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oupled non-linearequations of motion are solved. It is shown that the pair dynami
s 
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tron-positron pairs from va
uum under the a
tion of high external ele
tromagneti
�elds is a 
lassi
al and still very attra
tive subje
t.[1℄-[15℄ With the re
ent development of high-power laser pulses fo
used on very small spatial regions[16℄-[27℄ the va
uum polarization 
ouldbe
ome soon a matter of experimental testing and routine measurements.The annihilation of the ele
tron-positron pairs in the polarized va
uum suggests a possible sta-tionary regime, whi
h may resemble a plasma of ele
tron-positron pairs. This paper deals withthe stationary dynami
s of the polarized va
uum under the a
tion of an external 
lassi
al �eld ofele
tromagneti
 radiation. It is shown that the intera
tion of the ele
tron-positron pairs with theirown polarization �eld in a ma
ros
opi
 pie
e of va
uum is mainly governed by the 
ondensationof these pairs on low-momenta states. The pairs are quasi-lo
alized in spa
e. In the polarizationpro
ess under the a
tion of a 
lassi
al radiation �eld the ele
tron-positron and photon dynami
s
an be treated by means of 
lassi
al �elds. The 
orresponding 
oupled non-linear equations of



2 J. Theor. Phys.motion are solved. The solutions exhibit a quasi-stationary regime, and the single-parti
le energiesare 
omputed. The 
orresponding polarization �eld is stati
, in the sense that the ele
tri
 �eldis vanishing and only a stati
 magneti
 �eld is present. The polarized va
uum gets magnetized.Under the a
tion of an external �eld (mono
hromati
 plane wave), the single-parti
le energies arequasi-lo
alized in spa
e and a
quire the shape of a stationary wave driven by the external �eld.The number of pairs, the pairs energy and the polarization energy are 
omputed. The number ofpairs is determined by the external �eld energy. The resulting values are extremely small, evenfor reasonably high external �elds and energy densities. This is due, mainly, to the Comptonwavelength of the ele
trons whi
h is mu
h smaller than the size of the spa
e region over whi
h theexternal energy is fo
used. The magneti
 sus
eptibility is also evaluated (the refra
tive index) forthe polarized va
uum, and, similarly, it is found to a
quire very low values.As it is well-known, the ele
tromagneti
 radiation �eld is des
ribed by the ve
tor potential
A(r) =

∑

µk

√

2π~c2

V ωk

[

eµ(k)aµke
ikr + e∗

µ(k)a∗µke
−ikr

] (1)in the standard Fourier representation, with the transverse gauge divA = 0, where c is thevelo
ity of light, V is the volume, ωk = ck is the frequen
y and eµ(k) are the polarization ve
tors,
eµ(k)k = 0, eµ(k)e∗

ν(k) = δµν (µ, ν = ±1), e−µ(−k) = e∗
µ(k). The ele
tri
 and magneti
 �eldare given by E = −(1/c)∂A/∂t and, respe
tively, H = curlA, and three Maxwell's equationsare satis�ed: curlE = −1

c
∂H/∂t, divH = 0, divE = 0. The time dependen
e is in
luded in theFourier 
oe�
ients aµk, a∗µk (photon annihilation and, respe
tively, 
reation operators).The lagrangian of the radiation �eld

Lf = 1
8π

∫

dr (E2 −H2) =

=
∑

µk
~

4ωk

(

ȧµk + ȧ∗−µ−k

) (

ȧ−µ−k + ȧ∗µk

)

−

−
∑

µk
~ωk

4

(

aµk + a∗−µ−k

) (

a−µ−k + a∗µk

)

(2)leads to the equation of motion̈
aµk + ä∗−µ−k + ω2

k

(

aµk + a∗−µ−k

)

= 0 , (3)whi
h is the fourth Maxwell's equation curlH = (1/c)∂E/∂t.The standard Dira
 �eld for ele
trons and positrons is written as
ψ(r) =

∑

σp

1√
2εV

(

upσbpσe
i

~
pr + vpσc

∗
pσe

− i

~
pr

)

, (4)where ε =
√

c2p2 +m2c4, m is the ele
tron mass,σ = ±1 is the spin label and the bispinors upσ,
vpσ are given by

upσ =

( √
ε+mc2wσ√

ε−mc2(n−→σ )wσ

)

, vpσ =

( √
ε−mc2(n−→σ )w

′

σ√
ε+mc2w

′

σ

)

; (5)here n = p/p is the unit ve
tor along the momentum p, −→σ denote the Pauli matri
es and
wσ, w′

