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Abstract

The excitation spectrum of the density collective oscillations is computed for multi-

component molecular mixtures both with Coulomb and (repulsive) short-range interactions.

Distinct sound-like excitations appear, governed by the short-range interaction, which di�er

from the ordinary hydrodynamic sound. The dielectric function and the structure factor are

also calculated. The "two-sounds phenomenon" can be understood by means of the predic-

tions of this model.

This paper is motivated by the "two-sounds anomaly" persistently reported over the years in wa-
ter, either in normal conditions or undercooled,[1]-[6] as well as in other liquid molecular mixtures.
Inelastic neutron, X-ray, Brillouin and, more recently, ultraviolet scattering, either in ordinary or
in heavy water, seem to indicate an additional, faster, higher-frequency sound, propagating with
velocity ' 3000m/s up to intermediate wavevectors (mean inter-molecular distance in water is
' 3Å), beside the ordinary hydrodynamic sound propagating with velocity ' 1500m/s. A disper-
sionless mode (' 1013s−1) was also reported sometimes[3],[5] (as well as no additional sound[7]).
The phenomenon is also documented both by simulations of molecular dynamics and experimental
data in binary mixtures with large mass di�erence (metallic alloys, rare-gas mixtures).[8]-[17]

We show herein that such a "two-sounds anomaly" may appear in interacting molecular sys-
tems with (repulsive) short-range interaction. Such a model could reasonably be related to liquid
water (or other physical systems as those indicated above). The velocity of the sound-like exci-
tations is independent of temperature, in contrast with the velocity of the hydrodynamic sound
which is governed by the adiabatic compressibility, and thus temperature-dependent. In addition,
the plasma-like branch of the spectrum due to the Coulomb interaction may appear as another
sound-like mode for shorter wavelengths and weak Coulomb coupling. We report here also the
computation of the dielectric function and the structure factor within such a model.

We start with the well-known representation of the particle density

n(r) =
∑

i

δ(r− ri) =
1

V

∑
q

eiqr
∑

i

e−iqri (1)

for a collection of N particles enclosed in volume V , where ri denotes the position of the i-th
particle. We consider a small displacement ri → ri + u(ri) in these positions, as given by a
displacement �eld u(ri), such that the particle density becomes

ñ(r) =
1

V

∑
q

eiqr
∑

i

e−iq[ri+u(ri)] =
1

V

∑
q

eiqr
∑

i

e−iqri [1− iqu(ri) + ...] (2)
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for qu(ri) � 1. Now we employ a Fourier representation

u(ri) =
1√
N

∑
q

u(q)eiqri (3)

as well as the well-known random-phase approximation∑
i

ei(q−q′)ri = Nδq,q′ (4)

to get

ñ(r) = n− in
1√
N

∑
q

eiqrqu(q) , (5)

where n = N/V is the particle density. By comparing equations (1) and (5), we can see that the
small change in the density can be represented as

ñ(r)− n = δn(r) = −ndivu(r) , (6)

and its Fourier transform δn(q) = −inqu(q).

We apply this displacement-�eld approach to a multi-component molecular mixture consisting of
several species labelled by i, each with Ni particles in volume V , mass mi and electric charge ezi,
where −e is the electron charge and zi is a reduced e�ective charge, interacting through Coulomb
potentials ϕij and short range potentials χij. The mixture is subjected to the neutrality condition∑

i nizi = 0, where ni = Ni/V is the particle density of the i-th species. We consider elementary
excitations of the particle density, whose interaction energy is given by

U =
1

2

∑
ij

∫
drdr′ [ϕij(r− r′) + χij(r− r′)] δni(r)δnj(r

′) , (7)

where ϕij = e2zizj/ |r− r′| and δni(r) denotes a small density disturbance which preserves the
neutrality. According to equation (6) it can be represented as δni = −nidivui, where ui is the
displacement �eld. We use the Fourier transforms

