi/n)
∑

q

qφ(q)ui(−q) , (13)



4 J. Theor. Phys.for a speies of ions labelled by i, with eletri harge qi and density ni. We apply this formula tothe two-speies ioni plasma, and get
UH = −2ize

∑

q

qφ(q)u(−q) , UO = 2ize
∑

q

qφ(q)v(−q) (14)Adding these two terms to the lagrangian, the equations of motion given by (10) beome
mü + 2nq2(ϕ + χ)u − nq2(2ϕ − χ)v = −izeqφ

Mv̈ + nq2(4ϕ + χ)v − 2nq2(2ϕ − χ)u = 2izeqφ ,
(15)where we have dropped out the argument q. This is a system of oupled harmoni osillatorsunder the ation of an external fore. In the limit of long wavelengths its solutions are given by

u = izeq
m

φ
ω2

−
2m
3µ

ω2
s

(ω2
−ω2

p)(ω2
−ω2

s)
,

v = −2izeq
M

φ
ω2

−
2M
3µ

ω2
s

(ω2
−ω2

p)(ω2
−ω2

s)
.

(16)On the other hand, equation nidivui = −δni is in fat the Maxwell equation divEi = 4πqiδni,where the eletri �eld is given by Ei = −4πnqiui. We have therefore the internal eletri �elds
Eu = −8πnzeu and Ev = 8πnzev. The polarization P = −(Eu + Ev)/4π is given by

P (q) = 2nze [u(q) − v(q)] =
iq

4π
φ(q)

ω2
p

ω2 − ω2
p

. (17)The external �eld is related to the external potential through D(q) = −iqφ(q) and the dieletrifuntion ε is given by D = εE = ε(D + Eint), where Eint = Eu + Ev is the internal �eld. We getthe dieletri funtion5
ε = 1 − ω2

p/ω
2 , (18)as expeted. As it is well-known, its zero gives the longitudinal mode of plasma osillations.The ωp in the nominator of equation (18) de�nes also the plasma edge: for frequenies lower than

ωp the eletromagneti waves are absorbed (the refrative index is given by n2 = ε). It is well-known that water exhibits indeed a strong absorption in the gigahertz-terrahertz region.6 On theother hand, neutron sattering on heavy water,7 as well as inelasti X-ray sattering,8 revealedthe existene of a dispersionless mode ≃ 4 − 5meV (≃ 1013s−1) in the struture fator, whihmay be taken tentatively as the ωp-plasmoni mode given by equation (11). Making use of thisequation we get ωp ≃ 3 × 1014zs−1(n = 1/a3, a = 3Å), so we may estimate the redued e�etiveharge z ≃ 3 × 10−2.Dieletri funtion. The dieletri funtion given by equation (18) has a singularity for ω = 0,as arising from the exat anellation in the stati limit of the external �eld by the internal �eld.It is plausible to assume that residual polarization �elds are still present in this stati limit, like,5We disregard here the intrinsi and orientational polarizabilities.6See, for instane, K. H. Tsai and T.-M. Wu, Chem. Phys. Lett. 417 390 (2005); A. Padro and J. Marti, J.Chem. Phys. 118 452 (2003); K. N. Woods and H. Wiedemann, Chem. Phys. Lett. 393 159 (2004).7F. J. Bermejo, M. Alvarez, S. M. Bennington and R. Vallauri, Phys. Rev. E51 2250 (1995); C. Petrillo, F.Sahetti, B. Dorner and J.-B. Suk, Phys. Rev. E62 3611 (2000).8F. Sette, G. Ruoo, M. Krish, C. Masiovehio, R. Verbeni and U. Bergmann, Phys. Rev. Lett. 77 83(1996).



