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Abstract

The polarization of the vacuum under the action of an external classical field of electro-
magnetic radiation is investigated in stationary regime. The electron-positron pairs interact
both with the external field and with their own polarization field. For a macroscopic piece
of vacuum the pairs are condensed on the low-momenta states and tend to form an electron-
positron plasma of pairs localized in space. In the polarization process under the action of
a classical field of radiation the electron-positron and photon dynamics can be treated by
means of classical fields. Under these circumstances, the corresponding coupled non-linear
equations of motion are solved. It is shown that the pair dynamics consists of quasi-stationary
single-particle states localized in space, while the polarization field reduces to a static mag-
netic field. The single-particle energy due to a monochromatic external field is quasi-localized
and exhibits a spatial distribution characteristic of a stationary wave. Both the pair energy
and the polarization energy are computed. Their values are extremely small, even for highly
focused, reasonably high, external fields. The number of pairs is determined by the exter-
nal energy. Under the action of a classical field the polarized vacum gets magnetized, and
the corresponding (very low) magnetic susceptibility (the refractive index of the vacuum) is
computed.
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Creation of electron-positron pairs from vacuum under the action of high external electromagnetic
fields is a classical and still very attractive subject.[1]-[15] With the recent development of high-
power laser pulses focused on very small spatial regions|[16]-[27] the vacuum polarization could
become soon a matter of experimental testing and routine measurements.

The annihilation of the electron-positron pairs in the polarized vacuum suggests a possible sta-
tionary regime, which may resemble a plasma of electron-positron pairs. This paper deals with
the stationary dynamics of the polarized vacuum under the action of an external classical field of
electromagnetic radiation. It is shown that the interaction of the electron-positron pairs with their
own polarization field in a macroscopic piece of vacuum is mainly governed by the condensation
of these pairs on low-momenta states. The pairs are quasi-localized in space. In the polarization
process under the action of a classical radiation field the electron-positron and photon dynamics
can be treated by means of classical fields. The corresponding coupled non-linear equations of
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motion are solved. The solutions exhibit a quasi-stationary regime, and the single-particle energies
are computed. The corresponding polarization field is static, in the sense that the electric field
is vanishing and only a static magnetic field is present. The polarized vacuum gets magnetized.
Under the action of an external field (monochromatic plane wave), the single-particle energies are
quasi-localized in space and acquire the shape of a stationary wave driven by the external field.
The number of pairs, the pairs energy and the polarization energy are computed. The number of
pairs is determined by the external field energy. The resulting values are extremely small, even
for reasonably high external fields and energy densities. This is due, mainly, to the Compton
wavelength of the electrons which is much smaller than the size of the space region over which the
external energy is focused. The magnetic susceptibility is also evaluated (the refractive index) for
the polarized vacuum, and, similarly, it is found to acquire very low values.

As it is well-known, the electromagnetic radiation field is described by the vector potential

27Th02 ikr * * _—ikr
Z Vwk e, (k)aue™ + e (k)are ™ (1)
in the standard Fourier representation, with the transverse gauge divA = 0, where ¢ is the

velocity of light, V' is the volume, w;, = ck is the frequency and e, (k) are the polarization vectors,
e (k)k = 0, e,(k)ej(k) = 0, (n,v = £1), e_,(~k) = e},(k). The electric and magnetic field
are given by E = —(1/¢)0A /0t and, respectively, H = curlA, and three Maxwell’s equations
are satisfied: curlE = —10H/0t, divH = 0, divE = 0. The time dependence is included in the
Fourier coefficients a, arx (photon annihilation and, respectively, creation operators).

The lagrangian of the radiation field
L= Siwfdr(EQ—fﬂ) =

- Zuk & (aﬂk + a*—u—k) (C'Lﬂfk + d;k) — (2)

- Zuk ﬁi (%k +a’ k) (a—u—k + aZk)

leads to the equation of motion
e + 87,y + wp (i + 0", ) =0, (3)

which is the fourth Maxwell’s equation curlH = (1/¢)0E/0t.

The standard Dirac field for electrons and positrons is written as
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+pr * _—Lpr
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where ¢ = /c?p? + m2c*, m is the electron mass,c = £1 is the spin label and the bispinors up,,
Ups are given by

_— Ve +mctw, o [ Ve~ mce2(ne)w, \
PP\ Ve —meE(nd)w, ) T P Ve +mctw, ’

here n = p/p is the unit vector along the momentum p, @ denote the Pauli matrices and
/

. . ! / . .
Wy, W, = —o,w_, are normalized spinors, wWiwy = dyor, W W, = 0, (otherwise arbitrary).

