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Abstract

The coupling of the electromagnetic �eld to matter polarization (dipole interaction) is

examined in order to assess the possibility of setting up a coherent state as envisaged by G.

Preparata (QED Coherence in Matter, World Sci (1995)). It is found that coherence domains

may set up in matter, their phases being arranged in a periodic lattice, as a consequence of,

basically, a two-level interaction, which leads to a long-range ordered state, governed by a

macroscopic occupation of both the photon state and the two levels. The non-linear equa-

tions of motion are solved for the new, non-perturbational ground-state, which is energetically

favourable, providing the coupling strength exceeds a critical value. The elementary excita-

tions with respect to this ground-state are derived, their energy being non-trivially a�ected by

interaction. The "thermodynamics" of the coherent phase is computed and the super-radiant

phase transition is re-derived in this context. Except for the general suggestion of coherence,

the present results di�er appreciably from Preparata's, loc cit.

Introduction. We investigate herein the possibility of setting up coherence domains in matter
interacting with electromagnetic radiation. This idea was originally suggested by Preparata,[1]
who presented several speculations about possible consequences of such a state on various phys-
ical phenomena. The idea was also related to the lasing mechanism and the super-radiance
phenomenon.[2]-[9]

We show herein that the coupling between electromagnetic radiation and matter polarization
(dipole interaction) may lead to coherence domains, whose phases are arranged in a periodic
lattice, involving a two-level state of matter, providing the coupling exceeds a certain critical
value. The coherent state is characterized by a macroscopic occupation of both the photon state
and the two levels. The ground-state and the elementary excitations are derived for such coherent
domains. The solution has a non-perturbational character. The energy of the ground-state is
negative, as for a bound state, involving a formation enthalpy for the coherence domain. The
elementary excitations are a�ected in a non-trivial way by interaction, thus providing a most
direct way of probing the existence of such a coherent state in matter. The "thermodynamics"
of the coherent phase is computed and the super-radiant phase transition is re-derived in this
context.

Radiation �eld. As it is well-known, the electromagnetic �eld is described by the vector potential

A(r) =
∑
αk

√
2π~c2
V ωk

[
eα(k)aαke

ikr + e∗α(k)a∗αke
−ikr

]
(1)
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in the standard Fourier representation, with the transverse gauge divA = 0, where ~ is Planck's
constant, c is the velocity of light, V is the volume, ωk = ck is the frequency and eα(k) are the
polarization vectors, eα(k)k = 0, eα(k)e∗β(k) = δαβ (α, β = ±1), e−α(−k) = e∗α(k). The charge
density and the scalar potential are set equal to zero. The electric and magnetic �eld are given
by E = −(1/c)∂A/∂t and, respectively, H = curlA , and three Maxwell's equations are satis�ed:
curlE = −1

c
∂H/∂t, divH = 0, divE = 0. The classical lagrangian of the radiation �eld reads

Lf = 1
8π

∫
dr (E2 −H2) =

=
∑

αk
~

4ωk

(
ȧαkȧ−α−k + ȧ∗αkȧ

∗
−α−k + ȧαkȧ

∗
αk + ȧ∗αkȧαk

)
−

−
∑

αk
~ωk

4

(
aαka−α−k + a∗αka

∗
−α−k + aαka

∗
αk + a∗αkaαk

)
.

(2)

The interaction lagrangian is given by

Lint =
1

c

∫
dr · jA =

∑
αk

√
2π~
ωk

[eα(k)j∗(k)aαk + e∗α(k)j(k)a∗αk] , (3)

where j(k) is the Fourier transform of the current density,

j(r) =
1√
V

∑
k

j(k)eikr , (4)

with divj = 0 (continuity equation). The Euler-Lagrange equations for the lagrangian Lf + Lint

lead to the wave equation with sources

äαk + ä∗−α−k + ω2
k

(
aαk + a∗−α−k

)
=

√
8πωk

~
e∗α(k)j(k) , (5)

which is the fourth Maxwell's equation curlH = (1/c)∂E/∂t+ 4πj/c.