J. Theor. Phys. 5for instane, the intrinsi polarizability. In this ase, equation (18) is modi�ed, and the dieletrifuntion is of the type
ε =

ω2 − ω2
p

ω2 + ω2
0

, (19)where ω0 is a plasma frequeny assoiated with the intrinsi, moleular polarizability.9 As suh,it is a very high frequeny, and equation (19) gives a small, negative ontribution to the dieletrifuntion in the stati limit (ω → 0).The dieletri properties of water are still a matter of debate. It is agreed that the permitivitydispersion of water is desribed to some extent by a Debye model of the form ε = a+ b/(1− iωτ),where a and b are semi-empirial parameters and τ ∼ ηa3/T is a relaxation time; η denotesthe visosity and T is the temperature.10 This Debye model assumes mainly an orientationalpolarizability of eletri dipoles, whih, due to the preservation of the diretional harater ofthe O − H bonds, is ompatible with the plasma model suggested here for water. Therefore, theontribution given by equation (19) should be added to the above Debye formula for the dieletrifuntion, whih beomes
ε = a +

b

1 − iωτ
+

ω2 − ω2
p

ω2 + ω2
0

. (20)Parameters a and b in equation (20) are related to the stati permitivity ε0 and high-frequenypermitivity ε∞ through
ε0 = a + b − ω2

p/ω
2
0 , ε∞ = a + 1 . (21)We may neglet ω2

p/ω
2
0 here beause it is too small, and we may also take ε∞ = 1(a = 0). Thestati permitivity ε0 = b is given mainly by the eletri dipoles. Let p be suh an eletri dipole.Its energy in an eletri �eld D is −pD cos θ, where θ is the angle between p and D. The thermaldistribution of suh dipoles is dw ∼ exp(−pD cos θ/T )d(cos θ), .where T denotes the temperature.We get easily the thermal average 〈cos θ〉 = −L(pD/T ), where L(x) = coth x − 1/x is the well-known Langevin's funtion.We take p = 2eze(a/2) = ezea, where a ∼ 3Å and ze is a deloalized redued harge assoiatedwith the H − O dipole. We estimate the argument pD/T of the Langevin's funtion. At roomtemperature, we �nd pD/T ≃ 3 × 10−4Dze. For pD/T = 1 this orresponds to an external �eld

D = 1
3ze

×104esu, or D = 108/zeV/m.11 This is an extremely high �eld, so we are justi�ed to take
pD/T ≪ 1, and L(pD/T ) ≃ pD/3T . We get therefore a polarization P = −np 〈cos θ〉 = np2D/3T ,an internal �eld Eint = −4πP = −4πnp2D/3T , and a permitivity

ε0 = b =
1

1 − 4πnp2/3T
(22)from D = εE = ε(D + Eint). This is the well-known Kirkwood formula.12 For the empirial value9A stati �eld D produes an eletri dipole p = qex, where qe is the eletri harge and x is a small displaementsubjeted to the equation of motion meẍ+ meω

2

px = qeD, where me is the mass of the eletroni loud. Aordingto the plasma model suggested here, we assume that the eletroni loud in the H − O bonds have the sameeigenfrequeny ωp as the H − O ensemble. In the stati limit x = qeD/meω
2

p (polarizability α = q2

e/meω
2

p in
p = αD), and we get a polarization P = p/a3

0
= q2

eD/mea
3

0
ω2

p, where a0 is of the order of the atomi size. Weget an internal �eld Eint = −4πP = −
(

4πq2
e/mea

3

0

)

D/ω2
p = −

(

ω2

0
/ω2

p

)

D, where ω0 is a frequeny of the orderof atomi frequenies. Consequently, the dieletri funtion ε in equation D = εE = ε(D + Eint) is given by
ε ≃ −ω2

p/ω2

0
(ω2

p/ω2

0
≪ 1), whih is preisely the stati dieletri funtion given by equation (19).10See, for instane, H. Frohlih, Theory of Dieletris, Oxford (1958); P. Debye, Polar Moleules, Dover, NY(1945).111esu = 3 × 104V/m, J. D. Jakson, Classial Eletrodynamis, Wiley, NJ (1999).12See, for instane, H. Frohlih, lo it.



