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tThe 
oherent intera
tion of the ele
tromagneti
 radiation with an ensemble of polarizable,identi
al parti
les with two energy levels is investigated in the presen
e of external ele
tro-magneti
 �elds. The 
oupled non-linear equations of motion are solved in the stationaryregime and in the limit of small 
oupling 
onstants. It is shown that an external ele
tromag-neti
 �eld may indu
e a ma
ros
opi
 o

upation of both the energy levels of the parti
lesand the 
orresponding photon states, governed by a long-range order of the quantum phasesof the internal motion (polarization) of the parti
les. A lasing e�e
t is thereby obtained,
ontrolled by the external �eld. Its main 
hara
teristi
s are estimated for typi
al atomi
matter and atomi
 nu
lei. For atomi
 matter the e�e
t may be 
onsiderable (for usual ex-ternal �elds), while for atomi
 nu
lei the e�e
t is extremely small (pra
ti
ally insigni�ant),due to the great disparity in the 
oupling 
onstants. In the absen
e of the external �eld, thesolution, whi
h is non-analyti
 in the 
oupling 
onstant, 
orresponds to a se
ond-order phasetransition (super-radian
e), whi
h was previously investigated.Key words: 
oheren
e, polarization, lasers, matter intera
ting with radiationPACS: 32.80.Qk; 42.50.Ct; 42.55.Ah; 42.55.V
1 Introdu
tionIn a previous paper,[1℄ the 
oherent intera
tion of the ele
tromagneti
 radiation with an ensembleof polarizable, identi
al parti
les with two energy levels has been investigated in the absen
e ofexternal ele
tromagneti
 �elds, and the 
orresponding 
oupled non-linear equations of motion havebeen solved. It was shown that the solution has a non-perturbational 
hara
ter (it is non-analyti
in the 
oupling 
onstant). The main role in this problem is played by a dimensionless 
oupling
onstant
λ =

√
2π

3a3~ω0

J01

ω0

, (1)where J01 is the matrix element of the 
urrent asso
iated with ea
h parti
le, a is the mean inter-parti
le distan
e and ~ω0 = ε1 − ε0 is the energy separation between the two levels. It was



2 J. Theor. Phys.shown[1℄ that, at zero temperature, the two levels ε0,1 and the 
orresponding photon states ~ω0are ma
ros
opi
ally o

upied, provided λ > 1; at �nite temperature, this 
oherent state sets upfor λ > 2 and below a 
riti
al temperature Tc (given by Tc ≃ λ2
~ω0/8). This se
ond-order phasetransition is usually known as a super-radian
e transition;[2℄-[7℄ it 
orresponds to a long-rangeorder of the quantum phases (a latti
e of 
oheren
e domains),[1℄ asso
iated with the internalmotion (polarization) of the parti
les.For numeri
al estimates we may take J01 = ω0p, where p = el is the dipole momentum of theparti
les, l being the distan
e over whi
h an ele
tron 
harge e is displa
ed in the polarizationpro
ess. For typi
al atomi
 matter we may take, for illustrative purposes, l = a0 = 0.53Å (Bohrradius), ~ω0 = 1eV and a = 3Å (p = 2.4 × 10−18esu). We get λ ≃ 0.5, whi
h is insu�
ientfor setting up the 
oherent state. Similarly, for atomi
 nu
lei we may take l = 1fm (10−13cm),

~ω0 = 1MeV and a = 3Å, and get λ ≃ 10−8, whi
h is an extremely small value for the 
oupling
onstant.We turn our attention in this paper to the presen
e of an external ele
tromagneti
 �eld, whose
oherent intera
tion with the ensemble of parti
les may lead to a lasing e�e
t. We get here thesolution of the 
oupled non-linear equations of motion in the presen
e of an external �eld, in thestationary regime and in the limit of small values of the 
oupling 
onstants. It is shown that thetwo levels and the 
orresponding photon states are ma
ros
opi
ally o