As it is well-known, the classical hamiltonian formalism can be established according to the usual
rules, leading to the hamiltonian H = Hf +Hint, where Hf = (1/8π)

∫
dr (E2 +H2) and Hint =

−Lint. Similarly, the quantization scheme proceeds as usually, with aαk, a∗αk annihilation and
creation operators,

[
aαk, a

∗
βk′

]
= δαβδkk′ , [aαk, aβk′ ] = 0, and aαk ∼ e−iωkt.

Interacting matter and radiation. We consider a set ofN independent, non-relativistic, identi-
cal particles (atoms or molecules) labelled by i = 1, ...N , and write the hamiltonian corresponding
to their internal degrees of freedom as

Hs =
∑

i

Hs(i) . (6)

We make no assumption about their positions, nor about their centre-of-mass motion. We intro-
duce a set of orthonomal eigenfunctions ϕn(i), such as

Hs(i)ϕn(j) = εnδij ,

∫
drϕ∗n(i)ϕm(j) = δijδnm , (7)

where εn is the energy level of the n-state. We construct also a set of normalized eigenfunctions

ψn =
∑

i

cniϕn(i) (8)
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for the whole ensemble,
Hsψn = εnψn , (9)

where the coe�cients cni are such as to satisfy the normalization condition,∑
i

|cni|2 = 1 . (10)

Since the particles are identical the coe�cients cni are of the form cni = eiθni/
√
N , where θni are

some undetermined phases, so we may write the wavefunctions as

ψn =
1√
N

∑
i

eiθniϕn(i) . (11)

We notice that any n-state with wavefunction ψn can be occupied by any number of particles, up
to N . Therefore, we introduce the �eld operator

Ψ =
∑

n

bnψn (12)

and assume boson-like commutation relations for the operators bn, [bn, b
∗
m] = δnm, [bn, bm] = 0, for

large, macroscopic values of the number of particles

N =
∑

n

b∗nbn . (13)

The lagrangian of this ensemble of particles can be represented as

Ls =
1

2

∫
dr (Ψ∗ · i~∂Ψ/∂t− i~∂Ψ∗/∂t ·Ψ)−

∫
drΨ∗HsΨ , (14)

or
Ls =

1

2

∑
n

i~
[
b∗nḃn − ḃ∗nbn

]
−

∑
n

εnb
∗
nbn , (15)

and the hamiltonian is given by
Hs =

∑
n

εnb
∗
nbn . (16)

The corresponding equation of motion i~ḃn = εnbn is Schrodinger's equation. It is worth noting
that the same equation is obtained for bn viewed as classical variables.

The current density associated with this ensemble of particles can be written as

j(r) =
∑

i

J(i)δ(r− ri) =
1

V

∑
ik

J(i)e−ikrieikr =
1√
V

∑
k

j(k)eikr , (17)

where ri is the position of the i-th particle and J(i) is the current density of this particle. Now,
making use of equations (11) and (12), it is easy to see that the interaction lagrangian given by
equation (3) can be written as

Lint =
∑

nmαk

√
2π~
V ωk

[eα(k)I∗mn(k)aαk + e∗α(k)Inm(k)a∗αk] b
∗
nbm , (18)
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where
Inm(k) =

1

N

∑
i

Jnm(i)e−i(θni−θmi)e−ikri (19)

and Jnm(i) are the matrix elements of the i-th particle current density. These vectors have the
same magnitude, since the particles are identical, but their directions depend in general on particle.
The equation of motion (Schrodinger's equation) is given now by

i~ḃn = εnbn −
∑
mαk

√
2π~
V ωk

[eα(k)I∗mn(k)aαk + e∗α(k)Inm(k)a∗αk] bm , (20)

while the wave equation (5) (Maxwell's equation) for the electromagnetic �eld becomes

äαk + ä∗−α−k + ω2
k

(
aαk + a∗−α−k

)
=

∑
nm

√
8πωk

V ~
e∗α(k)Inm(k)b∗nbm . (21)

It is convenient to write down also the interaction hamiltonian Hint = −Lint in the interaction
representation bn → bne

−iεnt/~, aαk → aαke
−iωkt; it reads

Hint = −
∑

nmαk

√
2π~
V ωk

[eα(k)I∗mn(k)aαke
i
~ (εn−εm−~ωk)+

+e∗α(k)Inm(k)a∗αke
i
~ (εn−εm+~ωk)]b∗nbm .

