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2 J. Theor. Phys.plasmons,[4℄-[11℄ aounting for the eletron energy loss experiments and exploring the intera-tion of the eletron plasma with eletromagneti radiation (polariton exitations).[12℄-[24℄ Morereently, a possible enhanement of the eletromagneti radiation sattered on eletron plasmaswith speial geometries enjoyed a partiular interest.[25℄-[27℄ In all these studies the plasmon andpolariton modes are of fundamental importane.[28℄-[32℄ The methods used in deriving suh resultsare of great diversity, resorting often to partiular assumptions, suh that the basi underlyingmehanism of plasmons or polaritons' ourrene is often obsured. The need is therefore felt ofhaving a general, unifying proedure for deriving plasmon and polariton modes in strutures withspeial geometries, as based on the equation of motion of the harge density, Maxwell's equationsand the orresponding boundary onditions. Suh a proedure is presented in this paper for anideal semi-in�nite plasma and an ideal plasma slab.We represent the harge disturbanes as δn = −ndivu, where n is the (onstant, uniform) hargeonentration and u is a displaement �eld of the mobile harges (eletrons). This representationis valid for Ku(K) ≪ 1, where K is the wavevetor and u(K) is the Fourier omponent of thedisplaement �eld. We assume a rigid neutralizing bakground of positive harge, as in the well-known jellium model. In the stati limit, i.e. for Coulomb interation, the lagrangian of theeletrons an be written as
L =

∫

dr
[

1

2
mnu̇2 − 1

2

∫

dr′U(|r − r′|)δn(r)δn(r′)
]

+ e
∫

drΦ(r)δn(r) , (1)where m is the eletron mass, U(r) = e2/r is the Coulomb energy, −e is the eletron harge and
Φ(r) is an external salar potential. Equation (1) leads to the equation of motion

mü = ngrad
∫

dr′U(|r − r′|)divu(r′) + egradΦ, (2)whih is the starting equation of our approah. We leave aside the dissipation e�ets (whih aneasily be inluded in equation (2)).By using the Fourier transform for an in�nite plasma it is easy to see that the eigenmode of thehomogeneous equation (2) is the well-known bulk plasmon mode given by ω2
p = 4πne2/m. On theother side, equation δn = −ndivu is equivalent with Maxwell's equation divEi = −4πeδn, where

Ei = 4πneu is the internal eletri �eld (equal to −4πP, where P is the polarization). Making useof the eletri displaement D = −gradΦ = ε(D + Ei), we get the well-known dieletri funtion
ε = 1 − ω2

p/ω
2 in the long-wavelength limit from the solution of the inhomogeneous equation (2).Similarly, sine the urrent density is j = −enu̇, we get the well-known eletrial ondutivity

σ = iω2
p/4πω.We apply this approah to a semi-in�nite plasma and a plasma slab. First, we derive the surfaeand bulk plasmon modes and obtain the dieletri response and the eletron energy loss for a semi-in�nite plasma. The surfae ontribution to the energy loss exhibits an osillatory behaviour inthe transient regime near the surfae. Further on, we onsider the interation of the semi-in�niteplasma with the eletromagneti �eld, as desribed by the usual term (1/c)

∫

drjA− ∫ drρΦ in thelagrangian, where A is the vetor potential, ρ = endivu is the harge density and Φ is the salarpotential. We limit ourselves to the interation with the eletri �eld, and ompute the re�etedand refrated waves, as well as the re�etion oe�ient. Generalized Fresnel's relations are ob-tained for any inidene angle and polarization. We �nd it more onvenient to use the radiationformulae for the retarded potentials, instead of using diretly the Maxwell's equations, and theresulting integral equations are solved. Bulk and surfae plasmon-polariton modes are identi�ed.The �eld inside the plasma is either damped (evanesent) or propagating (transpareny regime),and the re�etion oe�ient exhibits an abrupt enhanement on passing from the propagating to



J. Theor. Phys. 3the damping regime (total re�etion). Finally, we give similar results for a plasma slab, wherewe ompute also the transmitted �eld and the transmission oe�ient. Apart from harateristiosillations, the re�etion and transmission oe�ients for a plasma slab exhibit an appreiableenhanement in the damped regime. The present approah an be extended to various otherplasma strutures with speial geometries.2 Plasma eigenmodesWe onsider an ideal semi-in�nite plasma extending over the half-spae z > 0 (and bounded bythe vauum for z < 0). The displaement �eld u is then represented as (v, u3)θ(z), where vis the displaement omponent in the (x, y)-plane, u3 is the displaement omponent along the
z-diretion and θ(z) = 1 for z > 0 and θ(z) = 0 for z < 0 is the step funtion. In equation ofmotion (2) divu is then replaed by

divu =

(

divv +
∂u3

∂z

)

