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Abstract

The coherent interaction of the electromagnetic radiation with an ensemble of polarizable,
identical particles with two energy levels is investigated in the presence of external electro-
magnetic fields. The coupled non-linear equations of motion are solved in the stationary
regime and in the limit of small coupling constants. It is shown that an external electromag-
netic field may induce a macroscopic occupation of both the energy levels of the particles
and the corresponding photon states, governed by a long-range order of the quantum phases
of the internal motion (polarization) of the particles. A lasing effect is thereby obtained,
controlled by the external field. Its main characteristics are estimated for typical atomic
matter and atomic nuclei. For atomic matter the effect may be considerable (for usual ex-
ternal fields), while for atomic nuclei the effect is extremely small (practically insignifiant),
due to the great disparity in the coupling constants. In the absence of the external field, the
solution, which is non-analytic in the coupling constant, corresponds to a second-order phase
transition (super-radiance), which was previously investigated.
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1 Introduction

In a previous paper,[1] the coherent interaction of the electromagnetic radiation with an ensemble
of polarizable, identical particles with two energy levels has been investigated in the absence of
external electromagnetic fields, and the corresponding coupled non-linear equations of motion have
been solved. It was shown that the solution has a non-perturbational character (it is non-analytic
in the coupling constant). The main role in this problem is played by a dimensionless coupling
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where Jy; is the matrix element of the current associated with each particle, a is the mean inter-
particle distance and hwy = €; — g9 is the energy separation between the two levels. It was
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shown[1]| that, at zero temperature, the two levels g5, and the corresponding photon states fuvy
are macroscopically occupied, provided A > 1; at finite temperature, this coherent state sets up
for A > 2 and below a critical temperature T, (given by T, ~ A\*hw,/8). This second-order phase
transition is usually known as a super-radiance transition;[2]-[7] it corresponds to a long-range
order of the quantum phases (a lattice of coherence domains),[1] associated with the internal
motion (polarization) of the particles.

For numerical estimates we may take Jy; = wgp, where p = el is the dipole momentum of the
particles, [ being the distance over which an electron charge e is displaced in the polarization
process. For typical atomic matter we may take, for illustrative purposes, | = ag = 0.53A (Bohr
radius), fwy = 1eV and a = 3A (p = 2.4 x 10~ Besu). We get A\ ~ 0.5, which is insufficient
for setting up the coherent state. Similarly, for atomic nuclei we may take [ = 1fm (10~'3¢cm),
fiwg = 1MeV and a = 3A, and get A ~ 1078, which is an extremely small value for the coupling
constant.

We turn our attention in this paper to the presence of an external electromagnetic field, whose
coherent interaction with the ensemble of particles may lead to a lasing effect. We get here the
solution of the coupled non-linear equations of motion in the presence of an external field, in the
stationary regime and in the limit of small values of the coupling constants. It is shown that the
two levels and the corresponding photon states are macroscopically occupied, to an extent which
depends on the coupling constant A and the external field, leading thus to a lasing effect. While for
atomic matter (A ~ 0.5) this effect may be considerable (for usual field intensities), it is extremely
small (practically insignifiant) for atomic nuclei (A ~ 1078). The problem is similar with the well-
known "semi-classical theory" of the laser, which has been extensively investigated, by various
approaches and from many angles.|[8]-[18]| It is worth noting that the theoretical considerations
presented here pertain to a consequent field-theoretical approach to the coherent interaction of
matter with electromagnetic radiation, as distinct from the usual semi-classical approaches of the
current theories of the laser (see, for instance, Refs. [19]-[21]).

2 Coherent interaction

As it is well-known, the electromagnetic field is described by the vector potential

27Th02 ikr * * _—ikr
Z Vwk e, (k)ae™ + e, (k)are kr] (2)
in the standard Fourier representation, with the transverse gauge divA = 0, where ¢ is the

velocity of light, V' is the volume, w;, = ck is the frequency and e, (k) are the polarization vectors,
e (k)k = 0, e, (k)ej(k) = 0, (u,v = £1), e ,(—k) = e} (k). The electric and magnetic field
are given by E = —(1/¢)0A /0t and, respectively, H = curlA, and three Maxwell’s equations
are satisfied: curlE = —%8H/6t, divH = 0, divE = 0. The time dependence is included in the
Fourier coefficients a,x, aj.