upied, to an extent whi
hdepends on the 
oupling 
onstant λ and the external �eld, leading thus to a lasing e�e
t. While foratomi
 matter (λ ≃ 0.5) this e�e
t may be 
onsiderable (for usual �eld intensities), it is extremelysmall (pra
ti
ally insigni�ant) for atomi
 nu
lei (λ ≃ 10−8). The problem is similar with the well-known "semi-
lassi
al theory" of the laser, whi
h has been extensively investigated, by variousapproa
hes and from many angles.[8℄-[18℄ It is worth noting that the theoreti
al 
onsiderationspresented here pertain to a 
onsequent �eld-theoreti
al approa
h to the 
oherent intera
tion ofmatter with ele
tromagneti
 radiation, as distin
t from the usual semi-
lassi
al approa
hes of the
urrent theories of the laser (see, for instan
e, Refs. [19℄-[21℄).2 Coherent intera
tionAs it is well-known, the ele
tromagneti
 �eld is des
ribed by the ve
tor potential
A(r) =

∑

µk

√
2π~c2

V ωk

[
eµ(k)aµke

ikr + e∗
µ(k)a∗µk

e−ikr
] (2)in the standard Fourier representation, with the transverse gauge divA = 0, where c is thevelo
ity of light, V is the volume, ωk = ck is the frequen
y and eµ(k) are the polarization ve
tors,

eµ(k)k = 0, eµ(k)e∗
ν(k) = δµν (µ, ν = ±1), e−µ(−k) = e∗

µ(k). The ele
tri
 and magneti
 �eldare given by E = −(1/c)∂A/∂t and, respe
tively, H = curlA, and three Maxwell's equationsare satis�ed: curlE = −1
c
∂H/∂t, divH = 0, divE = 0. The time dependen
e is in
luded in theFourier 
oe�
ients aµk, a∗µk
.We use a similar expression for the external ve
tor potential A0(r), the 
orresponding Fourier
oe�
ients being denoted by a0

µk
, a0∗

µk
, with a pres
ribed time-dependen
e.We use also the 
lassi
al lagrangian of the radiation �eld

Lf =
1

8π

∫
dr

(
E2 −H2

)
, (3)
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h 
an be expressed by means of the Fourier 
oe�
ients aµk, a∗µk
, and the intera
tion lagrangian

Lint =
1

c

∫
dr · j (A + A0) =

∑

µk

√
2π~

ωk

[
eµ(k)j∗(k)

(
aµk + a0

µk

)
+ e∗

µ(k)j(k)
(
a∗µk

+ a0∗
µk

)]
, (4)where j(k) is the Fourier transform of the 
urrent density,

j(r) =
1√
V

∑

k

j(k)eikr , (5)with divj = 0 (
ontinuity equation). The Euler-Lagrange equations for the lagrangian Lf + Lintlead to the wave equation with sour
es
äµk + ä∗−µ−k

+ ω2
k

(
aµk + a∗−µ−k

)
=

√
8πωk

~
e∗

µ(k)j(k) , (6)whi
h is the fourth Maxwell's equation curlH = (1/c)∂E/∂t+ 4πj/c.We 
onsider a set of N independent, non-relativisti
, identi
al parti
les labelled by i = 1, ...N ,(N ≫ 1) and write the hamiltonian 
orresponding to their internal degrees of freedom as Hs =∑
iHs(i). We introdu
e a set of orthonormal eigenfun
tions ϕn(i), where εn is the energy level ofthe n-state, and 
onstru
t also a set of orthonormal eigenfun
tions

ψn =
1√
N

∑

i

eiθniϕn(i) , (7)where θni are some undetermined phases.The �eld operator
Ψ =

∑

n

bnψn , (8)with boson-like 
ommutation relations [bn, b
∗
m] = δnm, [bn, bm] = 0, leads to the (ma
ros
opi
)number of parti
les N =