(22)

One can easily recognize in equation (22) the excitation and dis-excitation processes with absorp-
tion or emission of photons, and the well-known form of the interaction hamiltonian suitable for
perturbation calculations.

Coherence. Coherence domains. Making use of equation (19) the interaction lagrangian given
by equation (18) can be written as

Lint =
∑

nmαk

√
2π~
V ωk

Fnm(αk)
(
aαk + a∗−α−k

)
b∗nbm , (23)

where
Fnm(αk) =

1

N

∑
i

eα(k)Jnm(i)eikri−i(θni−θmi) . (24)

For any pair (nm) of energy levels, we represent the position ri of any particle i as ri = Rp + rpi,
where the vectors Rp de�ne a spatial lattice characterized by the set of integers p = (p1, p2, p3)
and rpi are restricted to the �rst Wigner-Seitz cell of such a latice. The lattice Rp is chosen such
that the magnitudes of its shortest reciprocal vectors kr, r = 1, 2, 3, are equal with the magnitude
of the relevant wavevectors k, i.e. those wavevectors which satisfy ~ωk = εn − εm > 0. It is easy
to see that only a cubic and a trigonal (rhombohedral) symmetry is thus allowed. For instance,
a cubic lattice is characterized in this case by a periodicity length λ = 2π/k, where k is the
magnitude of the relevant wavevector. A similar periodicity length (di�erent from λ) occurs for
the rhombohedral lattice. We limit the relevant wavevectors k to this �nite set of basic reciprocal
vectors, for which krRp = 2π × integer. Equation (24) becomes then

Fnm(αkr) =
1

N

∑
pi

eα(kr)Jnm(i)eikrrpi−i(θni−θmi) , (25)
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where the summation over p stands for all the elementary cells in the spatial lattice .

The summation of the phase factors in equation (25), over label i in the Wigner-Seitz cell, is in
general vanishing, in view of the randomness of such phase factors. We note that there is both
a spatial phase krrpi in equation (25) and an internal phase θni − θmi, leaving aside the various
orientations of the current density Jnm(i) with respect to the polarization vector eα(k). However,
we can de�ne a subset of Nnm(αkr) particles such that their phases θni ful�ll the condition

krrpi − (θni − θmi) = K , (26)

where K is a constant. We can see that these sub-sets of particles are disjoint, i.e. if a particle
satis�es condition (26) for a given kr it does not satisfy it for a di�erent kr. In addition, any
particle belongs to a well-determined pair (nm). It is also reasonable to assume that all the
particles Nnm(αkr) have their current density Jnm(i) alligned with the polarization vector eα(kr),
i.e. eα(kr)Jnm(i) = Jnm. Under these circumstances, up to a phase factor exp(iK), equation (25)
gives Fnm(αkr) = JnmNnm(αkr)/N . It is reasonable to assume in addition the completeness of
the partition operated by condition (26), i.e.

∑
(nm)αkr

Nnm(αkr) = N .

Condition (26) tells that the phases of the internal motion of the i-th particle is correlated to
the position of that particle. It implies a long-range order in a cooperative phenomenon, where
the phase of the internal motion "feels" the particle position. Equation (26) may be taken as
the basic condition for coherence. We call such an ensemble of particles which satis�es condition
(26) a lattice of coherence domains. Since, typically, the wavelength λr = 2π/kr � a, where a
is the mean inter-particle distance, we can see that for particles located near the centre of the
Wigner-Seitz cell we may take θni − θmi ' 0 and K = 0, while for particles located near the
boundaries of the Wigner-Seitz cell the phases are such as θni− θmi get non-vanishing values, such
as to preserve the constant value K = 0.