σ = −σyw−σ are normalized spinors, w∗
σwσ′ = δσσ′ , w′∗

σ w
′∗
σ = δσσ′ (otherwise arbitrary).The notation ∗ means transposition together with 
omplex 
onjugation. In general, we use the
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onventions from Refs. [28, 29℄. As it is well known, the free hamiltonian of thefermions reads
H0 =

∑

σp

ε
(

b∗pσbpσ − cpσc
∗
pσ

)

, (6)whi
h leads to the equation of motion i~ḃpσ = εbpσ, i~ċpσ = εcpσ for the ele
tron and positrondestru
tion operators bpσ, cpσ.Making use of equations (1) and (4) we 
ompute the intera
tion hamiltonian
Hint = −e

c

∫

drψ∗(r)jψ(r)A(r) , (7)where −e is the ele
tron 
harge and j = c−→α is the parti
le 
urrent,
−→α =

(

0 −→σ
−→σ 0

) (8)being the Dira
 α-matri
es. The 
omputation of the matrix elements of the 
urrent j betweendi�erent ele
tron-positron states involved in equation (7) is lengthy but straightforward. It isworth noting that the 
urrent density for intera
ting ele
trons (positrons) di�ers from the groupvelo
ity c2p/ε of the free ele
trons (positrons). The general form of the intera
tion matrix elements
an be represented as Mµ
σσ′(p,p′). They 
ontain the matrix elements (

−→
σ )σσ′ = w∗

σ
−→σ wσ′ of to thePauli mari
es −→σ . In general, the spinors may depend on the momenta p (as for heli
ities), su
hthat (

−→
σ )σσ′(p,p′) = w∗

σ(p)−→σ wσ′(p′). It is important to note that there is an arbitrariness inthese matrix elements, due to the arbitrariness in the spinors wσ(p). The matrix −→
σ is relatedto the polarization matrix of ea
h elementary a
t of intera
tion, but the spinors do not redu
ene
essarily to the well-de�ned spin states in the rest frame, nor the ve
tor −→

σ redu
es to thepolarization ve
tor measured usually in s
attering experiments. In the intera
tion pro
ess neitherthe spin, nor the heli
ities are 
onserved, i.e. both are undetermined. There is no reason tohave a "spin" dependen
e in the intera
tion, so we omit the spin label in the ele
tron-positronoperators and the polarization label in the photon operators. The intera
tion matrix elements 
anthen be summed over the spin and polarization labels,M(p,p′) =
∑

µσσ′ M
µ
σσ′(p,p′). The generalstru
ture of the intera
tion hamiltonian is then given by

Hint = −ec
∑

pk

√

2π~

V ωk

[A(p,p − k)b∗pbp−k +B(p,−p + k)b∗pc
∗
−p+k+

+B∗(−p − k,p)cpb−p−k + C(p,p + k)cpc
∗
p+k]

(

ak + a∗−k

)

,

(9)where the 
oe�
ients A, B and C (the matrix elementsM(p,p′)) are given in Appendix A. Themost general stru
ture of the ve
tor −→σ =
∑

σσ′ w∗
σ
−→σ wσ′ is given in Appendix B. In a

ordan
ewith our assumption that the intera
tion matrix elements should not depend on the "spin" ori-entation we take the mean value of this ve
tor over all possible polarizations, and get (

−→
σ )av = 0.This amounts to a statisti
al (uniform) average of the intera
tion hamiltonian over "spin" states.The 
oe�
ients A, B and C simplify then appre
iably, and the intera
tion hamiltonian be
omes

Hint = −ec
∑

pk

√

2π~

V ωk

[A(p,p − k)b∗pbp−k +B(p,−p + k)b∗pc
∗
−p+k+

+B(p,−p − k)cpb−p−k + A(p,p + k)cpc
∗
p+k]

(

ak + a∗−k

)

,

(10)
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A(p,p′) = 1√

εε′

[

en
√

(ε−mc2)(ε′ +mc2) + en′
√

(ε+mc2)(ε′ −mc2)
]

,

B(p,p′) = − 1√
εε′
{ey

√

(ε+mc2)(ε′ +mc2)+

+[(en)n′
y − (nn′)ey + (en′)ny]

√

(ε−mc2)(ε′ −mc2)}

(11)
and ε′ =

√

c2p′2 +m2c4, e =
∑

µ eµ(k). We emphasize the dependen
e on k of the 
oe�
ients
A(p,p′) and B(p,p′), through the polarization ve
tor e. For brevity, we use notations like p±k for
p ± ~k. The intera
tion hamiltonian given by equation (10) 
ontains ele
tron-ele
tron, positron-positron intera
tions (the terms with the 
oe�
ients A(p,p∓k)) and the 
reation and annihilationof pairs (the terms with the 
oe�
ients B(p,−p ± k)). The 
orresponding equations of motionread