6 J. Theor. Phys.
ε0 = 80, we get (at room temperature) a redued harge ze ≃ 10−2. This is in good agreementwith the H+z − O−2z plasma harge z estimated above.Cohesion and thermodynamis. Reently, a model of liquid has been introdued13 based on anexitation spetrum (per partile) of the form εn = −ε0+ε1(n+1/2), where ε0 is a ohesion energyand ε1 is the quanta of energy of a harmoni osillator with one degree of freedom; n represents herethe quantum number. The model inludes also the kinemati orrelations (spatial restritions)of the movement of the liquid moleules. This model leads to a onsistent thermodynamis forliquids, arising from a statistis whih is equivalent with the statistis of bosons in two dimensions.For water, the ohesion energy per partile ε0 an be estimated from the vaporization heat (≃
40kJ/mol). It gives ε0 ∼ 103K. On the other hand, it was shown in a previous paper14 that thetransition temperature beween a gas and a liquid of idential partiles is approximately given by

Tt =
4

3

ε0

ln(ε0/T0)
, (23)where T0 = ~

2n2/3/m is a gas harateristi temperature. We an apply this formula to waterdisssoiation, taking n as the density of hydrogen atoms, m as the mass of two hydrogen atomsand Tt = 383K (at normal pressure; ε0 depends on the inter-partile spaing). We may negletthe oxygen, as it is too heavy in omparison with the hydrogen atoms. We get T0 ≃ 2K andthe above formula gives ε0 ≃ 2000K ≃ 200meV for the ohesion energy of water per moleule,whih is onsistent with the above estimate (1eV ≃ 11.6 × 103K; n ≃ 1/a3 with a = 3Å and
~ ≃ 10−27erg · s; Bohr radius aH = ~

2/mee
2 ≃ 0.53Å, e2/aH ≃ 27.2eV , where me is the eletronmass).15The plasma osillations obtained above an be quantized and the energy levels of the plasma read

En =
∑

q

~ωp(n + 1/2) =
V

(2π)3

4π

3
q3
c · ~ωp(n + 1/2) , (24)where qc is a uto� wavevetor. The prefator in equation (24) is V q3

c/6π2 ≃ N(aqc/4)3, so theenergy levels given above an be written as
En = Nε1(n + 1/2) , (25)where ε1 = (aqc/4)~ωp. These energy levels orrespond to a harmoni osillator with one degreeof freeedom. It follows that the present desription of water as a two-speies of highly dissoiatedioni plasma provides a further support for the liquid model mentioned above. If we take qc ≃ 1/athe energy quanta ε1 = (aqc/4)3

~ωp =≃ 3zmeV represents the ε1 parameter in the spetrum ofthe liquid. (The plasma frequeny given by equation (11) is ωp ≃ 200zmeV ).Debye sreening and the orrelation energy. As it is well-known the plasma exitationsdesribed above represent olletive osillations of the density in the long wavelength limit. Atthe same time they indue orrelations in the ioni movements. For a lassial plasma theseorrelations are assoiated with a sreening length given by the Debye-Hukel theory as 16
κ−1 =

(

T/24πnz2e2
)1/2 (26)13M. Apostol, J.Theor. Phys. 125 163 (2006).14M. Apostol, Mod. Phys. Let. B21 893 (2007); see also M. Apostol, J. Theor. Phys. 123 155 (2006).15It is worth noting that the mehanism of vaporization assumed here implies the dissoiation of the watermoleule.16See, for instane, L. Landau and E. Lifshitz, Course of Theoretial Physis, vol. 5, Statistial Physis, Elsevier(1980).