It is easy to see that for various pairs (nm) we have a superposition of such lattices of coherence
domains. Similarly, these lattices can also be one- or two-dimensional. For instance, a one-
dimensional lattice of coherence domains looks like a set of parallel sheets (layered structure),
with the relevant periodicity length λ. A two-dimensional lattice of coherence domains looks like
a set of parallel threads, with a corresponding periodicity.

Here we restrict ourselves to the ground-state of the ensemble of particles, labelled by n = 0, and
the �rst excited state n = 1, i.e. to only one pair (01). We assume a macroscopic occupation for
these states, which means to use c-numbers β0,1 for their operators b0,1. As it is well-known, the
occupation number has not de�nite values anymore in this case, while its conjugate phase is well
de�ned. These are coherent states de�ned by b0,1 |β0,1〉 = β0,1 |β0,1〉.[10] Under these circumstances
the interaction reduces to the contribution arising from those photons which satisfy the conserva-
tion of energy ε1 − ε0 = ~ω0, where ω0 = ck0. As it was said above, we limit these wavevectors
to the basic reciprocal vectors kr of the coherence lattice, of magnitude kr = k0 = 2π/λ0. Their
operators aαkr , kr = k0, are then replaced by c-numbers α, the same for any polarization α and
any kr. There is no particular reason to have an anisotropy or a polarization dependence for these
photon modes. It is easy to see that the interaction lagrangian given by equation (23) becomes
then

Lint =

√
2π~
V ω0

J01 (α+ α∗) (β∗1β0 + β1β
∗
0) , (27)

where we have taken J01 = J10. A similar replacement of the �eld operators by c-numbers is made
in the �eld lagrangian given by equation (2) and in the particles lagrangian given by equation
(15). The summation over αkr, kr = k0, in the �eld lagrangian Lf gives a factor 12, for a three-
dimensional lattice. This factor can be absorbed in the photon operators, so we can write down
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the "classical" lagrangian

Lf = ~
4ω0

(
α̇2 + α̇∗2 + 2 |α̇|2

)
− ~ω0

4

(
α2 + α∗2 + 2 |α|2

)
,

Ls = 1
2
i~

(
β∗0 β̇0 − β̇∗0β0 + β∗1 β̇1 − β̇∗1β1

)
−

(
ε0 |β0|2 + ε1 |β1|2

)
,

Lint = g√
N

(α+ α∗) (β0β
∗
1 + β1β

∗
0) ,

(28)

where the coupling constant is given by

g =
√
π~/6a3ω0J01 . (29)

It is worth noting that while the �eld lagrangian Lf in equation (28) is the classical lagrangian,
the particles lagrangian Ls and the interaction lagrangian Lint in equations (28) are "classical"
only with respect to the second-quantization (�eld operators), while they preserve their quantum
character with respect to the "�rst quantization".

In order to have some numerical estimates, we may take as a typical value for the energy diference
ε1 − ε0 = ~ω0 = 10eV , which corresponds to a photon wavelength λ0 = 103Å. This wavelength is
much longer than the typical inter-particle distance a. We can obtain an estimate of the coupling
constant g by representing the matrix element J01 of the current density as J01 ∼ qv ∼ qa0ω0 =
dω0, where q denotes a charge moving with velocity v inside each particle with a characteristic
radius a0, d being the corresponding dipole moment.1 Taking q = e (the electron charge) we get

g =
√
π~ω0(e2/6a0)(a0/a)

3/2 , (30)

which gives g ∼ 0.8eV for ~ω0 = 10eV , a0 = 0.53Å (the Bohr radius) and a ∼ 3Å. For one- and
two-dimensional coherence lattices this coupling constant increases by factors

√
3 and respectively√

3/2, as a result of the factor
∑

αkr
in front of the �eld lagrangian Lf (this factor is 8 for a

two-dimensional lattice and 4 a one-dimensional lattice).