The notation * means transposition together with complex conjugation. In general, we use the

(5)
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notations and conventions from Refs. [28, 29]. As it is well known, the free hamiltonian of the
fermions reads

Hy, = Z e (b5 obpe — CpoChy) (6)

op

which leads to the equation of motion ihl}pg = €bpy, 1hip, = ecp, for the electron and positron
destruction operators bp,, Cps-

Making use of equations (1) and (4) we compute the interaction hamiltonian

How =~ [ dro wivA) | o

where —e is the electron charge and j = ¢@ is the particle current,

(3 7)

being the Dirac a-matrices. The computation of the matrix elements of the current j between
different, electron-positron states involved in equation (7) is lengthy but straightforward. Tt is
worth noting that the current density for interacting electrons (positrons) differs from the group
velocity ¢?p/e of the free electrons (positrons). The general form of the interaction matrix elements
can be represented as M" ,(p,p’). They contain the matrix elements (T )oor = Wi Tw, of to the
Pauli marices @ . In general, the spinors may depend on the momenta p (as for helicities), such
that (7 )oe (P, P/) = wi(p)Twe(p'). It is important to note that there is an arbitrariness in
these matrix elements, due to the arbitrariness in the spinors w,(p). The matrix T is related
to the polarization matrix of each elementary act of interaction, but the spinors do not reduce
necessarily to the well-defined spin states in the rest frame, nor the vector T reduces to the
polarization vector measured usually in scattering experiments. In the interaction process neither
the spin, nor the helicities are conserved, 7.e. both are undetermined. There is no reason to
have a "spin" dependence in the interaction, so we omit the spin label in the electron-positron
operators and the polarization label in the photon operators. The interaction matrix elements can
then be summed over the spin and polarization labels, M (p,p’) = ZWU/ M" ,(p,p’). The general
structure of the interaction hamiltonian is then given by

Hint = —ec Zpk XQ/LUZ[A(pa | S k)b;bp—k + B(p’ —Pp + k)b:)cip+k+ ( )
9

+B*(—p — k,p)cpb_p-x + C(p,p + k)cpc;‘th] (ak + a*_k) ,

where the coefficients A, B and C' (the matrix elements M (p, p’)) are given in Appendix A. The
most general structure of the vector T = Y oo WiT Wy is given in Appendix B. In accordance
with our assumption that the interaction matrix elements should not depend on the "spin" ori-
entation we take the mean value of this vector over all possible polarizations, and get (?)(w = 0.
This amounts to a statistical (uniform) average of the interaction hamiltonian over "spin" states.
The coefficients A, B and C' simplify then appreciably, and the interaction hamiltonian becomes

Hint = —¢cC Zpk %[A<p7 P — k)bi:k)bpfk + B<p7 —p + k)bi:k)cip—i—k_'_ ( )
10

+B(p7 —-Pp - k)cpb—p—k + A(pa |3 + k)CpC;k)Jrk] (ak + aik) 5
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where

A(p,p)) = \/% [en\/(e —me?)(e + mc?) + en’\/ (e + mc?) (e’ — mc2)] )

B(p,p') = —7{ey /(e + me2)(& + me?)+ (11)

+[(en)n;, — (nn')e, + (en')n,]/(e — mc?)(e' — me?)}

and ¢/ = \/c2p? +m2ct, e = Zu e (k). We emphasize the dependence on k of the coefficients
A(p,p’) and B(p, p’), through the polarization vector e. For brevity, we use notations like p£k for
p £ hk. The interaction hamiltonian given by equation (10) contains electron-electron, positron-
positron interactions (the terms with the coefficients A(p, pFk)) and the creation and annihilation
of pairs (the terms with the coefficients B(p, —p £ k)). The corresponding equations of motion
read

i + %3+ wRlin + iity) = 2003, /25 [A(p, P+ K)bpbp it

(12)
+B(p, —p — k)bpc* ,  + B(p, —p + k)cpb_pi + A(p, P — k)cpc, ]
and '
ihby = £,bp—
—ec Zk \/ ‘2/7;2 [ (p7 p— k)bp—k + B(p —Pp + k) p+k:| (ak + aik) )
(13)

thep = epcp+

tec )/ v [A(P =k, P)ep i+ B(=p + k, p)b* ] (ax +ary)

It is easy to check that the interaction hamiltonian given by equation (10) conserves the charge
Q=>, (b5bp — chcp). This is the standard framework (not manifestly covariant) provided by
the quantum electrodynamics for an ensemble of interacting electrons, positrons and photons. For
the creation and annihilation of electron-positron pairs in the process of polarization of a piece of
macroscopic vacuum we adopt here a special route.