θ(z) + u3(0)δ(z) , (3)where u3(0) = u3(r, z = 0), r being the in-plane (x, y) position vetor. Equation (2) beomes
mü = ne2grad

∫

dr′dz′ 1√
(r−r′)2+(z−z′)2

[

divv(r′.z′) + ∂u3(r′,z′)
∂z′

]

+

+ne2grad
∫

dr′ 1√
(r−r′)2+z2

u3(r
′, 0) + egradΦ

(4)for z > 0. One an see the (de)-polarizing �eld ourring at the free surfae z = 0 (the seondintegral in equation (4)).We use Fourier transforms of the type
u(r, z; t) =

∑

k

∫

dωu(k, z; ω)eikre−iωt (5)(for in-plane unit area), as well as the Fourier representation
1√

r2 + z2
=
∑

k

2π

k
e−k|z|eikr (6)for the Coulomb potential. Then, it is easy to see that equation (4) leads to the integral equation

ω2v =
1

2
kω2

p

∫ ∞

0
dz′ve−k|z−z′| +

1

2k
ω2

p

∫ ∞

0
dz′

∂v

∂z′

∂

∂z′ e
−k|z−z′| − iek

m
Φ (7)and iku3 = ∂v

∂z
, where we have dropped out for simpliity the arguments k, z and ω. The v-omponent of the displaement �eld is direted along the wavevetor k (in-plane longitudinalwaves). This integral equation an easily be solved. Integrating by parts in its rhs we get

ω2v = ω2
pv − 1

2
ω2

pv0e
−kz − iek

m
Φ , (8)hene

v =
iekω2

p

m
Φ0

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − iek

m
Φ

ω2−ω2
p

u3 = −ekω2
p

m
Φ0

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − e

m
Φ

′

ω2−ω2
p

(9)



4 J. Theor. Phys.where v0 = v(z = 0), Φ0 = Φ(z = 0) and Φ
′
= ∂Φ

∂z
. One an see the surfae ontributions (termsproportional to Φ0e

−kz) and bulk ontributions (Φ, Φ
′-terms).The solutions given by equations (9) exhibit two eigenmodes, the bulk plasmon ωb = ωp and thesurfae plasmon ωs = ωp/

√
2, as it is well known. Indeed, the homogeneous equation (8) (Φ = 0)has two solutions: the surfae plasmon v = v0e

−kz for ω2 = ω2
p/2 and the bulk plasmon v0 = 0 for

ω2 = ω2
p. Making use of this observation we an represent the general solution as an eigenmodesseries

v(k, z) =
√

2kv0(k)e−kz +
∑

κ

√

2k2

κ2 + k2
v(k, κ) sinκz , (10)for z > 0, where v(k,−κ) = −v(k, κ), and iku3(k, z) = ∂v(k,z)

∂z
. Then, it is easy to see that thehamiltonian H = T +U orresponding to the lagrangian L = T −U given by equation (1) beomes

T = nm
∑

k v̇∗
0(k)v̇0(k) + nm

∑

kκ v̇∗(k, κ)v̇(k, κ)

U = 2πn2e2∑

k v∗
0(k)v0(k) + 4πn2e2∑

kκ v∗(k, κ)v(k, κ) ,
(11)where T is the kineti energy and U is the potential energy. We an see that this hamiltonianorresponds to harmoni osillators with frequenies ωs = ωp/

√
2 and ωb = ωp.Making use of Ei = 4πneu and equations (9) we an write down the internal �eld (polarization)as

E⊥(k, z; ω) =
ikω4

pΦ(k,0;ω)

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − ikω2

pΦ(k,z;ω)

ω2−ω2
p

E‖(k, z; ω) = − kω4
pΦ(k,0;ω)

(ω2−ω2
p)(2ω2−ω2

p)
e−kz − ω2

pΦ
′
(k,z;ω)

ω2−ω2
p

(12)where E⊥ is direted along the in-plane wavevetor k and E‖ is parallel with the z-axis (perpen-diular to the surfae z = 0). This is the dieletri response of the semi-in�nite plasma to anexternal potential.We take an external potential of the form Φ(k, z) = Φ0(k)eiκz (leaving aside the frequeny argu-ment ω), and get the eletri displaement D⊥(k, z) = −ikΦ0(k)eiκz and D‖(k, z) = −iκΦ0(k)eiκzfrom D = −gradΦ. We an see that the surfae terms do not ontribute to this response, asexpeted, sine these terms are loalized. Making use of Ei = (1/ε− 1)D, we get the well-knowndieletri funtion ε(κ, ω) = 1 − ω2
p/ω