δni(r) =
1√
N

∑
q

δni(q)eiqr , ϕ(r) =
1

V

∑
q

ϕ(q)eiqr , (8)

where N =
∑

i Ni is the total number of particles, ϕ(r) = e2/r and ϕ(q) = ϕ(q) = 4πe2/q2.
A similar Fourier transform is employed for the displacement �eld ui, which leads to δni(q) =
−iniqui(q). We can see that only the longitudinal components ui(q) of the displacement �eld
are relevant, so we may write ui(q) = (q/q)ui(q), δni(q) = −iqui(q), with δn∗

i (−q)=δni(q),
u∗

i (−q) = ui(q) and u∗
i (−q) = −ui(q). Making use of the Fourier transforms introduced above,

the interaction U given by equation (7) can be written as

U = − 1

2n

∑
ijq

ninjq
2 [ϕij(q) + χij(q)] ui(q)uj(−q) , (9)

where ϕij(q) = zizjϕ(q) and n = N/V is the total density of particles. We assume a weak
q-dependence of χij(q), as for short-range potentials.

Similarly, the kinetic energy associated with the coordinates ui is given by

T = − 1

2n

∑
iq

miniu̇i(q)u̇i(−q) . (10)
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In addition, we introduce an external �eld φ(r), coupled to the electrical charges, which gives rise
to the interaction

V = −i
e

n

∑
iq

niziqφ(q)ui(−q) . (11)

The equations of motion corresponding to the lagrangian L = T − U − V are given by

miüi + 4πe2zi

∑
j

zjnjuj + q2
∑

j

χijnjuj = −iqeziφ , (12)

where we dropped out the argument q in ui(q) and φ(q) and neglect the weak q-dependence
of χij(q) = χij. In order to simplify these equations we take the same (repulsive) short-range
potentials for all species, χij = χ > 0, and analyze �rst the homogeneous system of equations
given by (12). We introduce the notations a = 4πe2, b = q2χ,

S1 =
∑

i

z2
i ni

mi

, S2 =
∑

i

ni

mi

, S3 =
∑

i

zini

mi

, (13)

and
x =

1

n

∑
i

ziniui , y =
1

n

∑
i

niui . (14)

Making use of these notations, the homogeneous system of equations (12) can be written as

(−ω2 + aS1) x + bS3y = 0 ,

aS3x + (−ω2 + bS2) y = 0 .
(15)

In addition, we have

ω2ui =
anzi

mi

x +
bn

mi

y . (16)

The spectrum of frequencies ω of the system of equations (15) can be obtained straightforwardly.
It is given by

ω2
1,2 =

1

2

[
aS1 + bS2 ±

√
a2S2

1 + 2ab (2S2
3 − S1S2) + b2S2

2

]
. (17)

The ω1-branch in equation (17) (corresponding to the plus sign) represents the plasmonic excita-
tions. In the long wavelength limit it reads

ω2
1 = aS1 + bS2

3/S1 = ω2
p + bS2

3/S1 , q → 0 , (18)

where ωp, given by

ω2
p = aS1 = 4πe2

∑
i

z2
i ni

mi

, (19)

is the plasma frequency. For shorter wavelengths the ω1-branch approaches an asymptote given
by

ω2
1 ' bS2 + aS2

3/S2 , q →∞. (20)

The ω2-branch in equation (17) (corresponding to the minus sign) represents sound-like excitations.
In the long wavelength limit it is given by

ω2
2 =

(
S2 − S2

3/S1

)
b = v2

sq
2 , q → 0 , (21)



4 J. Theor. Phys.

where
vs =

√
(S2 − S2

3/S1) χ (22)

is the corresponding sound velocity. We can see easily, by applying the Schwarz-Cauchy inequality
to the vectors ai =

√
ni/mi and bi = zi

√
ni/mi, that v2

s is always positive ((S2 − S2
3/S1) ≥ 0).

For shorter wavelengths the ω2-branch of the spectrum approaches an horizontal asymptote given
by

ω2
2 '

(
1− S2

3/S1S2

)
ω2

p , q →∞ . (23)

In the limit of vanishing Coulomb coupling (a → 0) the sound-branch of the spectrum becomes
ω2

2 = bS2 = v2
sq

2, where
v2

s = χS2 = χ
∑

i

(ni/mi) , (24)

an expression which holds also for the same mass mi = m for all particles (one component), due
to the neutrality condition (S3 = 0).