J. Theor. Phys. 7for our ase (κ−1 = (T/4πe2
∑

i niz
2
i )

−1where i labels the ioni speies with density ni and harge
ezi). The formula is valid for the Coulomb energy z2e2/a muh lower than the temperature T . Inthe present ase we have z2e2/a ≃ 45K (for z ≃ 3× 10−2), whih shows that the above onditionis ful�lled. From (26) we get κ−1 ∼ 1Å (at room temperature), in agreement with the presentmoleular-dissoiation model. The orrelation energy per partile is given by

εcorr = −e2

a

√

πe2

Ta
(6z2)3/2 (27)(εcorr = −(e2/a)

√

πe2/Ta(
∑

i niz
2
i )

3/2). The estimation of this energy gives εcorr ∼ 102K (atroom temperature). It ontributes to the ohesion energy.Sound anomaly. The sound-like branh ω2 ≃ ωs = vsq, where vs =
√

9nχ/(M + 2m) aord-ing to equation (12), is distint from the ordinary hydrodynami sound whose veloity is givenby the well-known formula v0 = 1/
√

κnm for a one-omponent �uid, where κ is the adiabatiompressibility. For the present two-omponent �uid (H+z − O−2z plasma), the veloity of theordinary sound is given by v0 = 1/
√

κn(M + 2m). The former represents a non-equilibrium ele-mentary exitation, whose veloity vs does not depend on temperature, while the latter proeedsby thermodynami, equilibrium, adiabati proesses, and its veloity v0 depends on temperaturethorugh the adiabati onpresibility κ. In order to distinguish them from the hydrodynami soundwe propose to all the sound-like exitations derived here density "kineti" modes or "densitons".The distintion between the two sounds is made by a threshold wavevetor qt in the followingmanner. Suppose that there is a �nite lifetime τ for the sound-like exitations ωs propagatingwith a veloity vs and a orresponding meanfree path Λ = vsτ . If the sound-like wavelength λ ismuh longer than the meanfree path, λ ≫ Λ, then we are in the ollision-like regime (ωsτ ≪ 1),and the ollisions may restore the thermodynami equilibrium. In this ase the hydrodynamisound proapagates, and the sound-like exitations do not. This ondition de�nes the thresholdwavevetor qt = 1/vsτ . In the opposite ase, q ≫ qt (ollision-less regime), it is the sound-likeexitations that propagate, and not the hydrodynami sound. The �nite lifetime τ originates inthe residual interations between the olletive modes and the underlying motion of the individ-ual partiles. It is easy to estimate this residual interation.17 It is given by √
εT , where ε isthe mean energy per partile orresponding to the motion of the individual partiles. We gettherefore τ ≃ ~/

√
εT and the threshold wavevetor qt =

√
εT/~vs. It is di�ult to have a reliableestimation of the mean energy ε; for a resonable value ε = 10meV we get qt ≃ 0.1Å−1 at roomtemperature for v = 3000m/s, whih is in good agreement with experimental data.Indeed, the phenomenon of two-sound anomaly in water is well-doumented.18 Neutron, X-ray, Brillouin or ultraviolet light sattering on water revealed the existene of a hydrodynamisound propagating with veloity v0 ≃ 1500m/s for smaller wavevetors and an additional soundpropagating with veloity ≃ 3000m/s for larger wavevetors. In addition, though both soundveloities do exhibit an isotopi e�et, their ratio does not. Aording to the above disussion,we assign this additional, faster sound to the sound-like exitations derived here. We an see thatboth v0 and vs given above exhibit a weak isotopi e�et, while their ratio vs/v0 = 3n

√
κχ doesnot. From vs =

√

9nχ/(M + 2m) = 3000m/s we get the short-range interation χ ≃ 7eV · Å3.Similar results are obtained for other forms of dissoiation of the water moleule, like OH− −H+or OH− − H3O
+, so the H+z − O−2z plasma model employed here an be viewed as an average,e�etive model for various plasma omponents that may exist in water.17M. Apostol, Eletron Liquid, apoma, MB (2000).18See, for instane, J. Teixeira, M. C. Bellissent-Funel, S. H. Chen and B. B Dorner, Phys. Rev. Lett. 54 2681(1985); S. C. Santui, D. Fioretto, L. Comez, A. Gessini and C. Mashiovehio, Phys. Rev. Lett. 97 225701(2006) and referenes therein.