2 in the long-wavelength limit.3 Eletron energy lossIt is well known that the energy loss per unit time (stopping power) is given by
P =

d

dt

(

mv2

2

)

= −evEi , (13)for an eletron moving with veloity v = (v⊥, v‖), where the �eld Ei is taken at r = v⊥t and
z = v‖t for t > 0 (z > 0). It is assumed that the eletron energy is su�iently large and theenergy loss is small enough to use a onstant v in estimating the rhs of equation (13). Thepotential reated by the eletron is given by the Poisson equation ∆Φ = 4πeδ(r− v⊥t)δ(z − v‖t),whene, by making use of the Fourier representation (6), we get

Φ(k, z; ω) = − 2ev‖
(ω − kv⊥)2 + k2v2

‖

e−i(kv⊥−ω)z/v‖ . (14)
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Figure 1: Eletromagneti plane wave E0, with wavevetor K, inident on the surfae z = 0.We introdue this potential in equations (12) and ompute the energy loss given by equation (13).It ontains two ontributions, one assoiated with the bulk plasmons,
Pb = e2ω2

p

∑

k

∫

dω
iω

ω2
p − ω2

· 2v‖
(ω − kv⊥)2 + k2v2

‖

, (15)and another arising from surfae e�ets,
Ps = e2ω4

p

∑

k

∫

dω 1
(ω2−ω2

p/2)(ω2−ω2
p)
· v‖(ikv⊥−kv‖)

(ω−kv⊥)2+k2v2

‖

×

×e−kv‖tei(kv⊥−ω)t .

(16)In performing the ω-integrations in equations (15) and (16) we retain only the plasmon ontribu-tions arising from the poles ω = ωp and ω = ωp/
√

2. For normal inidene (v⊥ = 0, v‖ = v) we geteasily the well-known bulk ontribution Pb =
(

−e2ω2
p/v

)

ln(vk0/ωp), where k0 is an upper ut-o�(assoiated, as usually, with the ionization energy, or with the inverse of the mean inter-partilespaing, et), and the surfae ontribution
Ps = −e2ωp

vt

(√
2 sin ωpt/

√
2 − sin ωpt

)

. (17)We an see in equation (17) the osillatory behaviour of the stopping power arising from thesurfae e�ets in the transient regime near the surfae.4 Interation with the eletromagneti �eld. PolaritonsWe assume a plane wave inident on the plasma surfae under angle α. Its frequeny is given by
ω = cK, where c is the veloity of light and the wavevetor K = (k, κ) has the in-plane omponent
k and the perpendiular-to-plane omponent κ, suh as k = K sin α and κ = K cos α. In addition,
k = k(cos ϕ, sin ϕ). The eletri �eld is taken as E0 = E0(cos β, 0,− sinβ)
×eikreiκze−iωt, and we impose the ondition cos β sin α cos ϕ − sin β cos α = 0 (transversality on-dition KE0 = 0). The angle β de�nes the diretion of the polarization of the inident �eld. Thegeometry of the inident wave is shown in Fig. 1.In the presene of an eletromagneti wave we use the equation of motion

ω2u =
e

m
E +

e

m
E0e

iκz , (18)



6 J. Theor. Phys.for z > 0, where E is the polarizing �eld; in equation (18) we have preseved expliitly only the
z-dependene (i.e. we leave aside the fators eikre−iωt). We �nd it onvenient to employ the vetorpotential

A(r, z; t) =
1

c

∫

dr′
∫

dz′
j(r′, z′; t − R/c)

R
(19)and the salar potential

Φ(r, z; t) =
∫

dr′
∫

dz′
ρ(r′, z′; t − R/c)

R
, (20)where j = −neu̇θ(z)eikre−iωt is the urrent density,

ρ = nedivu = ne
(

ikv + ∂u3

∂z

)

θ(z)eikre−iωt + neu3(0)δ(z)eikre−iωt is the harge density and R =
√

(r − r′)2 + (z − z′)2. The integrals in equations (19) and (20) implies the known integral[33℄
∫ ∞

|z|
dxJ0

(

k
√

x2 − z2
)

eiωx/c =
i

κ
eiκ|z| , (21)where J0 is the zeroth-order Bessel funtion of the �rst kind (and ω2/c2 = κ2 + k2). It isonvenient to use the projetions of the in-plane displaement �eld v on the vetors k and

k⊥ = k(− sin ϕ, cos ϕ), k⊥k = 0. We denote these omponents by v1 = kv/k and v2 = k⊥v/k,and use also the omponents E1 = kE/k, E2 = k⊥E/k and similar ones for the external �eld E0.We give here the omponents of the external �eld
E01 = E0 cos β cos ϕ , E02 = −E0 cos β sin ϕ , E03 = −E0 sin β . (22)One an hek immediately the transversality ondition E01k + E03κ = 0. Making use of E =