The above elementary excitations, which are governed by interaction, are non-equilibrium col-
lective modes which might be termed density "kinetic" modes.[18] The sound-like excitations
(ω2-branch in equation (17)) may be called "densitons", in order to distinguish them from plas-
mons (ω1-branch in equation (17)) and from the ordinary sound. They may correspond to the
density collective modes suggested by Zwanzig for classical liquids.[19] We emphasize that these
sound-like excitations are distinct from the ordinary hydrodynamic sound.

Indeed, the interaction corresponding to the latter can be written as

U =
1

2κ

∫
dr [divu(r)]2 = − 1

2κn

∑
q

q2u(q)u(−q) , (25)

where κ = −(1/V )(∂V/∂p)S is the adiabatic compressibility (p denotes the pressure and S stands
for entropy). The above equation is derived by making use of the change δV = −V (δn/n) = V divu
in volume. We emphasize that for thermodynamic equilibrium we have only one displacement �eld
u(r). Equation (25) together with the kinetic energy given by equation (10) for ui(q) = u(q) leads
to the sound branch ω2

0 = v2
0q

2, corresponding to the ordinary sound propagating with a velocity
v0 given by

v2
0 =

(
κ
∑

i

nimi

)−1

. (26)

For mi = m (one component) the above equation gives the well-known velocity v0 = 1/κnm of
the ordinary sound. As it is well-known, it has a slight temperature dependence, through the
compressibility, in contrast with the velocity vs given above for the sound-like excitations. For an
electrically neutral multi-component mixture it can be shown easily that v2

s/v
2
0 ≥ n2χκ.

If we apply equations (24) and (26) to both ordinary and heavy water (one component, neutral
molecule), and assume that interaction χ and, respectively, the compressibility κ are the same for
the two kinds of water, we can see that the two sound velocities vs and v0 exhibit a slight isotopic
e�ect, while their ratio vs/v0 = n

√
χκ does not exhibit such an isotopic e�ect, in agreement with

experimental data. In this case we may take v0 = 1500m/s and vs = 3000m/s from experimental
data and get the interaction parameter χ ' 60eV ·Å3

(for a mean inter-molecular spacing ' 3Å)
. A similar picture, given by equations (24) and (26), may apply to rare-gas mixtures, while for
metallic alloys the Coulomb coupling must be taken into account (and equation (22) employed).

If we assume the existence of a dispersionless mode in water, then we may consider that water
molecule is dissociated to some extent, and its components have an electric charge, such that the
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Figure 1: Spectrum of density excitations given by equation (17) for the O−2z −H+z plasma.

plasmonic mode given by equation (19) can be identi�ed with such a dispersionless mode. Various
models of dissociation of the water molecule are known, like OH− − H+ or OH− − H3O

+. In
all cases a certain mobility of the H+ (hydrogen) cations and O− (oxygen) anions is implied.
We assume here that the dynamics of liquid water has a plasma-like component consisting of
H+z cations with density 2n and mass m (proton mass) and O−2z anions with density n and
mass M = 16m, where n is the density of water. The excitation spectrum given by equations
(17) for such an O−2z − H+z plasma is shown in Fig. 1. Taking ω = 1013s−1(' 5meV ) of the
dispersionless mode[3],[5],[7] as the plasma frequency ωp given by ω2

p = 16πne2z2/µ (equation
(19)), where µ = 2mM/(M + 2m) is the reduced mass, we get z ' 3 × 10−2. The velocity of
the hydrodynamic sound is given by v0 = 1/

√
κn(M + 2m) according to equation (26) and the

velocity of the sound-like excitations is given by vs =
√

9nχ/(M + 2m) from equation (22). We
can see that both velocities exhibit an isotopic e�ect, but their ratio vs/v0 = 3n

√
χκ does not, in

agreement with the experimental data. From vs = 3000m/s we derive the interaction χ ' 7eV ·Å3
.

Similar results are obtained for other forms of dissociation, like OH− −H+ or OH− −H3O
+. In

this respect, the O−2z−H+z plasma model can be viewed as an average, e�ective model for various
plasma components that may exist in water.