Equations of motion. Making use of the lagrangian given by equation (28) we get the equations
of motion

Ä+ ω2
0A = 2ω0g

~
√

N
(β0β

∗
1 + β1β

∗
0) ,

i~β̇0 = ε0β0 − g√
N
Aβ1 ,

i~β̇1 = ε1β1 − g√
N
Aβ0 ,

(31)

where A = α+ α∗. The corresponding hamiltonian reads

Hf = ~
4ω0
Ȧ2 + ~ω0

4
A2 ,

Hs = ε0 |β0|2 + ε1 |β1|2 ,

Hint = − g√
N
A (β0β

∗
1 + β1β

∗
0) .

(32)

It is easy to see, by making use of the equations of motion (31), that it is conserved,

Hf +Hs +Hint = E , (33)

1This corresponds to the dipole approximation, which, in the non-relativistic limit leaves aside the spin and the
so-called diamagnetic contributions to the current density.
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where E is the energy. The number of particles is also conserved: from equations (31) we get
easily

|β0|2 + |β1|2 = N , (34)

corresponding to equation (13). Similarly, by making use of equations (31) we get straightforwardly
another conservation law, given by

~
4ω0

(
Ȧ2 + ω2

0A
2
)
− g√

N
A (β0β

∗
1 + β1β

∗
0) +

(ε1 − ε0)

2

(
|β1|2 − |β0|2

)
= Q , (35)

where Q is a constant energy; it can be checked out without di�culty that this is not an indepen-
dent conservation law; it amounts to E −N (ε1 + ε0) /2 = Q.

The stationary solutions of equations (31) are obtained by putting β0,1 = B0,1e
iθ; the equations of

motion become
Ä+ ω2

0A = 4ω0g

~
√

N
B0B1 ,

i~Ḃ0 − ~θ̇B0 = ε0B0 − g√
N
AB1 ,

i~Ḃ1 − ~θ̇B1 = ε1B1 − g√
N
AB0

(36)

The last two equations tell that B0,1 and θ̇ = Ω are constant in time and the particular solution
of the �rst equation (36) is

A =
4g

~ω0

√
N
B0B1 . (37)

Now it is easy to �nd out the solutions:

A = 2g
~ω0

√
N

[
1− (~ω0/2g)

4]1/2
,

B2
0 = 1

2
N

[
1 + (~ω0/2g)

2] ,

B2
1 = 1

2
N

[
1− (~ω0/2g)

2] ,

(38)

and frequency

Ω = ω0

[
−1

2
+

2g2

~2ω2
0

]
, (39)

where ε1 − ε0 = ~ω0 has been used and ε0 was put equal to zero.

We can see that the ensemble of atomic particles and the associated electromagnetic �eld can be
put into a coherent state, the occupation amplitudes oscillating with frequency Ω, providing the
critical condition

g > gcr = ~ω0/2 (40)

is ful�lled. Making use of equation (30), this condition reads a < a0 (e2/~ω0a0)
1/3, which is rather

a strong condition. For realistic values of a it requires much lower values of the excitation energy
~ω0 than those assumed here for the sake of a numerical example.

The total energy of the coherence domain is given by

E = − g2

~ω0

N
[
1− (~ω0/2g)

2]2
= −~ΩB2

1 . (41)

It is lower than the non-interacting ground-state energy Nε0 = 0. It may be viewed as the
formation enthalpy of the coherence domains. It must be emphasized that this e�ect of seting
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up a coherence in matter is di�erent from the lasing e�ect, precisely by this formation enthalpy.
Rather, the picture emerging from the solution given here resembles to some extent a quantum
phase transiton. The coupled ensemble of matter and radiation is unstable for a macroscopic
occupation of the atomic quantum states and the associated photon states.

Obviously, the coherence solutions obtained here are non-perturbational; they are not analytic in
the coupling constant g. It is worth noting that the stationary solutions given by equations (38)
and (39) can also be obtained by minimizing the hamiltonian (32) with the constraint B2

0 +B2
1 = N

given by equation (34).