We use a similar expression for the external vector potential A°(r), the corresponding Fourier

coefficients being denoted by auk, 2’11, with a prescribed time-dependence.

We use also the classical lagrangian of the radiation field

1

Ly = 87

dr (E? — H?) | (3)
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which can be expressed by means of the Fourier coefficients a,x, a,, and the interaction lagrangian

pko
1 . 27Th ok 0 * . * 0%
Lint = Z dr -J (A + AO) = Z w—k [eu(k).] (k) (auk + a’,uk) + e,u(k).](k) (a’,uk + a,uk)] ) (4)
nk
where j(k) is the Fourier transform of the current density,

j(r) \/—ZJ e (5)

with divj = 0 (continuity equation). The Euler-Lagrange equations for the lagrangian Ly + L,
lead to the wave equation with sources

L . [8TWk sy
e + 07,y + wi (Quac+ 0",y ) = Te“(k)J(k) : (6)

which is the fourth Maxwell’s equation curlH = (1/¢)0E/0t + 47j/c.

We consider a set of N independent, non-relativistic, identical particles labelled by ¢+ = 1,...V,
(N > 1) and write the hamiltonian corresponding to their internal degrees of freedom as H; =
> Hs(7). We introduce a set of orthonormal eigenfunctions ¢, (i), where ¢, is the energy level of
the n-state, and construct also a set of orthonormal eigenfunctions

1 o
Pn = i Ze "on(i) (7)

where 0,,; are some undetermined phases.

The field operator

U = Z bt (8)

with boson-like commutation relations [b,, %] = dum, [bn, bm] = 0, leads to the (macroscopic)

ny ¥m

number of particles N =) b%b, and to the lagrangian

L, = ;Zm[b* biba| — Zenb*n, (9)

n

where Hy, = )" €,b;b, is the hamiltonian of the ensemble of particles. The corresponding equation
of motion ¢hb, = €,b, is Schrodinger’s equation.

The current density associated with this ensemble of particles can be written as

= ZJ(Z) r—r;) = ZJ Je~krighkr — \/72.] e (10)

where r; is the position of the i-th particle and J(i) is the current associated with one particle.
Now, making use of equations (8) and (10), it is easy to see that the interaction lagrangian given
by equation (4) can be written as

/27T
Znt = Z nm ,LLk (luk+a/ k+a k+a'—u k) b:;bm ) (]‘]‘)
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where
P (1) = zeﬂ Jeirii0ni=tm) (12)

Jnm (1) being the matrix element of the current associated with the i-th particle.

For any pair (n, m) of levels, the quantum phases 6,,; can be arranged in a periodic lattice with the
shortest (generating) reciprocal vectors denoted by k,, r = 1,2, 3. For a given pair (n, m) we take
these vectors as being equal in magnitude, k. = ko and wy = cko.[1| Under these circumstances
the phase in equation (12) may satisfy the condition k,r,; — (6,; — 0,,;) = const, where p labels
the unit cells of the phase lattice. This condition was called the coherence condition in Ref. [1].
Then, the interaction lagrangian acquires a simple form, which, limiting ourselves to only two
levels, and using the coherent states operators[22]| by 1 |301) = Bo.1|50.1), can be written as

27Th * *
Lint = Voo J()l (Ol + a* + OZ + o ) (/81/80 + ﬁlﬁo) s (13)
V Vwo
where we have assumed Joy = Ji3 = 0. In equation (13) we have also replaced the photon

operators a,x,, k. = ko, by c-numbers «, the same for any polarization x4 and any direction of
the vectors k,, and similarly for the external field. We note that the external field depends on
time; we take a’ + a® = 2|a’| coswyt. A similar replacement of the field operators by c-numbers
is made in the free lagrangians of the field and particles. The summation over uk,, k. = ko,
in the field lagrangian L; gives a factor 12, for a three-dimensional lattice (three +k,’s and two
polarizations). This factor can be absorbed in the photon operators, so we can write down the
full "classical" lagrangian

Ly = & (&2 +a2 4+ 2]a)%) — 20 (a2 + a*? +2]a)

Ly = Sin (B30 — G360 + 816 — Bi1) — (o 6ol + 21 |1f?) (14)
Lint = i [+ 0" + 0% + %] (G + i)

where the coupling constant is given by

wh

6a3wy

9=\ —Jo; (15)

hence, the dimensionless coupling constant A = 2¢g/hwy introduced in equation (1).