∑
n b

∗
nbn and to the lagrangian

Ls =
1

2

∑

n

i~
[
b∗nḃn − ḃ∗nbn

]
−

∑

n

εnb
∗
nbn , (9)where Hs =

∑
n εnb

∗
nbn is the hamiltonian of the ensemble of parti
les. The 
orresponding equationof motion i~ḃn = εnbn is S
hrodinger's equation.The 
urrent density asso
iated with this ensemble of parti
les 
an be written as

j(r) =
∑

i

J(i)δ(r− ri) =
1

V

∑

ik

J(i)e−ikrieikr =
1√
V

∑

k

j(k)eikr , (10)where ri is the position of the i-th parti
le and J(i) is the 
urrent asso
iated with one parti
le.Now, making use of equations (8) and (10), it is easy to see that the intera
tion lagrangian givenby equation (4) 
an be written as
Lint =

∑

nmµk

√
2π~

V ωk
Fnm(µk)

(
aµk + a∗−µ−k

+ a0
µk

+ a0∗
−µ−k

)
b∗nbm , (11)
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Fnm(µk) =

1

N

∑

i

eµ(k)Jnm(i)eikri−i(θni−θmi) , (12)
Jnm(i) being the matrix element of the 
urrent asso
iated with the i-th parti
le.For any pair (n,m) of levels, the quantum phases θni 
an be arranged in a periodi
 latti
e with theshortest (generating) re
ipro
al ve
tors denoted by kr, r = 1, 2, 3. For a given pair (n,m) we takethese ve
tors as being equal in magnitude, kr = k0 and ω0 = ck0.[1℄ Under these 
ir
umstan
esthe phase in equation (12) may satisfy the 
ondition krrpi − (θni − θmi) = const, where p labelsthe unit 
ells of the phase latti
e. This 
ondition was 
alled the 
oheren
e 
ondition in Ref. [1℄.Then, the intera
tion lagrangian a
quires a simple form, whi
h, limiting ourselves to only twolevels, and using the 
oherent states operators[22℄ b0,1 |β0,1〉 = β0,1 |β0,1〉, 
an be written as

Lint =

√
2π~

V ω0

J01

(
α + α∗ + α0 + α0∗

)
(β∗

1β0 + β1β
∗
0) , (13)where we have assumed J00 = J11 = 0. In equation (13) we have also repla
ed the photonoperators aµkr

, kr = k0, by c-numbers α, the same for any polarization µ and any dire
tion ofthe ve
tors kr, and similarly for the external �eld. We note that the external �eld depends ontime; we take α0 + α0∗ = 2|α0| cosω0t. A similar repla
ement of the �eld operators by c-numbersis made in the free lagrangians of the �eld and parti
les. The summation over µkr, kr = k0,in the �eld lagrangian Lf gives a fa
tor 12, for a three-dimensional latti
e (three ±kr's and twopolarizations). This fa
tor 
an be absorbed in the photon operators, so we 
an write down thefull "
lassi
al" lagrangian
Lf = ~

4ω0

(
α̇2 + α̇∗2 + 2 |α̇|2

)
− ~ω0

4

(
α2 + α∗2 + 2 |α|2

)
,

Ls = 1
2
i~

(
β∗

0 β̇0 − β̇∗
0β0 + β∗

1 β̇1 − β̇∗
1β1

)
−

(
ε0 |β0|2 + ε1 |β1|2

)
,

Lint = g
√

N
[α + α∗ + α0 + α0∗] (β0β

∗
1 + β1β

∗
0) ,

(14)
where the 
oupling 
onstant is given by

g =

√
π~

6a3ω0
J01 ; (15)hen
e, the dimensionless 
oupling 
onstant λ = 2g/~ω0 introdu
ed in equation (1).The lagrangian given by equations (14) leads to the equations of motion

Ä+ ω2
0A = 2ω0g

~
√

N
(β0β

∗
1 + β1β

∗
0) ,

i~β̇0 = ε0β0 − g
√

N
[A+ A0(t)]β1 ,

i~β̇1 = ε1β1 − g√
N

[A+ A0(t)]β0 ,

(16)
where A = α+α∗ and A0(t) = 2 |α0| cosω0t. It is easy to see, by using these equations of motion,that the number of parti
les N = |β0|2 + |β1|2 is 
onserved. Making use of equations (14), we 
an
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H t

f = ~

4ω0

[
Ȧ+ Ȧ0(t)

]2

+ ~ω0

4
[A+ A0(t)]