In general, the states of interacting fermions with spin one-half are admixtures of empty (]|0)) and
occupied (|1)) states. The creation and destruction operators can then be expressed by one scalar.
For instance, let |s) = «|0)+ (3 |1) be such a state, with coefficients a, 5. The destruction operator
b has only one non-vanishing matrix element, (0| b|s) = 3, or (s|b|1) = a. For definiteness, we
choose (0|b|s) = . The occupation number is given by (s|b*b|s) = |8|>. Since the states |s)
for an ensemble of interacting fermions are not, in general, well-defined single-particle states, |3 |2
is not subjected to the restriction |ﬁ|2 < 1. Consequently, we can take such matrix elements in
the first equation (13), which amounts to work with fermionic amplitudes which are c-numbers,
instead of operators. These amplitudes can be viewed as classical fields. The charge conservation
@ = 0 for pairs suggests the replacement

bp - ﬁp ’ Cip - ﬁp ) (14)

in accordance with the particle-hole symmetry. Similarly, we replace the photon operators by
c-numbers,

ax + CL*_k — Ak s (15)
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where Ay are viewed as classical fields. As it is well known, this amounts to employ coherent
states and a coherent interaction of matter and radiation.[30] Then, the interaction hamiltonian

becomes
[ 2mh
mt — 2662 Vu) P + k ﬁ ﬁp kAk ) (16)

and the equations of motion read

Ay + wi Ay = dec dp 27%;'63(13, —p — k)85 Bp ik
(17)

ihBy = epfp — 2¢ Y 1/ ZLB(P, —p + k) fp 1Ak -

We can see that the scattering of individual electrons (or positrons) disappears from the interaction
hamiltonian (the terms with the A-coefficients in equation (10)), and the interaction is determined
by the vacuum polarization (creation and annihilation of pairs), as expected. The product B Bp—x
in the interaction hamiltonian can also be viewed as corresponding to the excitation (and dis-
excitation) of an ensemble of particles, each with two energy levels (labelled by p and —p + k),
the levels corresponding to positive and, respectively, negative energy states. This latter feature
is incorporated in the structure of the B-coefficients. As it is well-known, such an ensemble of
particles can be excited (polarized) in a stationary regime by an external classical field of radiation,
which pumps energy in the ensemble, resembling to some extent the laser effect. We note also
that the product (3} 1k appearing in the rhs of the first equation (17) for the electromagnetic
field is related to the medium polarization (more exactly to the polarization current).

For reasonable energies we may limit ourselves to p, hk < py < me, where py is a momentum
cutoff, and expand the coupling coefficients B(p,p £ k) in powers of p and k. Similarly, we
approximate e, in equations (17) by g = mc?. For such small values of the momenta the angular
dependence of the coupling function B(p, —p +k) is irrelevant for the qualitative behaviour of the
solutions of the system of equations (17). The structure of this system shows that the relevant
coupling function is the product B(p,—p — k)B(p, —p + k). Averaging over p we get

= [ v WBm ] - (18)

The constant b plays the role of an effective coupling coefficient. Introducing the coupling constant
gk = 2ecby/27 /V hwy, the system of equations (17) becomes

Ay + WP Ay = 2wig; > BpBpik

(19)
iﬁp = Qﬁp - Zk gkﬁpkak 5
where Q0 = g¢/h. It is easy to see that equations (19) are solved by the Fourier transforms
1 _ipp Lpy
Bp = V/drﬁ(r)e P B(r) =) BperPt (20)
P

The number of pairs is given by

V=S ll = g [l @)
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we have also

> b= o [arlsmp e (22)

The solution is immediately given by

ﬁ(r) — B(r)e_mt“ ft dt' X(r,t") ’ (23)
where A(r,t) = Y, gk Ake™; B(r) is a "constant" of integration, given by
4 2
N = v dr |B(r)|” . (24)

From equation (23) we can see that the pair dynamics is quasi-stationary, in the sense that it
conserves the "occupation" number |3(r)|> = |B(r)|*. Similarly, from the first equation (19) and
equation (22), we can see that the polarization field does not depend on the time, so we get