The lagrangian given by equations (14) leads to the equations of motion

A+ WSA hf L (BoBf + B1655)
ihBo = €0 — HlA+ AY(1)] By, (16)
ihf) = €101 — ﬁ [A+ A%(t)] Bo

where A = o+ a* and A%(t) = 2|a®| coswyt. Tt is easy to see, by using these equations of motion,
that the number of particles N = |G,|* 4 |41|? is conserved. Making use of equations (14), we can
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define a total hamiltonian
) ) 2
HY = o [A+ Ao+ 20 ja+ 220
H, =e0lBol® +e1181° (17)

o =~ |4+ 0] (5057 + Bu55)

where the external field is included.

3 Stationary solutions

We focus on the equations of motion (16), where we put for convenience €y = 0. In the absence
of the external field (A°(t) = 0) the solutions are of the form 3,; = By e*¥, where By, are
constant amplitudes, B2 + B? = N) and the frequency € is given by 2Q + 1 — X\? = 0 (and
A =M/N(1—-1/X)2).[1] The total energy given by equations (17) (for A°(¢) = 0) reads

1
E =~ huoX*N [1 = 1/X°]" = —hQB] (18)

(whence the criticality condition A > 1 for the super-radiance transition). This energy is lower
than the non-interacting ground-state energy Negg = 0. It may be viewed as the formation
enthalpy of the coherence domains. The coupled ensemble of matter and radiation is unstable
for a macroscopic occupation of the particles quantum states and the associated photon states,
provided A > 1. The non-analytic character of this solution with respect to the coupling constant
A is obvious.

We assume now AY(t) # 0. Tt is convenient to put the problem in more general terms. First, we

introduce the notation €; = hw;, where, in general, w; may differ from wy. Second, we introduce
the total field A;(t) = A + A°(t) and define the parameter

2g _L
mAt(t)_\/N

where A = 2¢g/hw;. We look for solutipns of the form (y; = Bovleia for the system of the last two
equations (16). We get immediately By; = 0 and

2(t) = A1) (19)

Bo = Boe' — [B1e™t | 1 = fBoe'” 4 By,

fo1 = wy (_1 + W}

(20)

where

x(t)
NZOENES

The coefficients By, are determined by requiring the initial values of the occupancy numbers
1Bo1(t = 0)|” be equal with Ny (Ng + Ny = N). We get the amplitudes

Boi =1 fz [ V/Noi = /(1) \/Nio] (22)

ft) = (21)
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and the occupancy numbers

1Bo1]? = Noi1 £ L)l [2 NoNy — z(t)(Ny — Nl)] [1 — cos(fy — 601)] , (23)

1
222(t) +

where the phase difference 6y — 6, is given by
t
A0:00—91 :wl/ dt\/$2(t)+1 . (24)
0

The oscillations in the occupancies given by equation (23) are reminiscent of the well known Rabi
oscillations in the Jaynes-Cummings model (see, for instance, Refs. [23]|-[25]). We take the time
averages of all the relevant quantities given above. We can see, by equations (20), that the energy
levels €y ; are changed by interaction into the mean values of héo,h and, in addition, the interaction
mixes up the two states, as expected. We can see also that the mean values of the coefficients
By 1, as well as the mean values of the coefficients fBy; entering equations (20), are constants, as
it is required for a stationary solution; it becomes apparent that Ny, are constants of integration.

4 Polarization field

We turn now to the first equation (16) for the polarization field A. It is worth noting that the
r.h.s. of this equation is proportional to the polarization of the ensemble of particles. Indeed,
making use of equations (7) and (8), the polarization

P > (i) (25)

acquires the form
1

P=—
NV &

[Poy (e @555 + e (26)
where po; (i) = pjy(i) are the matrix elements of the dipole momentum p(7) of the i-th particle.
The ensemble of particles is polarized by the field, so these dipole momenta are oriented along the
field and have the same spatial dependence as the field, corresponding to the reciprocal vectors
k, of the coherence domains lattice (k. = kg = wo/c). Then, it is easy to see that the coherence
condition used before (k,r,; — (6 — 0mi) = const) gives a non-vanishing polarization, involving
the Fourier coefficients po; (k;) of the components along the field of the dipole momenta. There is
no particular reason to have different dipole momenta pg; (k,.) for different vectors k,, so we may
put po1(k,) = pio(k,) = p. The polarization becomes

P = (GoBi + Bif%) (27)

which is proportional to the rhs of the first equation (16), as expected.