It is also worth noting that the electromagnetic potential given by equation (1) for aαkr = α,
kr = k0, does not depend on the time. Consequently, the electric �eld is vanishing in the coherence
domains. The magnetic �eld is not vanishing, in general. The vector potential A(r) given by
equation (1) exhibits spatial oscillations according to the reciprocal vectors kr. The magnetic
�eld may attain high values, depending on the coupling strength g. Typically, the magnitude of
the magnetic �eld is of the order of

√
~ω0/a3. For ~ω0 = 10eV and a ∼ 3Å this �eld may be as

high as ∼ 106Gs. Following Preparata,[1] we may speculate that such a magnetic �eld might be
a good candidate for the Weisss' molecular �eld of ferromagnetism.

The polarization

P =
1

V

∑
i

p(i) (42)

of the coherence domains, where p(i) is the dipole momentum of the i-th particle, can easily be
calculated by using equations (11), (12) and (38); we get

P = 1
V N

∑
i p(i)

[
β∗0β1e

−i(θ0i−θ1i) + β∗1β0e
i(θ0i−θ1i)

]
=

= 1
V

∑
i p(i) cos (θ1i − θ0i)

[
1− (~ω0/2g)

4]1/2
,

(43)

where p(i) = p01(i) = p10(i). In general, without particular assumptions about p(i), the phase
summation in equation (43) vanishes and the polarization is zero. It is easy to see for instance
that an external �eld which would modulate the distribution of the dipole momenta p(i) with a
periodicity corresponding to the reciprocal vectors kr may give rise to a non-vanishing polarization,
in view of the coherence condition (26).

Elementary excitations of the coherence domain. We change the coordinates in the
lagrangian given by equations (28) according to A → A + δA, β0,1 → β0,1 + δβ0,1, where
δβ0,1 = (δB0,1 + iB0,1δθ0,1) e

iΩt. The �rst-order variation of the lagrangian gives the equations
of motion (31), so we are left with the second-order variation of the lagrangian, where δA, δβ0,1

are viewed as the new coordinates. In addition, we impose the conservation of the number of
particles B0δB0 +B1δB1 = 0. With this constraint we get the variation of the lagrangian

δLf = ~
4ω0
δȦ2 − ~ω0

4
δA2 ,

δLs = ~B1

[
δB1

(
δθ̇0 − δθ̇1

)
− δḂ1 (δθ0 − δθ1)

]
−

− (~ΩN/B2
0 + ~ω0) δB

2
1 − ~ΩB2

0δθ
2
0 − ~ (Ω + ω0)B

2
1δθ

2
1 ,

δLint = 2g√
N

B2
0−B2

1

B0
δAδB1 − 2g√

N

AB1

B0
δB2

1 + 2g√
N
AB0B1δθ0δθ1 .

(44)

The hamiltonian can readily be obtained from equation (44). It is convenient to introduce the
coupling strength λ = 2g/~ω0 (λ > 1) and to make use of equations (38) and (39). The hamiltonian
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can then be expressed as

δH = ~
4ω0
δȦ2 + ~ω0

4

(
δA− 2

√
N

λB0
δB1

)2

+

+2~ω0 (λ2 − 1) δB2
1 + ~ω0N

λ4−1
4λ2 (δθ0 − δθ1)

2 ,

(45)

which tells, �rst, that the relevant phase coordinate is δϕ = δθ0 − δθ1 and, second, that the
coordinates δA, δB1and δϕ are associated with the elementary excitations (excited states).

The equations of motions corresponding to the lagrangian given by equations (44) can be written
as

B0

(
δÄ+ ω2

0δA
)
− 2ω2

0

√
N

λ
δB1 = 0 ,

ω0Nλ
2δB1 −B2

0B1δϕ̇− ω0

√
N

2λ
B0δA = 0 ,

ω0N
λ4−1
4λ2 δϕ+B1δḂ1 = 0 .