−1
c

∂A

∂t
− gradΦ, equations (19) and (20) give the eletri �eld

E1 = −2πineκ
∫

0 dz′v1(z
′)eiκ|z−z′| − 2πnek

κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′| ,

E2 = −2πine ω2

c2κ

∫

0 dz′v2(z
′)eiκ|z−z′| ,

E3 = 2πnek
κ

∫

0 dz′v1(z
′) ∂

∂z
eiκ|z−z′| − 2πinek2

κ

∫

0 dz′u3(z
′)eiκ|z−z′|+

+4πneu3

(23)
for z > 0. It is worth observing in deriving these equations the non-intervertibility of the deriva-tives and the integrals, aording to the identity

∂

∂z

∫

0
dz

′

f(z
′

)
∂

∂z′ e
iκ

∣

∣

∣

z−z
′
∣

∣

∣

= κ2
∫

0
dz

′

f(z
′

)e
iκ

∣

∣

∣

z−z
′
∣

∣

∣ − 2iκf(z) (24)for any funtion f(z), z > 0; it is due to the disontinuity in the derivative of the funtion e
iκ

∣

∣

∣
z−z

′
∣

∣

∣for z = z
′ . Now, we employ equation of motion (18) in equations (23) and get the integralequations

ω2v1 = − iω2
pκ

2

∫

0 dz′v1(z
′)eiκ|z−z′| − ω2

pk

2κ

∫

0 dz′u3(z
′) ∂

∂z′
eiκ|z−z′|+

e
m

E01e
iκz ,

ω2v2 = − iω2
pω2

2c2κ

∫

0 dz′v2(z
′)eiκ|z−z′| + e

m
E02e

iκz ,

ω2u3 =
ω2

pk

2κ

∫

0 dz′v1(z
′) ∂

∂z
eiκ|z−z′| − iω2

pk2

2κ

∫

0 dz′u3(z
′)eiκ|z−z′|+

+ω2
pu3 + e

m
E03e

iκz

(25)



J. Theor. Phys. 7for the oordinates v1,2 and u3 in the region z > 0.The seond equation (25) an be solved straightforwardly by notiing that
∂2

∂z2

∫

0
dz′v2(z

′)eiκ|z−z′| = −κ2
∫

0
dz′v2(z

′)eiκ|z−z′| + 2iκv2 . (26)We get
∂2v2

∂z2
+ (κ2 − ω2

p/c
2)v2 = 0 . (27)The solution of this equation is

v2 =
2eE02

mω2
p

·
κ
(

κ − κ
′
)

K2
eiκ

′
z , (28)where

κ
′

=
√

κ2 − ω2
p/c

2 =
1

c

√

ω2 cos2 α − ω2
p . (29)The wavevetor κ

′an also be written in a more familiar form
κ

′
= (ω/c)

√
ε − sin2 α, where ε = 1− ω2

p/ω
2 is the dieletri funtion. The orresponding ompo-nent of the (total) eletri �eld (the refrated �eld), an be obtained from equation (18); it is givenby (mω2/e) v2. For κ2 < ω2

p/c
2 (ω cos α < ωp) this �eld does not propagate. For κ2 > ω2

p/c
2 (ωgreater than the transpareny edge ωp/ cosα) it represents a refrated wave (transpareny regime)with the refration angle α

′ given by Snell's law
sin α

′

sin α
=

1
√

1 − ω2
p/ω

2
= 1/

√
ε . (30)The polariton frequeny is given by

ω2 = c2K2 = ω2
p + c2K

′2 , (31)as it is well known, where K
′2 = κ

′2 + k2.The �rst and the third equations (25) an be solved by using an equation similar with equation(26) and by notiing that they imply
κ

′2u3 = ik
∂v1

∂z
. (32)We get

v1 =
2eE01

mω2
p

·
κ

′
(

κ − κ
′
)

κκ′ + k2
eiκ

′
z (33)and

u3 =
2eE03

mω2
p

·
κ
(

κ − κ
′
)

κκ′ + k2
eiκ

′
z . (34)Similarly, the orresponding omponents of the refrated �eld are given by equation (18). It iseasy to hek the transversality ondition v1k + u3κ

′
= 0 (and the vanishing of the bulk harge

ne
(

ikv + ∂u3

∂z

)