According to equation (20), for shorter wavelengths the ω1-branch approaches an asymptote given
by ω2

1 ∼ bS2 + aS2
3/S2. In the limit of weak Coulomb coupling this ω1-branch may appear as an

"anomalous" sound given by
ωa =

√
bS2 = vaq , (27)

propagating with velocity

va =
√

S2χ =
1√

1− S2
3/S1S2

vs (28)

(which is always a positive qauntity). This additional, anomalous sound is always faster than the
sound-like excitations propagating with velocity vs, since

va

vs

=
1√

1− S2
3/S1S2

> 1 . (29)

It is worth noting that the molecular dynamics studies which originary predicted such a fast,
anomalous sound[20] employed indeed a Coulomb interaction and a short-range one. We note,
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however, that the velocity va as given by (28) does not depend on the Coulomb coupling. In the
plasma model for water discussed above the ratio va/v0 is approximately 2 ('

√
2M/9m + 5/9),

but it exhibits an isotopic e�ect, which does not seem to be supported by the experimental data.

It is easy to derive the dielectric function in the limit of long wavelengths from equation (12).
Indeed, for charged particles equation δni = −nidivui is equivalent with Maxwell equation divEi =
4πqiδni, where the electric �eld is given by Ei = −4πqiniui and qi = ezi is the electric charge of
the i-th species. It follows that the internal �eld is given by

Eint = −4πe
∑

i

ziniui (30)

We get easily this �eld from equations (12),

Eint = −iqφ
ω2

p

ω2 − ω2
p

(31)

in the long wavelength limit (it is proportional to x given by equation (14)). The dielectric function
is de�ned by D = εE = ε(D +Eint), where D = −iqφ is the external �eld (electric displacement).
We get the plasma dielectric function

ε = 1− ω2
p/ω

2 , (32)

as expected. It exhibits an absorption edge (ωp) for very low frequencies. In the static limit it is
reasonable to admit the existence of an additional internal �eld of intrinsic polarizability which
removes the ω = 0 singularity.

We pass now to the calculation of the structure factor. From equation (16) we can see that
the displacement ui is a superposition of the two eigenvectors of the system of equations (15),
which oscillate with eigenfrequencies ω1,2, respectively. It follows that these coordinates are those
of linear harmonic oscillators with the potential energy of the form miω

2u2
i /2. The statistical

distribution of the coordinates ui in the classical limit is given by dw ∼ exp(−miω
2u2

i /2T )dui,
where T denotes the temperature. We get the thermal averages

〈uiuj〉 =
T

miω2
δij . (33)

On the other hand the structure factor de�ned by

S(q, ω) = 1
2π

∫
drdr′dt 〈δn(r, t)δn(r′, 0)〉 eiq(r−r′)−iωt =

= N
2πn2

∫
dt 〈δn(q, t)δn(−q, 0)〉 e−iωt

(34)

(we leave aside the central peak) can be written as

S(q, ω) =
Nq2

2πn2

∫
dt
∑
ij

ninj 〈ui(t)uj(0)〉 e−iωt . (35)

Writing
ui = u

(1)
i eiω1t + u

(2)
i eiω2t (36)

and making use of equation (33) we get the structure factor

S(q, ω) = NTq2

(∑
i

n2
i /n

2mi

)[
1

ω2
1

δ(ω − ω1) +
1

ω2
2

δ(ω − ω2)

]
. (37)
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We can see that the relevant sound contributions read

S(q, ω) ' NT

v2
s,a

(∑
i

n2
i /n

2mi

)
δ(ω − vs,aq) . (38)

The relaxation and damping e�ects can be included in the above expressions of the structure
factor. As it is well-known, they amount to representing the δ-functions by lorentzians.

The short-range interaction χ can be generalized to an interaction matrix χij with distinct elements
for each pair of species. In this case, the excitation spectrum of the density oscillations may exhibit
multiple branches in general, for a multi-component mixture. In addition, it may have special
features, like a dip in the plasmonic branch, or negative velocity for the sound-like excitations,
which may indicate either an anomalous behaviour or unphysical situations, depending on the
mutual magnitudes of the short-range potentials χij.

Now it is worthwhile commenting upon the validity of the approach presented above. If we keep
higher-order terms in the expansion given by equation (2) (i.e. for moderate values of qui)
then additional interactions appear in equation (9), which leads to �nite lifetimes for the density
excitations. This means that for larger wavevectors q these excitations are not anymore well-
de�ned excitations, as expected. Making use of equation (33) we can estimate the mean product
qui for the sound-like branch as qui ∼

√
T/miv2

s , where the velocity vs is given by equation
(22). This gives rather small values for qui. For instance, for water we get qu ∼ 0.5 (at room
temperature), which shows that the wavevector q may take reasonable large values providing the
displacement u is su�ciently small. For the plasmonic branch, the condition qui � 1 gives a cuto�
wavevector qi

c '
√

miω2
p/T for large ωp; for small values of the plasma frequency the condition

becomes qui ∼
√

T/miv2
a � 1.