29k

A dr |B(r)|* e ™ ; 2
o= 2 [ BwP et (25)

it follows

, 29 2 _
A _ A ikr _ “Jk / ik(r'—r) 26
(r Zk:gk k€ k or v (26)
and

ﬁ(r) _ B(r)efiQHi)\(r)t ) (27)

The single-particle energy A2 — hA(r) has a spatial dependence, reflecting the local force exerted
on the pairs by the polarization field. If one assumes the pairs confined to a spatial region of finite
extent, we can see that this force tends to localize the pairs in that region, as expected.

It is reasonably to assume that the pairs are distributed uniformly in space, i.e. B(r) = B =
\/N/Z This amounts to a condensation of the fermions on the p = 0 state; in fact, the pairs are
distributed ("condensed") over the low-momenta fermionic states. The field Ay (equation (25)),
and the single-particle energy A (equation (26)) exhibit a singularity for & — 0, as expected for
such an infinite uniform distribution. In practice, the pairs are distributed quasi-uniformly in
space over a region of finite linear size d, so we may take Ay ~ g, N/2wy for k < kg = 1/d. The
single-particle energy becomes
2e2b?
wd

and equation (20) gives 3, = Be “¥* for p — 0. From the conservation of the number of
particles

—h\ ~ —

N (28)

Vo 4apd

_ 2 _ 2 0 2

N=4>[8,[*=4B S — 4B (29)
1

we get the momentum cutoff py/A = (672)/3/d , which is of the order of 1/d, as expected. Tt is
worth noting to see now the coupling coefficient b given by equation (18),

S I S 0
V/35meg V35 d ’
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where \. = hi/mc is the electron Compton wavelength. Since \. ~ 0.3 x 10~ %¢m, we can see that
the coupling coefficient b acquires an extremely small value. The single-particle energy given by
equation (28) can be written as

2e2b> 12 e A\
—h\ ~ — N=—-——(@6m)*= (=) N 31
d 3507 (d) ’ (81)

which is extremely small. It is worth noting the occurrence of the Coulomb energy e?/d of an
electron localized in a spatial region of linear size d.

Making use of equation (1), we can compute the magnetic field H = curlA and the electromagnetic
energy E.,, stored by the polarization field Ay ~ g, N/2wy, for k < kg = 1/d. We get

262h? 12 ez A\
E.m = N2 = Z(6r2)/3= [ Z£) N2, 32
rd 35677\ G (32)
The number of pairs can be obtained from the conservation of energy
2 12 . 9v1/3 e (A" 2 2
Eem+2ch:£(67r) T\ N +2mc"N =W (33)

where W is the total energy and we have neglected the single-particle energy —hA. It is easy
to see that the N%-term brings an extremely small contribution (due to the fourth power of the
ratio \./d < 1), so the number of pairs is given by N ~ W/2mc?. For a numerical reference, we
can take W = 1J and get N ~ 10'3 pairs. We can see that the pairs number does not depend
practically on the size of the spot where the energy is concentrated.

It is also worth commenting upon the solutions
ﬁ(r) — BefiQtJri)\t (34)

(for r < d). According to equation (23) they represent the single-particle eigenstates. We can see
that they correspond to electrons (positrons) localized in space. We can divide the space in small,
identical cells of volume v < V', and write the number of particles (equation (24)) as

4 9 4v 9 'UN
N:V/dr|B(r)| :Vzr:B :7;1 , (35)

whence one can see that the “occupation” number in each cell of volume v is unity, as for fermions.
This substantiates the picture of electrons ( positrons) localized in space and represented by fields
given by equation (34).

We can see that the vacuum can be polarized with electron-positron pairs, which create a polar-
ization field and acquire an additional —hA\ energy for each electron (positron). Even for very
high energy densities the number of pairs, the polarization energy and the single-particle ener-
gies are extremely small. Comparing the first equation (19) with the classical wave equation
0?A/ot? — ?AA = 4rcj, where j is the density of the polarization curent, we get