2
,

Hs = ε0 |β0|2 + ε1 |β1|2 ,

Hint = − g
√

N
[A + A0(t)] (β0β

∗
1 + β1β

∗
0) ,

(17)
where the external �eld is in
luded.3 Stationary solutionsWe fo
us on the equations of motion (16), where we put for 
onvenien
e ε0 = 0. In the absen
eof the external �eld (A0(t) = 0) the solutions are of the form β0,1 = B0,1e

iΩt, where B0,1 are
onstant amplitudes, B2
0 + B2

1 = N) and the frequen
y Ω is given by 2Ω + 1 − λ2 = 0 (and
A = λ

√
N(1 − 1/λ4)1/2).[1℄ The total energy given by equations (17) (for A0(t) = 0) reads

E = −1

4
~ω0λ

2N
[
1 − 1/λ2

]2
= −~ΩB2

1 (18)(when
e the 
riti
ality 
ondition λ > 1 for the super-radian
e transition). This energy is lowerthan the non-intera
ting ground-state energy Nε0 = 0. It may be viewed as the formationenthalpy of the 
oheren
e domains. The 
oupled ensemble of matter and radiation is unstablefor a ma
ros
opi
 o

upation of the parti
les quantum states and the asso
iated photon states,provided λ > 1. The non-analyti
 
hara
ter of this solution with respe
t to the 
oupling 
onstant
λ is obvious.We assume now A0(t) 6= 0. It is 
onvenient to put the problem in more general terms. First, weintrodu
e the notation ε1 = ~ω1, where, in general, ω1 may di�er from ω0. Se
ond, we introdu
ethe total �eld At(t) = A + A0(t) and de�ne the parameter

x(t) =
2g

~ω1

√
N
At(t) =

λ√
N
At(t) , (19)where λ = 2g/~ω1. We look for solutions of the form β0,1 = B0,1e

iθ for the system of the last twoequations (16). We get immediately Ḃ0,1 = 0 and
β0 = B0e

iθ0 − fB1e
iθ1 , β1 = fB0e

iθ0 +B1e
iθ1 ,

θ̇0,1 = 1
2
ω1

(
−1 ±

√
x2(t) + 1

)
,

(20)where
f(t) =

x(t)√
x2(t) + 1 + 1

. (21)The 
oe�
ients B0,1 are determined by requiring the initial values of the o

upan
y numbers
|β0,1(t = 0)|2 be equal with N0,1 (N0 +N1 = N). We get the amplitudes

B0,1 =
1

1 + f 2(t)

[√
N0,1 ± f(t)

√
N1,0

] (22)
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upan
y numbers
|β0,1|2 = N0,1 ±

1

2

x(t)

x2(t) + 1

[
2
√
N0N1 − x(t)(N0 −N1)

]
[1 − cos(θ0 − θ1)] , (23)where the phase di�eren
e θ0 − θ1 is given by

∆θ = θ0 − θ1 = ω1

∫ t

0

dt
√
x2(t) + 1 . (24)The os
illations in the o

upan
ies given by equation (23) are reminis
ent of the well known Rabios
illations in the Jaynes-Cummings model (see, for instan
e, Refs. [23℄-[25℄). We take the timeaverages of all the relevant quantities given above. We 
an see, by equations (20), that the energylevels ε0,1 are 
hanged by intera
tion into the mean values of ~θ̇0,1, and, in addition, the intera
tionmixes up the two states, as expe
ted. We 
an see also that the mean values of the 
oe�
ients

B0,1, as well as the mean values of the 
oe�
ients fB0,1 entering equations (20), are 
onstants, asit is required for a stationary solution; it be
omes apparent that N0,1 are 
onstants of integration.4 Polarization �eldWe turn now to the �rst equation (16) for the polarization �eld A. It is worth noting that ther.h.s. of this equation is proportional to the polarization of the ensemble of parti
les. Indeed,making use of equations (7) and (8), the polarization
P =

1

V

∑

i

p(i) (25)a
quires the form
P =

1

NV

∑

i

[
p01(i)e

−i(θ0i−θ1i)β∗
0β1 + c.c.