äk + ä∗−k + ω2
k(äk + ä∗−k) = 2ec

∑

p

√

2πωk

~V
[A(p,p + k)b∗pbp+k+

+B(p,−p − k)b∗pc
∗
−p−k +B(p,−p + k)cpb−p+k + A(p,p− k)cpc

∗
p−k]

(12)and
i~ḃp = εpbp−

−ec∑

k

√

2π~

V ωk

[

A(p,p− k)bp−k +B(p,−p + k)c∗−p+k

]

(ak + a∗−k) ,

i~ċp = εpcp+

+ec
∑

k

√

2π~

V ωk

[

A(p− k,p)cp−k +B(−p + k,p)b∗−p+k

]

(ak + a∗−k) .

(13)
It is easy to 
he
k that the intera
tion hamiltonian given by equation (10) 
onserves the 
harge
Q =

∑

p

(

b∗pbp − c∗pcp
). This is the standard framework (not manifestly 
ovariant) provided bythe quantum ele
trodynami
s for an ensemble of intera
ting ele
trons, positrons and photons. Forthe 
reation and annihilation of ele
tron-positron pairs in the pro
ess of polarization of a pie
e ofma
ros
opi
 va
uum we adopt here a spe
ial route.In general, the states of intera
ting fermions with spin one-half are admixtures of empty (|0〉) ando

upied (|1〉) states. The 
reation and destru
tion operators 
an then be expressed by one s
alar.For instan
e, let |s〉 = α |0〉+β |1〉 be su
h a state, with 
oe�
ients α, β. The destru
tion operator

b has only one non-vanishing matrix element, 〈0| b |s〉 = β, or 〈s| b |1〉 = α. For de�niteness, we
hoose 〈0| b |s〉 = β. The o

upation number is given by 〈s| b∗b |s〉 = |β|2. Sin
e the states |s〉for an ensemble of intera
ting fermions are not, in general, well-de�ned single-parti
le states, |β|2is not subje
ted to the restri
tion |β|2 ≤ 1. Consequently, we 
an take su
h matrix elements inthe �rst equation (13), whi
h amounts to work with fermioni
 amplitudes whi
h are c-numbers,instead of operators. These amplitudes 
an be viewed as 
lassi
al �elds. The 
harge 
onservation
Q = 0 for pairs suggests the repla
ement

bp → βp , c
∗
−p → βp , (14)in a

ordan
e with the parti
le-hole symmetry. Similarly, we repla
e the photon operators by

c-numbers,
ak + a∗−k → Ak , (15)



J. Theor. Phys. 5where Ak are viewed as 
lassi
al �elds. As it is well known, this amounts to employ 
oherentstates and a 
oherent intera
tion of matter and radiation.[30℄ Then, the intera
tion hamiltonianbe
omes
Hint = −2ec

∑

pk

√

2π~

V ωk
B(p,−p + k)β∗

pβp−kAk , (16)and the equations of motion read
Äk + ω2

kAk = 4ec
∑

p

√

2πωk

~V
B(p,−p − k)β∗

pβp+k ,

i~β̇p = εpβp − 2ec
∑

k

√

2π~

V ωk

B(p,−p + k)βp−kAk .

(17)We 
an see that the s
attering of individual ele
trons (or positrons) disappears from the intera
tionhamiltonian (the terms with the A-
oe�
ients in equation (10)), and the intera
tion is determinedby the va
uum polarization (
reation and annihilation of pairs), as expe
ted. The produ
t β∗
pβp−kin the intera
tion hamiltonian 
an also be viewed as 
orresponding to the ex
itation (and dis-ex
itation) of an ensemble of parti
les, ea
h with two energy levels (labelled by p and −p + k),the levels 
orresponding to positive and, respe
tively, negative energy states. This latter featureis in
orporated in the stru
ture of the B-
oe�
ients. As it is well-known, su
h an ensemble ofparti
les 
an be ex
ited (polarized) in a stationary regime by an external 
lassi
al �eld of radiation,whi
h pumps energy in the ensemble, resembling to some extent the laser e�e
t. We note alsothat the produ
t β∗

pβp+k appearing in the rhs of the �rst equation (17) for the ele
tromagneti
�eld is related to the medium polarization (more exa
tly to the polarization 
urrent).For reasonable energies we may limit ourselves to p, ~k < p0 ≪ mc, where p0 is a momentum
uto�, and expand the 
oupling 
oe�
ients B(p,p ± k) in powers of p and k. Similarly, weapproximate εp in equations (17) by ε0 = mc2. For su
h small values of the momenta the angulardependen
e of the 
oupling fun
tion B(p,−p+k) is irrelevant for the qualitative behaviour of thesolutions of the system of equations (17). The stru
ture of this system shows that the relevant
oupling fun
tion is the produ
t B(p,−p − k)B(p,−p + k). Averaging over p we get
b =