JK) = 55, By = 25 [ dr | B(r)fF ek

(36)
ec ec c 2
~ PN = (6m)2°% (%) N, k<1/d,

for the Fourier tranform of the current density (for one polarization). This is a very small current
density.
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We introduce now a (polarized) external field A" = A} = Ay = 2a coswyt (monochromatic
wave), with the frequency wy = cko. The second equation (19) becomes

iBp = p = > grBp-rAx — 9o(Boicy + Bptko) Ao (37)
K

where gy = 2ecb\/2m/V hwy. The solution is given by

ﬁ(r) — B(r>e—iﬂt+i)\t+igo(r,t) : (38)
where 4
o(r,t) = 9090 in wot cos kor . (39)
Wo

This phase implies a localized energy
de(r,t) = —4hgoag cos wot cos kor = —2hgoag [cos(kor — wot) + cos(kor + wot)] (40)

for the electron-positron pairs, which appears as a stationary wave driven by the external field. It
is worth noting that, in contrast with the polarization energy —h\ given by equation (31), which
is quadratic in the coupling coefficient b, the energy caused by the external field is linear in b, as
expected. It is convenient to estimate the mean value of this energy by making use of the external
field energy Wy = 2hwy |a0|2. We get straightforwardly

— 4 c (AN [e2w
e = —— (67223 — [ 22} /= 41

which, even for reasonably high energy densities, is still a very low energy. The energy of the
external field is distributed over the energy of the polarization field (which is very low) and the
energy of the pairs, according to equation (33). It is worth noting that the above results are
sensitive to decreasing d (except for the number of pairs), so we can enhance the relevant values
by the focalization of the energy in very small volumes. However, for usually available energies
this enhancement is still insufficient for getting any appreciable result.

The external field induces a polarization field which is stationary (the vector potential does not
depend on the time), as a consequence of the stationary dynamics of the electrons and positrons.
Therefore, the polarization electric field is vanishing, and we are left only with a static magnetic
field. Under the action of an external field the vacuum gets magnetized. The corresponding vector
potential of the polarization field is given by Ag"l = goN/2wy, according to the discussion made
above. This polarization field depends on the strength Ay of the external field through the field
energy Wy which generates the number of pairs N. Consequently, we can define a static magnetic
susceptibility of the polarized vacuum. We get straightforwardly the magnetic permeability

eb (672)%% (X \* eH,
—1 Hy=1+ 0L (2 42
H + dmewy © + 435 \d ) mecwy ’ (42)

where it is worth noting the linear dependence on the strength H, of the external magnetic field.
As expected, the vacuum polarized under the action of an external field, acquires a (very small,
static) magnetic susceptibility, and, consequently, a refractive index n = /p (slightly greater than
unity). It is worth noting in equation (42) the ratio of the magnetic energy (Bohr magneton in
the magnetic field Hy) to the energy quanta fuw, of the external field.

In conclusion, we may say that the vacuum gets polarized with electron-positron pairs under the
action of an external classical field of electromagnetic radiation. The polarization field is static,
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i.e. the electric field is vanishing and the vacuum sustains only a static magnetic field. The
corresponding magnetic permeability (the refractive index of the vacuum) has been computed for
an external monochromatic wave. The electron-positron pairs are condensed on low-momenta
states and exhibit a quasi-stationary dynamics. They acquire a single-particle energy, which is
quasi-localized in space as a stationary wave driven by the monochromatic external field. The
number of pairs are determined by the external energy, while the single-particle energies and the
energy of the polarization field depend on the energy density of the external field. All these
numerical results are extremely small, even for reasonably high external energies and energy
densities. An important role in the magnitude of these effects is played by the Compton wavelength
of the electron, which is very small in comparison with the extent of the spatial region over
which we can concentrate the energy of the external field. The results presented here have been
derived by treating the electron-positron and photon dynamics by means of classical fields, a
procedure justified by the polarization process, which implies continuous creation and annihilation
of electron-positron pairs under the action of a classical field of radiation, resembling a plasma of
electron-positron pairs. The coupled non-linear equations of motion have been solved for these
fields, and the solution led to the results described above.