8 J. Theor. Phys.

0 1 2 3
0

1

2

3

4

ω
1,2

ω
p

ω
1

ω
2

v
s
q/ω

pFigure 1: The spetrum of the density osillations given by equation (28) for the H+z − O−2zplasma with the same short-range interation between ioni speies.Another possible anomalous sound. It is worth alulating the spetrum given by equationsof motion (10) without negleting higher-order ontributions in q2. The result of this alulationis given by
ω2

1,2 =
1

2
ω2

p

[

1 + Ax2 ±
√

1 + 2Bx2 + A2x4
]

, (28)where
A =

1

9α
(2 + 5α + 2α2) , B =

1

9α
(2 − 13α + 2α2) , α = m/M (29)and x = vsq/ωp. It is shown in Fig. 1.Frequeny ω2 in equation (28) represents the sound-like branh, whih goes like ω2 ≃ ωs = vsq inthe long wavelength limit and approahes the horizontal asymptote ω2 = ωp/

√
A ≃ ωp

√

m/2Mfor shorter wavelengths. Frequeny ω1 in equation (28) represents the plasmoni branh (ω1 ≃ ωpfor q → 0). In the long wavelength limit it goes like
ω1 ≃ ωp +

(M − m)2

9mM
v2

sq
2/ωp , q → 0 . (30)Due to the large disparity between the two masses m and M we an see that the plasma frequenyhas an abrupt inrease toward the short-wavelength oblique asymptote given by

ωa ≃
√

Avsq ≃
√

2M/9m + 5/9vsq . (31)For small values of ωp (vanishing Coulomb oupling, z → 0) this asymptoti frequeny may looklike an anomalous sound propagating with veloity
va ≃

√

2M/9m + 5/9vs . (32)For water, we get va ≃ 2vs from this formula. However, the ratios va/vs or va/v0 exhibit a ratherstrong isotopi e�et, whih is not supported by experimental data.Multi-omponent plasma. The model presented herein might be generalized to a multi-omponent plasma onsisting of several ioni speies labelled by i, eah with number Ni of partiles,density ni, harge zie and mass mi, suh that ∑i zini = 0.



J. Theor. Phys. 9The lagrangian of the density osillations is given by
L = − 1

2n

∑

iq miniu̇i(q)u̇i(−q) + 1
2n

∑

ijq ninjq
2 [ϕij(q) + χ(q)]ui(q)uj(−q)+

+i e
n

∑

iq niziqφ(q)ui(−q) ,
(33)where ϕij(q) = 4πzizje

2/q2. The equations of motion are given by
miüi + 4πe2zi

∑

j

zjnjuj + q2χ
∑

j

njuj = −iqeziφ . (34)Making use of the notations
S1 =

∑

i

z2
i ni/mi , S2 =

∑

i

ni/mi , S3 =
∑

i

zini/mi , (35)the eigenfrequenies ω1,2 of the system of equations (34) in the long wavelength limit are given by
ω2

1 ≃ ω2
p = 4πe2S1 =

∑

i

4πe2z2
i ni

mi
, (36)whih represents the plasma branh of the spetrum, and

ω2
2 ≃ ω2

s =
(

S2 − S2
3/S1

)

χq2 = v2
sq

2 , (37)whih represents the sound-like exitations.19 The plasma branh of the spetrum has an obliqueasimptote given by ω1 ≃ ωa =
√

χS2q, whih may be taken as an anomalous sound propagatingwith veloity va =
√

χS2 for small values of ωp. The ratio of the two sound veloities is given by
va/vs =

1
√

1 − S2
3/S1S2

, (38)whih is always higher than unity. The sound branh of the spetrum has an horizontal asymptotegiven by ω2 ≃
√

1 − S2
3/S1S2ωp. For the H+z − O−2z plasma we an hek from (38) that

va/vs ≃ (2M/9m + 5/9)1/2 ≃ 2, and ω2 ≃ 3
√

m/2Mωp, as obtained above. As we have disussedabove this ratio exhibits a rather strong isotopi e�et, whih is not in aord with experimentaldata. We assign therefore the additional sound to sound-like exitations propagating with veloity
vs given by equation (37). The ordinary, hydrodynami sound in a multi-omponent mixturehas the veloity v0 = 1/