]
, (26)where p01(i) = p∗

10(i) are the matrix elements of the dipole momentum p(i) of the i-th parti
le.The ensemble of parti
les is polarized by the �eld, so these dipole momenta are oriented along the�eld and have the same spatial dependen
e as the �eld, 
orresponding to the re
ipro
al ve
tors
kr of the 
oheren
e domains latti
e (kr = k0 = ω0/c). Then, it is easy to see that the 
oheren
e
ondition used before (krrpi − (θni − θmi) = const) gives a non-vanishing polarization, involvingthe Fourier 
oe�
ients p01(kr) of the 
omponents along the �eld of the dipole momenta. There isno parti
ular reason to have di�erent dipole momenta p01(kr) for di�erent ve
tors kr, so we mayput p01(kr) = p10(kr) = p. The polarization be
omes

P =
p

V
(β0β

∗
1 + β1β

∗
0) , (27)whi
h is proportional to the rhs of the �rst equation (16), as expe
ted.The quantity β0β

∗
1 + c.c. entering the rhs of the �rst equation (16) 
an be 
omputed by usingequations (20). We get

β0β
∗
1 + β1β

∗
0 = 1

x2+1
{x

[
2x

√
N0N1 +N0 −N1

]
+

+
[
2
√
N0N1 − x(N0 −N1)

]
cos ∆θ}

(28)



J. Theor. Phys. 7The external �eld A0, whi
h satis�es the wave equation Ä0 + ω2
0A

0 = 0, may be added to thepolarization �eld A in the �rst equation (16); this equation be
omes
ẍ+ ω2

0x = ω0ω1
λ2

N
1

x2+1
{x

[
2x

√
N0N1 +N0 −N1

]
+

+
[
2
√
N0N1 − x(N0 −N1)

]
cos ∆θ} .

(29)This is a non-linear (integro-di�erential ) equation. We assume λ ≪ 1 and A0(t)/
√
N , A(t)/

√
N�nite, so that we 
an seek the solution as a power series in λ, x = λx0 + λ2x1 + λ3x2 + ...,where

x0 =
2|α0|
√

N
cosωt. The frequen
y ω will be determined by requiring the absen
e of the ω-resonatingterms. The leading 
ontribution to the phase di�eren
e ∆θ 
an then be written as ω̃1t, where thefrequen
y ω̃1 remains to be determined. Equation (29) be
omes
ẍ+ ω2

0x = 2ω0ω1

√
N0N1

N
λ2 cos ω̃1t+ ω0ω1

N0 −N1

N
λ3x0(1 − cos ω̃1t) + ... . (30)A similar series expansion ω = ω0 + λ2Ω + ... is used for the frequen
y ω. We get

x1 =
√

N0N1

N
2ω0ω1

ω2

0
−ω2

1

cos ω̃1t ,

x2 =
|α0|
√

N
N0−N1

N
ω0

[
1

2ω0+ω1

cos(ω + ω̃1)t− 1
2ω0−ω1

cos(ω − ω̃1)t
] (31)and

ω = ω0 − λ2ω1
N0 −N1

2N
, ω̃1 = ω1 + λ2ω0

|α0|2

N
. (32)(Ω = −ω1(N0 − N1)/2N) for ω1 6= ω0, ±2ω0. We note that these resonan
es 
an be related tothe parametri
 resonan
es 2ω0 ≃ nω1 (n positive integer) of a Mathieu equation,[12℄ whi
h, for

N1 = 0, may be viewed as a linearized, approximate form of the equation (29). As a matter offa
t, ex
ept for the resonan
es, the solutions given above for N0,1 = 0 are 
lose to the leading
ontributions to the (non-periodi
) solutions of Mathieu's equation. In the parti
ular 
ase ω = ω̃1(or other similar 
ases of the approximate form 2ω = nω̃1) they are very 
lose to the leading
ontributions to the (periodi
) Mathieu fun
tion ce2(ω̃1t/2) (or, in general, cen(ω̃1t/2)). However,we must note that the linearized form of the equation (29), whi
h is a Mathieu equation, is nota satisfa
tory approximation for the non-linear equation (29), be
ause of the apparition of the
x-term in the rhs of this equation, instead of the 
ore
t x0-term, as in equation (30). In otherwords, a 
onsequent expansion in powers of the parameter λmakes the leading 
ontributions to theequation (29) to a
quire a form whi
h is di�erent, in fa
t, from a Mathieu equation. Leaving asidethe (weak) frequen
y renormalization, the resonan
es exhibited by equations (31) are in fa
t whatwe may expe
t from a non-linear os
illator with the basi
 frequen
y ω0 subje
ted to an externalfor
e of frequen
y ω1. As it is well known, su
h an os
illator exhibits the 
ombined-frequen
yphenomenon, as re�e
ted in the o