The quantity (o7 + c.c. entering the rhs of the first equation (16) can be computed by using
equations (20). We get

BBy + BiBs = = fx [22v/NoNy + No — Np | +

(28)
+ [2\/ N0N1 — ZL‘(NQ — Nl)] COS A@}
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The external field A°, which satisfies the wave equation A° + w2A? = 0, may be added to the
polarization field A in the first equation (16); this equation becomes

I+ wir = wowl’\%x%ﬂ{x [22v/NoNy + No — Nq] +
(29)
+ [2\/ NON1 — ZL‘(NQ — Nl)] COS A@} .

This is a non-linear (integro-differential ) equation. We assume A < 1 and A%(t)/v'N, A(t)/vVN

finite, so that we can seek the solution as a power series in \, x = Azg + A2z + A2y + ..., where
2|a? . . .. .
Ty = % coswt. The frequency w will be determined by requiring the absence of the w-resonating

terms. The leading contribution to the phase difference A6 can then be written as wqt, where the
frequency @; remains to be determined. Equation (29) becomes

\/NQNl NO_Nl

)\2 COS (Dlt + Wou)lT)\B.To(l — COS (Dlt) + ... (30)

T+ wir = 2wow

A similar series expansion w = wy + A2Q + ... is used for the frequency w. We get

VNoN ~
T = 5?:%1% coswit

(31)
040 _ ~ ~
Ty = |_\/N|NONN1 wo [2%1%1 cos(w 4 & )t — g cos(w — wl)t]
and )
No— Ny _ 0
W= wy — Agwl% , W1 =wi + )\Qwo% . (32)

(Q = —wi(Ng — N1)/2N) for wy # wy, £2wy. We note that these resonances can be related to
the parametric resonances 2wy ~ nw; (n positive integer) of a Mathieu equation,|[12] which, for
N; = 0, may be viewed as a linearized, approximate form of the equation (29). As a matter of
fact, except for the resonances, the solutions given above for Ny; = 0 are close to the leading
contributions to the (non-periodic) solutions of Mathieu’s equation. In the particular case w = W
(or other similar cases of the approximate form 2w = nw;) they are very close to the leading
contributions to the (periodic) Mathieu function cey(w1t/2) (or, in general, ce,(wqt/2)). However,
we must note that the linearized form of the equation (29), which is a Mathieu equation, is not
a satisfactory approximation for the non-linear equation (29), because of the apparition of the
z-term in the rhs of this equation, instead of the corect xo-term, as in equation (30). In other
words, a consequent expansion in powers of the parameter A makes the leading contributions to the
equation (29) to acquire a form which is different, in fact, from a Mathieu equation. Leaving aside
the (weak) frequency renormalization, the resonances exhibited by equations (31) are in fact what
we may expect from a non-linear oscillator with the basic frequency wgy subjected to an external
force of frequency w;. As it is well known, such an oscillator exhibits the combined-frequency
phenomenon, as reflected in the occurrence of frequencies of the form wg £ w; and denominators
2wp + wy, ete (arising from terms like w2 — (wp £ wy)?).

We note that the term x; in equations (31) represents the oscillations of the ensemble of particles
(for No1 # 0), and the effect of the external field appears only in the next order (the term ),
with combined frequencies w £ w;. For N; o = 0, the polarization process is governed entirely by
the external field, as expected (and the constraint wy # w; is removed). We note also that the
interaction shifts both the frequency of the external field and the energy levels of the ensemble of
particles, according to equation (32).
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Having known the parameter z(t), we can determine the phase difference Af (and cos Af) accord-
ing to equation (24), and the mean values (averages over the time) of all the relevant quantities
can be computed, as given by equations (20)-(24). We get, for instance, the frequencies

jaf*

. o . (6]
QO = <00> = )\zwlﬁ s Ql = <01> = —W1 — )\le |2]\|], (33)
and the mean occupancies
NoN1  wow Nog — N
2\ 2 VoIV1  Wow1 2 Vo 1] 02
<Wo,1| > = Nog1 F A N o —w? 5 F A N ‘oz ‘ ) (34)

One can see that the external field can pump, or deplete, the upper level, depending on the
parameters Ny and wg ;. Particularly interesting is the case Ny = 0 (corresponding to an upper
level which is empty at the initial moment ¢ = 0). In this case, the occupancy of the upper level
is given by

(IB:7) = 22 [a®]” ; (35)

the external field leads to a macroscopic occupation of this level. The release of the corresponding
energy F, = hw, <|ﬁl\2> is a lasing effect, driven by the external field.