√

κ
∑

i nimi. It an be shown that v2
s/v

2
0 ≥ n2κχ for a neutral multi-omponent mixture.The internal �eld is given by

Eint = −4πe
∑

i

ziniui ; (39)we get easily from equations (34)
Eint = −iqφ

ω2
p

ω2 − ω2
p

(40)and the dieletri funtion ε = 1 − ω2
p/ω

2, as expeted.19The sound veloity given by (37) is always a real quantity, as a onsequene of the Shwarz-Cauhy inequality.



10 J. Theor. Phys.Struture fator. The struture fator is de�ned by
S(q, ω) = 1

2π

∫

drdr′dt 〈δn(r, t)δn(r′, 0)〉 eiq(r−r
′)−iωt =

= N
2πn2

∫

dt 〈δn(q, t)δn(−q, 0)〉 e−iωt ,
(41)where the brakets stand for the thermal average (we leave aside the entral peak). Sine

δn(q, t) = −iq
∑

i

niui(q, t) , (42)it beomes
S(q, ω) =

Nq2

2πn2

∫

dt
∑

ij

ninj 〈ui(t)uj(0)〉 e−iωt , (43)where we dropped out the argument q.In order to alulate the thermal averages we turn bak to the system of equations (34) withoutthe external eletri �eld. This system an be written as
(−ω2 + aS1)x + bS3y = 0 ,

aS3x + (−ω2 + bS2)y = 0 ,
(44)where a = 4πe2, b = χq2, S1,2,3 are given by equation (35) and

x =
1

n

∑

i

ziniui , y =
1

n

∑

i

niui . (45)In addition,
ui =

anzi

miω2
x +

bn

miω2
y . (46)The system of equations (44) has two eigenfrequenies ω1,2 as given by equations (36) and (37).The orresponding eigenvetors are given by

x1 ∼ S1 , y1 ∼ S3 ; x2 ∼ bS3 , y2 ∼ −aS1 (47)in the long wavelength limit. Aording to equation (46) the oordinates ui an be written as
u

(1,2)
i =

anzi

miω
2
1,2

x1,2e
iω1,2t +

bn

miω
2
1,2

y1,2e
iω1,2t , (48)and one an see that they are oordinates of linear harmoni osillators with frequenies ω1,2and potential energies miω

2
1,2

[

u
(1,2)
i

]2

/2 . The thermal distribution of the oordinate u for suhan osillator is given by dw =
√

mω2/2πT exp (−mω2u2/2T ) du in the lasssial limit, where Tdenotes the temperature (T ≫ ~ω). It follows
〈

u
(1,2)
i u

(1,2)
j

〉

=
T

miω2
1,2

δij . (49)Writing
ui = u

(1)
i eiω1t + u

(2)
i eiω2t (50)



J. Theor. Phys. 11and making use of equation (49) the struture fator given by equation (43) beomes
S(q, ω) = NTq2

(

∑

i

n2
i /n

2mi

)

[

1

ω2
1

δ(ω − ω1) +
1

ω2
2

δ(ω − ω2)

]

. (51)We an see from this equation that the relevant sound ontributions are given by
S(q, ω) ≃ NT

v2
s,a

(

∑

i

n2
i /n

2mi

)