Another source of �nite lifetime for the density excitations arises from the kinetic term. Indeed,
under the displacement rik → rik + ui(rik), where rik is the position of the k-th particle in the
i-th species, a mixed term

Hint =
∑
ik

miviku̇i(rik) (39)

appears in the kinetic term, where vik = ṙik is the velocity of the ik-particle. It is easy to
get an upper bound for this term, by using the Schwarz-Cauchy inequality. It is given by
N 〈miv

2
ik〉

1/2 〈miu̇
2
i 〉

1/2 or, by making use of (33),
√

εT per particle, where ε represents the mean
kinetic energy (which depends on temperature, in principle). This estimation can be taken as an
uncertainty in energy, leading to a lifetime τ ' ~/

√
εT and a corresponding meanfree path Λ = vsτ

for the sound-like excitations. For wavelengths λ much longer than the meanfree path, i.e. for
wavevectors q such as q � 1/vsτ we are in the collision-like regime (ω2τ � 1), and the collisions
can establish the thermodynamic equilibrium (hydrodynamic regime). In this case the ordinary
sound can be propagated (with velocity v0). For q � 1/vsτ we are in the collisionless regime,
the ordinary sound is absorbed, and the non-equilibrium sound-like excitations ("densitons") can
be propagated (with velocity vs). Unfortunately, it is di�cult to have a reliable estimation of
the energy ε, and so of the threshold wavevector qt = 1/vsτ =

√
εT/~vs. For ε = 10meV (and

vs = 3000m/s, T = 300K) we get qt ' 0.1Å
−1
, which is in a reasonable order-of-magnitude

agreement with the experimental data.[1]-[6],[11],[12],[15] It is interesting to note that if we apply
this estimation to weakly-interacting gases, where we may take ε ∼ T , we get a high value of
the threshold wavevector qt ∼ T/~vs, since vs is very small (the short-range interaction is weak).
We may say that in gases there is very unlikely to exist the sound-like excitations; it is only the
ordinary sound that exists. On the contrary, the collision-like regime is quite unlikely in ordinary
solids, so we have there sound-like excitations and to a much lesser extent ordinary sound.
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Finally, we note that the collective excitations derived above contribute to the thermodynamics
of liquids. Indeed, the free energy can be written as

F = F0 + F1 + F2 = F0 + T
∑
q

ln
(
1− e−~ω1/T

)
+ T

∑
q

ln
(
1− e−~ω2/T

)
, (40)

where F0 is the free energy associated with the particle movements and ω1,2 are given by equation
(17). The evaluation of integrals in equation (40) depends on the particular magnitude of the
excitation spectrum, but usually the integrals are rapidly convergent and their contribution to
the thermodynamic properties of the liquid is small. For instance, the sound-like contribution is
approximately given by F2 ' −π2V T (T/~vs)

3/90, which is indeed a small correction to F0 (the
latter being governed mainly by the liquid cohesion).

In conclusion, we have shown that in interacting molecular systems there may appear sound-like
excitations controlled by short-range interactions, distinct from the ordinary hydrodynamic sound.
The former are non-eequilibrium excitations, while the latter appear through equilibrium, adia-
batic processes. The velocity vs of the sound-like excitations is independent of temperature, while
the velocity v0 of the ordinary sound depends on temperature, through the adiabatic compressibil-
ity. In order to distinguish them we propose to call the former "kinetic" modes of particle density,
or "densitons". In addition, in the presence of Coulomb interaction, the well-known plasmonic
branch is present in the spectrum of the density excitations, which, for shorter wavelengths and
weak Coulomb coupling may look like another, anomalous, fast sound. We have shown that the
"two-sounds anomaly" reported in liquids like water, rare-gas mixtures, metallic alloys, etc, and
documented by molecular dynamics studies, can be understood on this basis.
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