= 0).We an see that the polarization �eld E in equation (18) anels out the original inident �eld
E0 and gives the total, refrated �eld mω2u/e inside the plasma. This is an illustration of theso-alled Ewald-Oseen extintion theorem.[17, 34℄
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Figure 2: Re�etion oe�ient for a semi-in�nite plasma for β = π/6 and various inidene angles
α. One an see the shoulder ourring at the transpareny edge ωp/ cosα and the zero ourringat ω2 = ω2

p/ (1 − tan2 α) for α = β = π/6 (R2 = 0,ϕ = 0).It is worth investigating the eigenvalues of the homogeneous system of integral equations (25), forparameter κ given by κ =
√

ω2/c2 − k2. Suh eigenvalues are given by the roots of the vanishingdenominator in equations (33) and (34), i.e. by equation κκ
′
+ k2 = 0. This equation has realroots for ω only for the damped regime, i.e. for κ = i |κ| and κ

′
= i

∣

∣

∣κ
′
∣

∣

∣. Providing these onditionsare satis�ed, there is only one aeptable branh of exitations, given by
ω2 =

2ω2
pc

2k2

ω2
p + 2c2k2 +

√

ω4
p + 4c4k4

. (35)We an see that ω ∼ ck in the long wavelength limit and it approahes the surfae-plasmonfrequeny ω ∼ ωp/
√

2 in the non-retarded limit (ck → ∞). These exitations are surfaeplasmon-polariton modes. We note that they imply v2 = 0 and v1, u3 ∼ e−|κ′|z. In addition,a areful analysis of the homogeneous system of equations (25) reveals another branh of exi-tations, given by ω = ωp, whih, ourring in this ontext, may be termed the bulk plasmon-polariton modes. They are haraterized by v2 = 0 and v1(k, 0) = 0. For all these modes we have
u3 =

[

ic2k/
(

ω2 − c2k2 − ω2
p

)]

∂v1

∂z
.In order to get the re�eted wave (the region z < 0) we turn to equations (23) and use therein thesolutions given above for v1,2 and u3. It is worth noting here that the disontinuity term ω2

pu3 doesnot appear anymore in these equations (beause z
′
> 0 and z < 0 and we annot have z = z

′).The integrations in equations (23) are straightforward and we get the �eld
E1 = E01

κ − κ
′

κ + κ′ ·
κκ

′ − k2

κκ′ + k2
e−iκz , (36)

E2 = E02
κ − κ

′

κ + κ′ e
−iκz (37)
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E3 = −E03

κ − κ
′

κ + κ′ ·
κκ

′ − k2

κκ′ + k2
e−iκz . (38)We an see that this �eld represents the re�eted wave (κ → −κ), and we an hek its transver-sality to the propagation wavevetor. Making use of the re�eted �eld Erefl given by equations(36)-(38) and the refrated �eld Erefr obtained from equations (18) and (23) (Erefr = E + E0 =

mω2u/e) one an hek the ontinuity of the eletri �eld and eletri displaement at the surfae(z = 0) in the form E1,2refl +E01,2 = E1,2refr, E3refl +E03 = εE3refr, where ε = 1−ω2
p/ω

2. The an-gle of total polarization (Brewster's angle) is given by κκ
′ −k2 = 0, or tan2 α = 1−ω2

p/ω
2 = ε (for

α < π/4). The above equations provide generalized Fresnel's relations between the amplitudes ofthe re�eted, refrated and inident waves at the surfae for any inidene angle and polarization.They an also be written by using ω2 = ω2
p/ (1 − ε), where ε is the dieletri funtion.The re�etion oe�ient R = |Erefl|2 / |E0|2 an be obtained straightforwardly from the re�eted�elds given by equations (36)-(38). It an be written as

R = R1

[

cos2 β sin2 ϕ + R2

(

cos2 β cos2 ϕ + sin2 β
)]

, (39)where
R1 =

∣

∣

∣

∣

∣

∣

√

ω2 cos2 α − ω2
p − ω cos α

√

ω2 cos2 α − ω2
p + ω cos α

∣

∣

∣

∣

∣

∣

2 (40)and
R2 =

∣

∣

∣

∣

∣

∣

cos α
√

ω2 cos2 α − ω2
p − ω sin2 α

cos α
√

ω2 cos2 α − ω2
p + ω sin2 α

∣

∣

∣

∣

∣

∣

2

. (41)The �rst term in the rhs of equation (39) orresponds to β = 0 (ϕ = π/2; s-wave, eletri �eldperpendiular to the plane of inidene, while the seond term orresponds to β = α (ϕ = 0;
p-wave, eletri �eld in the plane of inidene). It is easy to see that there exists a usp (shoulder)in the behaviour of the funtion R(ω), ourring at the transpareny edge ω = ωp/ cos α, wherethe re�etion oe�ient exhibits a sudden enhanement on passing from the propagating regimeto the damped one, as expeted (total re�etion). The ondition for total re�etion an also bewritten as sin α =