δ(ω − vs,aq) . (52)Asymmetri short-range interation. Up to now, the short-range interation was assumedto be the same for all ioni speies. In general, we may introdue a short-range interation
χij depending on the nature of the ioni speies. If this interation is separable, the solutiongiven above for a multi-omponent plasma holds with minor modi�ations. For a non-separableshort-range interation, appreiable hanges may appear in the spetrum, whih may exhibitmultiple branhes. Suh a spetrum may serve to identify the nature (mass, harge) of variousmoleular aggregates in a multi-omponent plasma. It is worth noting that a range of frequenies
1010s−1 − 1012s−1 is doumented in living ells by mirowave, Raman and optial spetrosopiesand by ell-biology studies, upon whih the theory of oherene domains in living matter is built.20We onsider here again the H+z − O−2z plasma with di�erent short-range interation χHH =
χ1 , χOO = χ2 , χOH = χ3; it still exhibits two branhes of frequenies, a plasmoni one (ω1) anda sound-like one (ω2), but the spetrum may have ertain peuliarities (the dieletri onstant isnot a�eted by this modi�ation). Equations of motion (15) beome now

mü + 2nq2(ϕ + χ1)u − nq2(2ϕ − χ3)v = −izeqφ

Mv̈ + nq2(4ϕ + χ2)v − 2nq2(2ϕ − χ3)u = 2izeqφ .
(53)We introdue the notations

a = 2nq2ϕ/m = 8πne2z2/m , b1,2,3 = nχ1,2,3/m . (54)The dispersion relations an be omputed straightforwardly. In the long wavelength limit (q → 0)we get the plasmoni branh
ω2

1 ≃ (1 + 2α)a +
2b1 + α2b2 − 4αb3

1 + 2α
q2 , (55)where (1 + 2α)a = 16πne2z2/µ is the plasma frequeny, and the sound-like branh

ω2
2 ≃ α(4b1 + b2 + 4b3)

1 + 2α
q2 = v2

sq
2 ; (56)one an see that the sound veloity vs is always a real quantity.The sound-like branh exhibits an asymptote in the short-wavelength limit given by

ω2
2 ∼ 1

2

[

2b1 + αb2 −
√

(2b1 − αb2)2 + 8αb2
3

]

q2 , (57)20See, for instane, H. Frohlih, Phys. Lett. A26 402 (1968); Int. J. Quant. Chem. 2 641 (1968); S. J. Webb,M. E. Stoneham and H. Frohlih, Phys.Lett A63 407 (1977); S. Webb, Phys. Reps. 60 201 (1980); S. Rowlands etal, Phys. Lett. A82 436 (1981); S. C. Roy, Phys. Lett. A83 142 (1981); E. del Giudie et al, Nul. Phys. B275185 (1986).
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pFigure 2: Exitation spetrum given by equation (59) for the H+z −O−2z plasma with short-rangepotentials χOO = χHH = 0 and χOH = χ 6= 0.whose slope may have either sign or vanish. It is easy to see that this slope is positive for
b2
3 < b1b2, negative for b2

3 > b1b2 (when the sound-like branh has a maximum value) and itvanishes for b2
3 = b1b2 (when the sound-like branh has an horizontal asymptote). In the ase ofa negative slope the sound veloity may exhibit a negative veloity and the sound may su�er astrong absorption for moderate values of the wavevetor, whih may indiate an anomalous orunphysial situation.We return now to the plasmon branh given by equation (55), and write it as

ω2
1 = ω2

p + b2
2x2 − 4αλx + α2

1 + 2α
q2 , (58)where λ2 = b2

3/b1b2 and x =
√

b1/b2. It is easy to see that for λ2 > 1 the plasmoni spetrumexhibits a dip around a ertain value q0 of the wavevetor q for (λ −
√

λ2 − 1/2
)

α <
√

b1/b2 <
(

λ +
√

λ2 − 1/2
)

α; it approahes an asymptote with a positive slope for q → ∞, whih mayde�ne again an anomalous sound for small values of ωp.We illustrate these anomalies for a partiular ase of short-range interation χ1,2 = 0 and χ3 = χ(b3 = nχ/m). The dispersion relations of the system of equations (53) beome
ω2

1,2 =
1

2
ω2

p

[

1 ±
√

1 − 4v2
sq

2/ω2
p +

(1 + 2α)2

2α
v4

sq
4/ω4

p

]