urren
e of frequen
ies of the form ω0 ± ω1 and denominators
2ω0 ± ω1, et
 (arising from terms like ω2

0 − (ω0 ± ω1)
2).We note that the term x1 in equations (31) represents the os
illations of the ensemble of parti
les(for N0,1 6= 0), and the e�e
t of the external �eld appears only in the next order (the term x2),with 
ombined frequen
ies ω ± ω̃1. For N1,0 = 0, the polarization pro
ess is governed entirely bythe external �eld, as expe
ted (and the 
onstraint ω0 6= ω1 is removed). We note also that theintera
tion shifts both the frequen
y of the external �eld and the energy levels of the ensemble ofparti
les, a

ording to equation (32).



8 J. Theor. Phys.Having known the parameter x(t), we 
an determine the phase di�eren
e ∆θ (and cos ∆θ) a

ord-ing to equation (24), and the mean values (averages over the time) of all the relevant quantities
an be 
omputed, as given by equations (20)-(24). We get, for instan
e, the frequen
ies
Ω0 =

〈
θ̇0

〉
= λ2ω1

|α0|2

2N
, Ω1 =

〈
θ̇1

〉
= −ω1 − λ2ω1

|α0|2

2N
(33)and the mean o

upan
ies

〈
|β0,1|2

〉
= N0,1 ∓ λ2N0N1

N

ω0ω1

ω2
0 − ω2

1

∓ λ2N0 −N1

N

∣∣α0
∣∣2 . (34)One 
an see that the external �eld 
an pump, or deplete, the upper level, depending on theparameters N0,1 and ω0,1. Parti
ularly interesting is the 
ase N1 = 0 (
orresponding to an upperlevel whi
h is empty at the initial moment t = 0). In this 
ase, the o

upan
y of the upper levelis given by 〈

|β1|2
〉

= λ2
∣∣α0

∣∣2 ; (35)the external �eld leads to a ma
ros
opi
 o

upation of this level. The release of the 
orrespondingenergy Es = ~ω1

〈
|β1|2

〉 is a lasing e�e
t, driven by the external �eld.The polarization 
an be 
omputed from equations (27) and (28), by using the solution x(t) givenby equations (31). Within this approximation, the polarization 
ontains many os
illating terms,in
luding both a quadrati
 depeden
e on the external �eld and frequen
y doubling, as expe
tedfor su
h non-linear equations. We 
olle
t here a few relevant 
ontributions:
β∗

0β1 + β∗
1β0 = 2

√
N0N1 cos ω̃1t+ 2λ

|α0|
√

N
(N0 −N1)(1 − cos ω̃1t) cosωt+

+2λ2
√

N0N1

N

[
4 |α0|2 cos2 ω̃0t− (N0 −N1)

ω0ω1

ω2

0
−ω2

1

cos2 ω̃1t
]
−

+λ3 ω1|α0|2
4ω0N

(N0 −N1) sin ω̃0t sin ω̃1t .