√
ε, where R = 1 (R1,2 = 1), as it is well known. For illustration, the re�etionoe�ient is shown in Fig. 2 for β = π/6 and various inidene angles. The re�etion oe�ientis vanishing at ω2 = ω2

p/ (1 − tan2 α) for α = β < π/4 (R2 = 0, ϕ = 0).5 Plasma slabWe onsider an ideal plasma slab of thikness d, extending over the region 0 < z < d and boundedby the vauum. The displaement �eld u an be represented as (v, u3) [θ(z) − θ(z − d)], where vis the displaement omponent in the (x, y)-plane and u3 is the displaement omponent along the
z-diretion. The approah presented above for a semi-in�nite plasma an easily be extended tothis ase. The analogous of the equation of motion (4) exhibits now two polarization ontributions,arising from the two surfaes. The dieletri response similar to equation (9) is given by

v =
iekω2

p

m
· (2ω2−ω2

p)Φ0−ω2
pΦde−kd

(ω2−ω2
p)[2ω2−ω2

p(1−e−kd)][2ω2−ω2
p(1+e−kd)]

e−kz+

+
iekω2

p

m
· (2ω2−ω2

p)Φd−ω2
pΦ0e−kd

(ω2−ω2
p)[2ω2−ω2

p(1−e−kd)][2ω2−ω2
p(1+e−kd)]

ekz−kd − iek
m

Φ
ω2−ω2

p

(42)
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Figure 3: Re�etion oe�ient for a slab of thikness d (dωp/c = 1) for β = 0, ϕ = π/2 (s-wave)and a few inidene angles α. Its slope is ontinuous at the transpareny edge (ω cos α = ωp).The osillations ourring in the transpareny regime are too small to be visible in Figure.and iku3 = ∂v
∂z
, where Φ0 = Φ(z = 0), Φd = Φ(z = d), 0 < z < d. The eletri �eld is givenby E⊥ = 4πnev and E‖ = 4πneu3. One an see that, beside the bulk plasmon mode ω2

p, thereappears two surfae modes given by ω2
p

(

1 ± e−kd
)

/2, as it is well known. For d → ∞ equation(42) beomes the �rst equation (9) for the semi-in�nite plasma. For d → 0 we get the well-knownplasma frequeny √(2πnse2/m) k for a sheet with surfae eletron density ns = nd.The bulk ontribution to the energy loss is the same as for the semi-in�nite plasma. We omputethe surfae ontrbution to the eletron energy loss for kd ≫ ωpd/v ≫ 1, i.e. for a fast eletronmoving with veloity v, whih, however, spends enough time in the sample to exite plasmons.For normal inidene the surfae ontribution onsists of two osillatory terms
Ps = −e2ωp

vt

(√
2 sin ωpt/

√
2 − sin ωpt

)

−

− e2ωp

d−vt

[√
2 sin ωp (d/v − t) /

√
2 − sin ωp (d/v − t)

]

,

(43)orresponding to the two surfaes, for 0 < t < d/v. The total energy loss during the passagethrough the slab is given by
∫ d/v

0
dtPs ≃

∫ ∞

0
dtPs = −π

(√
2 − 1

) e2ωp

v
. (44)We use again the equation of motion (18) and the retarded potentials given by equations (19) and(20) in order to get the refrated �eld (�eld inside the slab), re�eted (z < 0) and transmitted(z > d) �elds. The polarization �eld is given by the same equations (23), where the z-integrationis limited to the region 0 < z < d. The same holds for the equations of motion (25). We solvethese equations by the same method used above. Within the slab we have two waves of the form

e±iκ
′
z, one being the refrated wave through the �rst surfae (z = 0), the other being the re�eted
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Figure 4: Re�etion oe�ient for a slab of thikness d (dωp/c = 1) for α = β, ϕ = 0 (p-wave) anda few inidene angles α. It exhibits a loal maximum (R = 1) for ω = ωp and small osillationsin the transpareny region ω cos α > ωp (too small to be visible in Figure). In addition, it isvanishing for ω2 = ω2
p/ (1 − tan2 α), α < π/4, as one an see in Figure for α = π/6 (urve a).wave on the seond surfae (z = d). The wavevetor κ

′ is given by the same equation (29), andthe transpareny edge is given by the same ondition ω cos α = ωp as for a semi-in�nite plasma.We get
v2 = A2

[

eiκ
′
z − κ − κ

′

κ + κ′ e
2iκ

′
d · e−iκ

′
z

]