(46)

Their solutions are of the form (δA, δB1, δϕ)eiωt, where the frequencies ω are given by

ω2
1,2 =

1

2
ω2

0

[
λ4 + 1±

√
(λ4 − 1)2 + 4

]
. (47)

The excitations energies correspond to the frequencies Ω1,2 = Ω ± ω1,2. In the weak coupling
limit these frequencies behave as ω1 '

√
2ω0 and ω2 '

√
λ2 − 1ω0 (Ω1,2 ' ω1,2). In this limit the

solution correponding to the former frequency is δA ' −2δB1 ' −i
√
N(λ2 − 1)δϕ, while the one

corresponding to the second frequency is δA ' 2δB1 ' i
√

2Nδϕ. Since for the former solution
δA and δB1 vanish in the limit λ → 1, while δϕ is non-vanishing, we may call this elementary
excitation "phason". As for the second solution, since all coordinates are non-vanishing, we may
call it "amplitudon". Although this terminology is reminiscent of the well-known dynamics of the
charge-density waves,[11, 12] the analogy is insubstantial to a large extent.

"Thermodynamics" of the coherent phase. In the limit of low temperatures the thermody-
namics is controlled by the coherent ground-state energy given by equation (41); the elementary
excitations derived above bring no thermodynamical contribution. We can compute directly the
partition function Z = tr exp [β (µN −H)], where β = 1/T is the inverse of the temperature, µ is
the chemical potential and the hamiltonian H is given by equations (32) with |β0|2 + |β1|2 = N .
The trace is computed by

∫
dβ0xdβ0y..., where β0 = β0x + iβ0y, etc. In the thermodynamical limit

we get

Z '
∫
dρ · eβNµρ√

~ω0 (~ω0 − µ)− 4g2%
' eβNµ~ω0(~ω0−µ)/4g2

(48)

for µ < 0. The thermodynamic potential is given by Ω = Nµ~ω0 (~ω0 − µ) /4g2. We can see
that the coherent phase is perfectly ordered, with a vanishing entropy. The chemical potential
µ = ~ω0/2 − 2g2/~ω0 < 0 implies g > ~ω0/2, which is the critical condition given by equation
(40). The energy (and free energy) is given by E = Ω + µN = −N~ω0 (~ω0/4g − g/~ω0)

2, which
coincides with the ground-state energy given by equation (41).

Super-radiant phase transition. The coherent state described herein is characterized by a
macroscopic occupation of the photon state and the two levels. It is indeed known that mat-
ter coupled to radiation may su�er an instability toward a super-radiant state at some critical
temperature, depending on the coupling constant.[6]-[9]
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We start with the quantum hamiltonian written as

Hf = ~ω0

∑
µ

(
a∗µaµ + 1/2

)
, Hs = ~ω0b

∗
1b1 ,

Hint = − 1√
N

(Gb∗1b0 +G∗b∗0b1) ,
(49)

where µ stands for the pair αkr, G =
∑

µ gµaµ and gµ =
√

2π~/V ω0J01N(µ)/
√
N . This is known

as the Dicke-Preparata hamiltonian.[7]-[9] Here we follow closely the analysis given in Ref. 6.

First we introduce the spin operators

Sz = b∗0b0 − b∗1b1 =
∑

i (b
∗
0ib0i − b∗1ib1i) =

∑
i szi ,

S+ = b∗0b1 =
∑

i b
∗
0ib1i =

∑
i s+i ,

S− = b∗1b0 =
∑

i b
∗
1ib0i =

∑
i s−i ,

(50)

where s's are Pauli matrices. The trace over b's in the partition function Z = tr exp (−βH), where
H = Hf +Hs +Hint, can then be represented as

trb exp (−βHs − βHint) = e−β~ω0N/2
(
trehs

)N
, (51)

where

hx =
β

2
√
N

(G∗ +G) , hy =
iβ

2
√
N

(G∗ −G) , hz = β~ω0/2 . (52)

It is easy to establish the equality trehs = 2 coshh, where h = β (G∗G/N + ~2ω2
0/4)

1/2. The
partition function can now be written as

Z = e−β~ω0(N+s)/2tr

{
e−β~ω0

P
µ a∗µaµ

[
2 cosh β

(
G∗G/N + ~2ω2

0/4
)1/2

]N
}

, (53)

where s =
∑

µ. We can see easily that there exists a unitary transformation A, aµ = Aµνcν ,
which diagonalizes the quadratic form G∗G =