. (59)The plasmoni branh has a minimum value for q0 ≃ 2
√

m/Mωp/vs, where the sound-like branhhas a maximum value (≃ √

2m/Mωp). The spetrum is shown in Fig. 2. Using ωp ≃ 1013s−1estimated above and the sound veloity vs ≃ 3000m/s in water we get q−1
0 ≃ 6Å. We mayexpand ω1 in series of (q − q0)

2 around its mimimum value at q0 and get ω1 ≃ ωp + (M/4m +
1)(v4

sq
2
0/ω

3
p)(q−q0)

2 = ωp+(1+4m/M)v2
s(q−q0)

2/ωp. This is similar with the rotons-like dispersionrelation disussed in onnetion with the oherene domains in water.21 Although this might bean interesting suggestion, it is inonsequential here, beause ωp is too small in omparison with21G. Preparata, QED Coherene in Matter, World Si (1995).



J. Theor. Phys. 13the temperatures at whih water exists and, therefore, this "dip" feature has no e�et for thewater thermodynamis.Conlusion. We summarize the main features of the model suggested here for liquid water. First,we assume, as it is generally aepted, the four, diretional sp3-oxygen eletroni orbitals. Theeletron deloalization along two suh orbitals together with a orresponding deloalization of thehydrogen eletroni harge lead to the water ohesion. It is represented by the ohesion energy ε0disussed here. Within suh a piture, we an still visualize the oxygen and the hydrogen as neutralatoms, moving around almost freely (as a onsequene of the uniformity of the environment; thisgives a noteworthy support to the "hydrogen bonds" onept).22 To this piture the present modeladds another omponent, arising from a very small harge transfer between hydrogen and oxygenatoms, leading to a H+z − O−2z plasma, with the redued harge z. It originates in the weakasymmetry of the two oupied sp3-oxygen eletroni orbitals. Under these irumstanes, thehydrogen and oxygen ions interat, both by Coulomb and short-range potentials. This interationgives the plasma frequeny and the sound-like exitations frequeny. The plasmons ontribute tothe exitations whih give rise to a onsistent thermodynamis for liquids, in a model introduedreently. In addition, the ioni plasma osillations entail osillations of the deloalized eletroniloud, with the same eigenfrequeny. Subjeted to an external �eld, these eletroni osillationsprodue an intrinsi polarizability whih removes the ω = 0 singularity in the plasma dieletrifuntion (the ω0 frequeny). In addition, the magnitude of the eletri moment p whih is respon-sible for the orientational, stati dieletri funtion is in satisfatory agrement with the plasmaharge z derived herein.On the basis of this model we are able to understand to some extent, both qualitatively andin some plaes even quantitatively, the sound anomaly, the dieletri funtion (permitivity dis-persion), the struture fator, ohesion and thermodynamis of water. The model is extendedto a multi-omponent lassial plasma, inluding an asymmetri short-range interation betweenthe omponents, whih might be relevant for more omplex strutural aggregates like those inbiologial matter.© J. Theor. Phys. 2008, apoma�theor1.theory.nipne.ro

22The point of view taken in this paper is that the hydrogen bonds in water are introdued merely to aount forthe uniformity of the environment of a water moleule in liquid water. As suh, it helps understand the ohesion.However, a onsistent upholding of the hydrgen-bonds onept would mean a vanishing dipole momentum of liqudwater. Pauling himself, (L. Pauling, lo it) who introdued originary this onept, quali�es it by admiting anasymmetry in the four hydrogen bonds around an oxygen ion, arising from the two-out-of-four oupied orbitals.We suggest that the uniformity of the environment makes the hydrogen atoms (ions) moving as independententities, while the asymmetry indues a small harge z, so the ion motion is subjeted to Coulomb and short-rangeinterations. The eletri moment is asribed to the diretional harater of the sp3-oxygen eletroni orbitals andthe harge transfer between oxygen and hydrogen. Thereby, the hydrogen-bond onept is employed here throughits two features, diretionality and uniformity, with a slight asymmetry, all viewed as independent qualitativefeatures.