, (45)where
A2 =

2eE02

mω2
p

·
κ
(

κ − κ
′
) (

κ + κ
′
)2

K2
[

(κ + κ′)2 − (κ − κ′)2 e2iκ′d
] , (46)and

v1 = A1

[

eiκ
′
z − κ − κ

′

κ + κ′ ·
κκ

′ − k2

κκ′ + k2
e2iκ

′
d · e−iκ

′
z

]

, (47)where
A1 =

2eE01

mω2
p

·
κ

′
(

κ − κ
′
) (

κ + κ
′
)2 (

κκ
′
+ k2

)

(κ + κ′)2 (κκ′ + k2)2 − (κ − κ′)2 (κκ′ − k2)2 e2iκ′d
; (48)the third omponent an be obtained from κ

′2u3 = ik (∂v1/∂z). One an hek the transversalityof these waves and an ompute the dispersion relations for the eigenvalues (bulk and surfaeplasmon-polaritons) in the like manner as for the semi-in�nite plasma.The re�eted �eld is given by
E1 = E01

(

1 − e2iκ
′
d

)

(

κ2−κ
′
2

)(

κ2κ
′
2−k4

)

(κ+κ′)
2

(κκ′+k2)
2

−(κ−κ′)
2

(κκ′−k2)
2

e2iκ
′
d
e−iκz ,

E2 = E02

(

1 − e2iκ
′
d

)

κ2−κ
′
2

(κ+κ′)
2

−(κ−κ′)
2

e2iκ
′
d
e−iκz

(49)
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Figure 5: Transmission oe�ient for a slab of thikness d (dωp/c = 1) for β = 0, ϕ = π/2 (s-wave) and a few inidene angles α. One an see the harateristi usp at the transpareny edge
ω cos α = ωp and the peak ourring below this edge. The osillations ourring in the transparenyregime are too small to be visible in Figure.and E3 = −E03 (E1/E01).From the above results one an hek the ontinuity of the eletri �eld and eletri displaementas well as the angle of total polarization given by tan2 α = 1 − ω2

p/ω
2 = ε. If we take formally

e2iκ
′
d → 0 we reover all the �elds for the semi-in�nite plasma. Indeed, for the semi-in�nite plasmaall the integrations to z → ∞ are taken by assuming a vanishing fator e−µz, µ > 0, and letting

µ go to zero. If we preserve this fator for the slab, it gives rise to fators of the form e2iκ
′
de−µd,whih are vanishing for d → ∞. The limit d → 0 (plasma sheet) annot be taken diretly on theabove results (ωp ∼ 1/

√
d, κ

′ ∼ iωp/c), beause of the disontinuities arising from the θ-funtion.The alulations for a plasma sheet with a �nite (super�ial) harge density ns must be doneseparately. They are left, together with other related results, for a forthoming publiation. Thelimit κ
′
d ≪ 1 (κd ≪ 1) an be taken diretly on the formulae given here. It orresponds towavelengths muh longer than the thikness of the slab.The re�etion oe�ient for the plasma slab R = |Erefl|2 / |E0|2, where the re�eted �eld is givenby equations (49), has a di�erent struture than the re�etion oe�ient for the semi-in�niteplasma. It an be written as

R =
ω4

p

c4

∣

∣

∣

∣

1 − e2iκ
′
d

∣

∣

∣

∣

2 [

R1 cos2 β sin2 ϕ + R2

(

cos2 β cos2 ϕ + sin2 β
)]

, (50)where
R1 =

1
∣

∣

∣(κ + κ′)2 − (κ − κ′)2 e2iκ
′
d
∣

∣

∣

2 (51)and
R2 =

∣

∣

∣κ2κ
′2 − k4

∣

∣

∣

2

∣

∣

∣(κ + κ′)2 (κκ′ + k2)2 − (κ − κ′)2 (κκ′ − k2)2 e2iκ′d
∣

∣

∣

2 . (52)



J. Theor. Phys. 13

0 1 2 3 4
ω/ω

p

0

1

2

3

T a

b

c

c
b

a

a) α=π/6
b) α=π/4
c) α=π/3

Figure 6: Transmission oe�ient for a slab of thikness d (dωp/c = 1) for a few inidene angles
α = β and ϕ = 0 (p-wave). One an see the two peaks ourring below the transpareny edge
ω cos α = ωp (the usp in Figure) and the zero for ω = ωp. The osillations ourring in thetranspareny regime are too small to be visible in Figure.The re�etion oe�ient given by equation (50) is shown in Figs. 3-4 for β = 0, ϕ = π/2 (s-wave) and, respetively, α = β, ϕ = 0 (p-wave) and dωp/c = 1. The re�etion oe�ient exhibitsharateristi osillations arising from the exponential fator in equations (50)-(52) and has anabrupt enhanement in the damping regime. In addition, R2 is vanishing for ω2 = ω2

p/ (1 − tan2 α)(α < π/4) and R2 = 1 for ω = ωp.The transmitted �eld (region z > d) is given by
E1 = E01