∑
µν gµgνa

∗
µaν , while preserving the diagonal form∑

µ a
∗
µaµ. It has only one non-vanishing eigenvalue

G2
0 =

∑
µ

g2
µ =

2π~
V ω0

J2
01

∑
µ

N2(µ)/N , (54)

corresponding to one photon mode denoted by c. We take N(µ) = N/s, and get G2
0 = g2, where g

is given by equation (29) (for s = 12). We keep now in the partition function only the contributions
which are relevant in the thermodynamical limit, and get

Z ' e−β~ω0N/2tr

{
e
−β~ω0c∗c+N ln

»
2 cosh β(g2c∗c/N+~2ω2

0/4)
1/2

–}
(55)

The trace in this equation is computed in the classical limit, where the temperature is much higher
than all the relevant energy scales (e.g., β~ω0 � 1). We get

Z ' e−β~ω0N/2

∫ ∞

0

dx · e−Nφ(x) , (56)



J. Theor. Phys. 11

where
φ(x) = β~ω0x− ln

[
2 cosh β

(
g2x+ ~2ω2

0/4
)1/2

]
. (57)

The main contribution to the integral in equation (56) comes from the minimum value of the
function φ(x) (Laplace's method), located at x0 given by

2~ω0

g2

√
g2x0 + ~2ω2

0/4 = tanh β
√
g2x0 + ~2ω2

0/4 . (58)

This equation has no solution for g < ~ω0, at any temperature (x0 = 0). For g > ~ω0, there
exists a critical temperature Tc given by ~2ω2

0/g
2 = tanh βc~ω0/2 (or βc ' 2~ω0/g

2), such that
for temperatures higher than Tc equation (58) has no solution (x0 = 0), while for T < Tc it has a
non-vanishing solution. In the former case the ensemble of particles is in the normal state, with
a free energy per particle given by

f0 = ~ω0/2− β−1 ln [2 cosh β~ω0/2] (59)

(interaction-free ensemble). For T slightly below Tc we expand equation (58) in powers of√
g2x0 + ~2ω2

0/4− ~ω0/2 and get

x0 '
1

2
(1− T/Tc)

1/2 . (60)

Now it is easy to get the free energy per particle

f ' f0 −
~ω0

4
(1− T/Tc)

2 . (61)

As one can see, the entropy is continuous at the critical temperature, while the speci�c heat has a
discontinuity, C = C0 + ~ω0/2Tc. The transition is of the second kind, with the order parameter
the photon occupation number. Indeed, it is easy to compute the mean occupation number for
photons, which vanishes for T > Tc and is proportional to x0 given by equation (60) for T < Tc.
It is worth noting that the super-radiant transition is described by a quantum hamiltonian, while
the coherent phase obeys a classical dynamics. This accounts also for the di�erence in the two
critical conditions g > ~ω0/2 and g > ~ω0.

Conclusion. In conclusion we may say that the interaction of matter with electromagnetic inter-
action may lead to coherence domains, whose phases are arranged in a periodic lattice, governed
basically by a two-level state, providing the coupling constant is greater than a critical value.
The coherence domains are made possible by a spatial arrangement in a regular lattice of the
phases of the internal motion of the particles, according to the coherence condition (26).These
coherence domains are characterized by a macroscopic occupation of the quantum states. The
non-linear equations of motion have been solved for the coherent ground state and the elementary
excitations have been identi�ed. The solution is a non-perturbational one, the radiation frequency
being renormalized in an appreciable way. Perhaps the most direct experimental proof for the
existence of such a coherent state is the identi�cation of such elementary excitations which are
non-trivially renormalized in comparison with the radiation frequencies. The "thermodynamics"
of the coherent phase is computed and the super-radiant transition is re-derived in this context.

A non-trivial generalization of the present approach should address the issue of several level pairs
(nm). The equations of motion (31) become then matricial equations, and getting their solution
is a more di�cult task.
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