(36)
The mean value of the polarization is given by

〈β0β
∗
1 + β1β

∗
0〉 = λ2

√
N0N1

N

[
4
∣∣α0

∣∣2 − (N0 −N1)
ω0ω1

ω2
0 − ω2

1

]
, (37)where the quadrati
 dependen
e on the external �eld is to be noted. It is also worth notingthat it vanishes for N0,1 = 0. Making use of equation (2) we 
an 
ompute the ele
tri
 �eld

Et = −(1/c)∂At/∂t, while the polarization is given by equation (28). The permittivity, de�nedas P = κEt (for the Fourier 
omponents), is κ = (2p2/~ω1a
3)(N0 − N1)/N for the ω-
omponent.We 
an see that the parti
le polarizability is α = κa3 = 2p2/~ω1 (for N1 = 0), so that we 
an alsorepresent the 
oupling 
onstant as λ =

√
πα/3a3 (for ω0 = ω1). It follows that we are justi�edin assuming λ ≪ 1, as long as the polarizability per unit volume of the ensemble of parti
les issu�
iently small. Similarly, introdu
ing the ele
tri
 �eld, equation (35) 
an be transformed into

〈
|β1|2

〉
= N

(
pE0

~ω0

)2

, (38)where E0 is the strength of the external ele
tri
 �eld. One 
an re
ognize in equation (38) thewell-known Rabi frequen
y pE0/~.
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luding remarksMaking use of the parameter x(t) derived above and averaging over time in the hamiltonian givenby equations (17), we get the leading 
ontributions to the energy:
Et

f = E0
f + 1

2
λ2

[
~(ω2

0
+ω2

1
)

ω0

N0N1

N

(
ω0ω1

ω2

0
−ω2

1

)2

− ~ω1
N0−N1

N
|α0|2

]
,

Es = ~ω1

[
N1 + λ2

(
N0N1

N
ω0ω1

ω2

0
−ω2

1

+ N0−N1

N
|α0|2

)]
,

Eint = −~ω1λ
2
(

N0N1

N
ω0ω1

ω2

0
−ω2

1

+ N0−N1

N
|α0|2

)
,

(39)
where E0

f = ~ω0 |α0|2 is the energy of the (bare) external �eld. The total �eld energy 
an also bewritten as
Et

f = ~ω
∣∣α0

∣∣2 + λ2 ~(ω2
0 + ω2

1)

2ω0

N0N1

N

(
ω0ω1

ω2 − ω2
1

)2

. (40)For N1 = 0 the above equations be
ome
Et

f = ~ω |α0|2 = E0
f − 1

2
~ω1λ

2 |α0|2 ,

Es = −Eint = ~ω1λ
2 |α0|2 = ω1

ω0

λ2E0
f .

(41)One 
an see that the total energy Et = Et
f + Es + Eint redu
es to the total �eld energy Et

f ,the polarization energy (Es) being entirely 
ompensated by the intera
tion energy, as expe
ted.The e�
ien
y quotient of this lasing pro
ess is λ2(ω1/ω0). It may appear that it is favourable todiminish ω0 with respe
t to ω1, but one must avoid the resonan
e o

uring at 2ω0 = ω1, on onehand, and, on the other, one must be aware that a de
reasing ω0 is limited by λ = 2g/~ω1 ≪ 1(a

ording to equation (15)) (and by Et
f > 0).For N1 = 0 we take for 
onvenien
e ω0 = ω1. As dis
ussed in Introdu
tion, for a typi
al sampleof atomi
 matter the 
oupling 
onstant is λ = 0.5 (~ω1 = 1eV , a = 3Å, p = 2.4 × 10−18esu). Forreasonable values E0

f = 103J , N = 6 × 1023 (Avogadro's number) we get Es = 250J , whi
h maybe viewed as a 
onsiderable e�e
t. For atomi
 nu
lei λ = 10−8 (~ω1 ≃ ~ω0 = 1MeV , a = 3Å,
p = 5 × 10−23esu), and we 
an see that the released energy is extremely small.In 
on
lusion, we may say that we have solved the 
oupled non-linear equations of motion, inthe stationary regime and for small 
oupling 
onstants, for an ensemble of polarizable, identi
alparti
les with two energy levels intera
ting 
oherently with their own polarization �eld and withan external ele
tromagneti
 �eld. It was shown that a lasing e�e
t is possible, driven by theexternal �eld. For typi
al atomi
 matter the e�e
t may be 
onsiderable, while for an ensemble ofatomi
 nu
lei the e�e
t is extremely small. The di�eren
e originates in the great disparity betweenthe 
orresponding 
oupling 
onstants.A
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