4K2κκ
′
(

κ
′
2+k2

)

e
i

(

κ
′
−κ

)

d

(κ+κ′)
2

(κκ′+k2)
2

−(κ−κ′)
2

(κκ′−k2)
2

e2iκ
′
d
eiκz

E2 = E02
4κ

′
κe

i

(

κ
′
−κ

)

d

(κ+κ′)
2

−(κ−κ′)
2

e2iκ
′
d
eiκz

(53)
and E3 = E03 (E1/E01). One an hek the ontinuity of the eletri �eld and eletri displaementat the surfae z = d. In the limit d → ∞ the transmitted �eld is vanishing. The transmissionoe�ient given by T = |Etr|2 / |E0|2, where Etr is given by equations (53), an be written as

T = 16κ2
∣

∣

∣κ
′
∣

∣

∣

2
[R1 cos2 β sin2 ϕ+

+
K4

∣

∣

∣
κ
′
2+k2

∣

∣

∣

2

|κ2κ
′2−k4|2 R2

(

cos2 β cos2 ϕ + sin2 β
)

] ,

(54)where R1,2 are given by equations (51) and (52). This transmission oe�ient is shown in Figs. 5-6for β = 0, ϕ = π/2 (s-wave) and, respetively, α = β, ϕ = 0 (p-wave) and dωp/c = 1. Beside theharateristi usp ourring at the transpareny edge (ω cos α = ωp), the transmission oe�ient



14 J. Theor. Phys.exhibits an appreiable enhanement below this edge. For α = β, ϕ = 0 (p-wave) and ω = ωp there�etion oe�ient attains the value unity and the transmission oe�ient vanishes. The �eldsderived above an be viewed as generalized Fresnel's relations for a plasma slab.6 ConlusionsThe approah presented here is a quasi-lassial one, valid for wavelengths muh longer thanthe amplitude of the Fourier omponents of the displaement �eld u. This is not a partiularlyrestritive ondition for the lassial dynamis of the eletromagneti �eld interating with matter.When this ondition is violated, as, for instane, for wavelengths muh shorter than the meanseparation distane between eletrons, there appear both higher-order terms in the equations ofmotion and the oupling to the individual motion of the eletrons. These ouplings a�et ingeneral the dispersion relations and introdue a �nite lifetime (damping) for the plasmon andpolariton modes.Making use of the equations of motion for the displaement �eld u and the radiation formulaefor the eletromagneti potentials, we have omputed herein the plasmon and polariton modes foran ideal semi-in�nite eletron plasma and an ideal plasma slab of �nite thikness, as well as thedieletri response, the eletron energy loss, the re�eted and refrated waves and the re�etionoe�ient. For the semi-in�nite plasma we have identi�ed the bulk and surfae plasmon-polaritonmodes and for the plasma slab we have omputed also the transmitted wave and the transmissionoe�ient. It was shown that the stopping power due to the surfae e�ets has a harateristiosillatory behaviour in the transient regime near the surfaes. The �eld inside the plasma iseither damped (evanesent) or propagating, as it is well known, and the re�etion oe�ient forthe semi-in�nite plasma exhibits a sudden enhanement on passing from the propagating to thedamped regime, as expeted. The transpareny edge is given by ω cos α = ωp, where α is theinidene angle, ω is the frequeny of the inident wave and ωp is the plasma frequeny. Apartfrom harateristi osillations, the re�etion and transmission oe�ients for the plasma slabexhibit an appreiable enhanement below the transpareny edge.Other e�ets related to the dynamis of a semi-in�nite eletron plasma, or, in general, variousplasmas with retangular geometries, an be omputed similarly by using the method presentedhere. The method an also be applied to plasmas with other, more partiular, geometries. Thedissipation an be introdued (as for metals) and a model an be formulated for dieletris,amenable to the method presented here. This will allow the treatment of more realisti asesas well as various interfaes, in partiular plasmas (or metals) bounded by dieletris. Theseinvestigations are left for forthoming publiations.Aknowledgments. The authors are indebted to the members of the Laboratory of TheoretialPhysis at Magurele-Buharest for many useful disusssions, and to dr. L. C. Cune for his help invarious stages of this work.Referenes[1℄ D. Bohm and D. Pines, Phys. Rev. 82 625 (1951).[2℄ D. Pines and D. Bohm, Phys. Rev. 85 338 (1952).[3℄ D. Bohm and D. Pines, Phys. Rev. 92 609 (1953).
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