The polarization can be computed from equations (27) and (28), by using the solution x(t) given
by equations (31). Within this approximation, the polarization contains many oscillating terms,
including both a quadratic depedence on the external field and frequency doubling, as expected
for such non-linear equations. We collect here a few relevant contributions:

G551 + BB = 2/ Ny Ny cos it + 2)\| |(N0 — Np)(1 — cos wyt) cos wt+

F2X2YNONL 1410012 cos? ot — (N — N1) 3% cos wlt] (36)

3“’1|°‘ |

+)\ Two N (NO — Nl) sinfuot sinf&lt .

The mean value of the polarization is given by

VNN
<ﬁoﬁr+ﬁlﬁs>=ﬁ$[ o]~ (No - M)ﬁ} , (37)

where the quadratic dependence on the external field is to be noted. It is also worth noting
that it vanishes for Ny; = 0. Making use of equation (2) we can compute the electric field
E, = —(1/¢)0A;/0t, while the polarization is given by equation (28). The permittivity, defined
as P = kE; (for the Fourier components), is k = (2p?/hwia®)(Ng — N1)/N for the w-component.
We can see that the particle polarizability is a = ka® = 2p? /hw; (for N1 = 0), so that we can also
represent the coupling constant as A = y/ma/3a3 (for wy = wy). It follows that we are justified
in assuming A\ < 1, as long as the polarizability per unit volume of the ensemble of particles is
sufficiently small. Similarly, introducing the electric field, equation (35) can be transformed into

(16:1%) = N(];sz) , (38)

where Ej is the strength of the external electric field. One can recognize in equation (38) the
well-known Rabi frequency pFEy/h.



J. Theor. Phys 9

5 Concluding remarks

Making use of the parameter x(t) derived above and averaging over time in the hamiltonian given
by equations (17), we get the leading contributions to the energy:

24 2 2
Ejr — E? + %)\2 lh(w0+w1) NoN1 ( w0w12> _ hbdl N()]:[Nl |O{0|2:| :

wo N wg —wi

By = hwy [Ny + X2 (28 o, 4 20 o) (39)

2__
N wi—w

_ 2
E@'nt — _hwl)\Q (N()Nl wow1 + N()NNl |OZO| ) ,

2_ 2
N wi—wy

where E9 = huwg |a®)? is the energy of the (bare) external field. The total field energy can also be
written as

h(w2 + u}2) N0N1 Wow1 2
Bt = hw [a®]" 4 N2 T 40
f ‘a } + 200 N w2 _w% ( )
For N; = 0 the above equations become
B = hw|a®® = EY — Lhw A o]
(41)

2
Es=—Ein = ha}l)\2 |O[0| = Z—;)\2E? .

One can see that the total energy E;, = E} + E, + E;y; reduces to the total field energy E%,
the polarization energy (Fs) being entirely compensated by the interaction energy, as expected.
The efficiency quotient of this lasing process is A?(wi/wp). It may appear that it is favourable to
diminish wy with respect to wy, but one must avoid the resonance occuring at 2wy = wi, on one
hand, and, on the other, one must be aware that a decreasing wy is limited by A = 2¢g/hw; < 1
(according to equation (15)) (and by E% > 0).

For N; = 0 we take for convenience wy = w;. As discussed in Introduction, for a typical sample
of atomic matter the coupling constant is A = 0.5 (hw; = 1eV, a = 3A, p = 2.4 x 10~ Besu). For
reasonable values EY = 10°J, N = 6 x 10** (Avogadro’s number) we get E, = 250.J, which may
be viewed as a considerable effect. For atomic nuclei A = 107® (hw; ~ hwy = 1MeV, a = 34,
p =15 x 107®esu), and we can see that the released energy is extremely small.

In conclusion, we may say that we have solved the coupled non-linear equations of motion, in
the stationary regime and for small coupling constants, for an ensemble of polarizable, identical
particles with two energy levels interacting coherently with their own polarization field and with
an external electromagnetic field. It was shown that a lasing effect is possible, driven by the
external field. For typical atomic matter the effect may be considerable, while for an ensemble of
atomic nuclei the effect is extremely small. The difference originates in the great disparity between
the corresponding coupling constants.
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