Appendix A: The coefficients A, B and C in equation (9)

Making use of the bi-spinor definition (equations (5)) and the algebra of the Pauli spin matrices
(in particular o;0; = 0;; + i€;;,0k, where €54 is the totally antisymmetric tensor of rank 3), the
coefficients A, B and C appearing in the interaction hamiltonian (equation (9)) can be computed
straightforwardly (leaving aside the spin dependence in the electron-positron operators). They
are given by

A(p,p') = 2\/1?{\/(5 —mc?)(e' + mc?) [2en — i7 (e x n)] +

+/(e + me) (e — me?) [2en’ +iT (e x )]},

B(p.p) = 5= {y/(e T m@) & + m®)[2e, + ife x 7))+

+\/(€ —mc?)(e’ — mc?)[2(en)n; — 2(nn’)e, + 2(en’)n, —

Ql|

—i(en)(n' x 7 ), +in'n(e x 7) +1i(e7)(n’ x n), +i(n7)(e x n'),]}

Cp,p) = 57=AV/ (e —me)(e + mc?)[2en — 7, (e x n),—

—iny(e x T ), +ie,(n x 7 ),)+

+/ (e + mc)(e' — mc?)[2(n'e) + i7,(e x n'),+

. — . -
+m’y(e X 7 )y, —ie,(n' x 7))},

— 22 2.4 o — o202 2.4 o — 5 — *
where e = /c?p? + m?ct, &' = \/?p? + mPct,e =3 e, (k) and T =) wiTw,.
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Appendix B: The vector G

The most general form of the spinor w,(p) is
wiy = e~ cosOu + e sin v |
w_i = —e ¥ sin Ou + € cos Ov |

where u, v are the eigenvectors of the Pauli matrix o, (o,u = u, 0,0 = —v) and the angles 6, ¢,
corresponding to the wavevector p, are arbitrary; for p’ (in w,(p’)) we denote these angles by
0', ©'. It is worth noting that, in spite of some resemblance, these spinors are not those related to
the helicities. The calculations of the vector & = Y oo Wa(pP) T w, (p') is then straightforward.
We get

T, = 2isin(p — ¢')sin(@ — ') + 2 cos(p — ¢') cos(0 +6') |

Gy = 2icos(p — ¢')sin(@ — 0') + 2sin(p — ¢’) cos(6 + 6') ,

o, = —2isin(¢p + ¢’) cos(6 — 0") — 2cos(p + ') sin(0 + ¢') .

It is worth noting that 7 is a complex vector, which depends on four parameters (the angles
0, ¢, 0,0, as expected for the polarization of an ensemble of two fermions of spin 1/2. Indeed,
we have a polarization vector for one fermion, relative to the direction of the polarization vector
of the other fermion, i.e. 3 parameters, and another parameter for the magnitude of the former
polarization vector. We can have various choices for ?, for instance we may take it perpendicular
to the two wavevectors p, p’ (which amouns to four equations with four unknowns). We can also
write o as o = 2i81+2sy, where s, 5 are two real, linearly independent vectors, and take s; parallel
with p (in which case we are left with only one free parameter). None of such choices brings an
appreciable simplification in the interaction matrix elements, and, in fact, any particular choice is
arbitrary. The only meaningfull procedure is the averaging over angles, which gives (?)av =0, as
for unpolarized elementary interaction acts. This assumption is equivalent to a uniform statistical
average of the interaction with respect to the "spin" polarization, as noted in the main text. We
note that such an average is consistent with the classical treament of the interaction given here.

References

[1] F. Sauter, Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der
relativistischen Theorie Diracs, Z. Phys. 69 742-764 (1931).

[2] W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Z. Phys.
98 714-732 (1936).

[3] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 664-679 (1951).

[4] A. Ringwald, Pair production from vacuum at the focus on an X-ray free-electron laser, Phys,
Lett. B510 107-116 (2001).

[5] R. Alkofer, M. B. Hecht, C. D. Roberts, S. M. Schmidt and D. V. Vinnik, Pair creation and
an X-ray free-electron laser, Phys. Rev. Lett. 87 193902 (2001) (1-4).



J. Theor. Phys 11

[6] V. S. Popov, On Schwinger mechanism of ete™ pair production from vacum by the field of
optical and X-ray lasers, Phys. Lett. A298 83-90 (2002).

[7] H. K. Avetissian, A. K. Avetissian, G. F. Mkrtchian and Kh. V. Sedrakian, Electron-positron
pair production in the field of superstrong oppositely directed laser beams, Phys. Rev. E66
016502 (2002) (1-4).

[8] C.D. Roberts, S. M. Schmidt and D. V. Vinnik, Quantum effects with an X-ray free-electron
laser, Phys. Rev. Lett. 89 153901 (2002) 1-4).

[9] A. Di Piazza, K. Z. Hatsagortsian and C. H. Keitel, Harmonic generation from laser-driven
vacuum, Phys. Rev. D72 085005 (2005) (1-23).

[10] D. B. Blaschke, A. V. Prozorkevich, C. D. Roberts, S. M. Schmidt and S. A. Smolynsky, Pair
production and optical lasers, Phys. Rev. Lett. 96 140402 (2006) (1-4).

[11] R. Schutzhold, H. Gies and G. Dunne, Dynamically assisted Schwinger mechanism, Phys.
Rev. Let. 101 130404 (2008) (1-4).

[12] A.R. Bell and J. G. Kirk, Possibility of prolific pair production with high-power lasers, Phys.
Rev. Let. 101 200403 (2008) (1-4).

[13] G. V. Dunne, H. Gies and R. Schutzhold, Catalysis of Schwinger vacuum pair production,
Phys. Rev. D80 111301R (2009) (1-5).

[14] V. N. Baier and V. M. Katkov, Pair creation by a photon in an electric field, arXiv:hep-ph
/0912.5250 (2009).

[15] C. K. Dumlu, Schwinger vacuum pair production in chirped laser pulses, Phys. Rev. D82
045007 (2010) (1-8).

[16] G. A. Mourou, T. Tajima and S. V. Bulanov, Optics in the relativistic regime, Revs. Mod.
Phys. 78 309-371 (2006).

[17] E. Esarey, S. B. Schroeder and W. Leemans, Physics of laser-driven plasma-based electron
accelerators, Revs. Mod. Phys. 81 1229-1285 (2009).

[18] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. R. Collier, A. E. Dangor,
E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley,
W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton and K. Krushelnick,

Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature
431 535-538 (2004).

[19] C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C.
Nieter, J. Cary and W. P. Leemans, High-quality electron beams from a laser wakefield
accelerator using plasma-channel guiding, Nature 431 538-541 (2004)

[20] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Levebvre, J.-P. Rousseau, F.
Burgy and V. Malka, A laser-plasma accelerator producing monoenergetic electron beams,
Nature 431 541-544 (2004).

[21] W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Toth, K. Nakamura, C. G. R. Geddes, E.
Esarey, C. B. Schroeder and S. M. Hooker, GeV electron beams from a centimetre-scale
acelerator, Nature Phys. 2 696-699 (2006).



12

J. Theor. Phys.

22]

23]

[24]

[25]

[26]

[27]

28]

[29]
[30]

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec and V. Malka, Controlled injection
and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature 444 737-
739 (2006).

C. G. R. Geddes, K. Nakamura, G. R. Plateau, Cs. Toth, E. Cormier-Michel, E. Esarey,
C. B. Schroeder, J. R. Cary and W. P. Leemans, Plasma-density-gradient injection of low
absolute-momentum-spread electron bunches, Phys. Rev. Lett. 100 215004 (2008) (1-4).

C. Rechatin, J. Faure, A. Ben-Ismail, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi,
F. Burgy and V. Malka, Controlling the phase-space volume of injected electrons in a laser-
plasma accelerator, Phys. Rev. Lett. 102 164801 (2009) (1-4).

S. F. Martins, R. A. Fonseca, W. Lu, W. B. Mori and L. O. Silva, Exploring laser-wakefield-
accelerator regimes for near-term lasers using particle-in-cell simulation in Lorentz boosted
frames, Nature Phys. 6 311-316 (2010).

A. Giulietti, N. Bourgeois, T. Ceccotti, X. Davoine, S. Dobosz, P. D’Oliveira, M. Galimberti,
J. Galy, A. Gamucci, D. Giulietti, L. A. Gizzi, D. J. Hamilton, E. Lefebvre, L. Labate, J.
R. Marques, P. Monat, H. Popescu, F. Reau, G. Sarri, P. Tomassini and P. Martin, Intense
~-ray source in the giant-dipole-resonance range driven by 10 — T'w laser pulses, Phys. Rev.
Lett. 101 105002 (2008) (1-4).

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P.-E. Masson-Laborde, B. Hou, I.
Sokolov, G. Mourou, I. V. Glazyrin, W. Rozmus, V. Bychenkov, J. Nees and K. Krushelnick,
Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from
laser-solid interactions at 0.5 kH z, Phys. Rev. Lett. 103 235001 (2009) (1-4).

L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 4, Quantum FElectrodynamics,
Butterworth-Heinemann, Oxford (2002).

F. Dyson, Advanced Quantum Mechanics, World Scientific, Singapore (2007).

R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131 2766-2788
(1963).

© J. Theor. Phys. 2010, apoma@theorl.theory.nipne.ro