[

B(p,−p − k)B(p,−p + k)
]1/2

=
p2

0√
35mε0

. (18)The 
onstant b plays the role of an e�e
tive 
oupling 
oe�
ient. Introdu
ing the 
oupling 
onstant
gk = 2ecb

√

2π/V ~ωk, the system of equations (17) be
omes
Äk + ω2

kAk = 2ωkgk

∑

p
β∗

pβp+k ,

iβ̇p = Ωβp − ∑

k gkβp−kAk ,

(19)where Ω = ε0/~. It is easy to see that equations (19) are solved by the Fourier transforms
βp =

1

V

∫

drβ(r)e−
i

~
pr , β(r) =

∑

p

βpe
i

~
pr . (20)The number of pairs is given by

N = 4
∑

p

|βp|2 =
4

V

∫

dr |β(r)|2 ; (21)



6 J. Theor. Phys.we have also
∑

p

β∗
pβp+k =

1

V

∫

dr |β(r)|2 e−ikr . (22)The solution is immediately given by
β(r) = B(r)e−iΩt+i

R

t dt′λ(r,t′) , (23)where λ(r, t) =
∑

k gkAke
ikr; B(r) is a "
onstant" of integration, given by

N =
4

V

∫

dr |B(r)|2 . (24)From equation (23) we 
an see that the pair dynami
s is quasi-stationary, in the sense that it
onserves the "o

upation" number |β(r)|2 = |B(r)|2. Similarly, from the �rst equation (19) andequation (22), we 
an see that the polarization �eld does not depend on the time, so we get
Ak =

2gk

ωk

1

V

∫

dr |B(r)|2 e−ikr ; (25)it follows
λ(r, t) = λ(r) =

∑

k

gkAke
ikr =

∑

k

2g2
k

ωk

1

V

∫

dr′ |B(r′)|2 e−ik(r′−r) (26)and
β(r) = B(r)e−iΩt+iλ(r)t . (27)The single-parti
le energy ~Ω − ~λ(r) has a spatial dependen
e, re�e
ting the lo
al for
e exertedon the pairs by the polarization �eld. If one assumes the pairs 
on�ned to a spatial region of �niteextent, we 
an see that this for
e tends to lo
alize the pairs in that region, as expe
ted.It is reasonably to assume that the pairs are distributed uniformly in spa
e, i.e. B(r) = B =√

N/2. This amounts to a 
ondensation of the fermions on the p = 0 state; in fa
t, the pairs aredistributed ("
ondensed") over the low-momenta fermioni
 states. The �eld Ak (equation (25)),and the single-parti
le energy λ (equation (26)) exhibit a singularity for k → 0, as expe
ted forsu
h an in�nite uniform distribution. In pra
ti
e, the pairs are distributed quasi-uniformly inspa
e over a region of �nite linear size d, so we may take Ak ≃ gkN/2ωk for k < k0 = 1/d. Thesingle-parti
le energy be
omes
−~λ ≃ −2e2b2

πd
N , (28)and equation (20) gives βp = Be−iΩt+iλt for p → 0. From the 
onservation of the number ofparti
les

N = 4
∑

p

|βp|2 = 4B2 V

(2π)3~3

4πp3
0

3
= 4B2 (29)we get the momentum 
uto� p0/~ = (6π2)1/3/d , whi
h is of the order of 1/d, as expe
ted. It isworth noting to see now the 
oupling 
oe�
ient b given by equation (18),

b =
p2

0√
35mε0

=
(6π2)2/3

√
35

(

λc

d

)2

, (30)



J. Theor. Phys. 7where λc = ~/mc is the ele
tron Compton wavelength. Sin
e λc ≃ 0.3× 10−10cm, we 
an see thatthe 
oupling 
oe�
ient b a
quires an extremely small value. The single-parti
le energy given byequation (28) 
an be written as
−~λ ≃ −2e2b2

πd
N = −12

35
(6π2)1/3 e

2

d

(

λc

d

)4

N , (31)whi
h is extremely small. It is worth noting the o

urren
e of the Coulomb energy e2/d of anele
tron lo
alized in a spatial region of linear size d.Making use of equation (1), we 
an 
ompute the magneti
 �eld H = curlA and the ele
tromagneti
energy Eem stored by the polarization �eld Ak ≃ gkN/2ωk for k < k0 = 1/d. We get
Eem =

2e2b2

πd
N2 =

12

35
(6π2)1/3 e

2

d

(

λc

d

)4

N2 . (32)The number of pairs 
an be obtained from the 
onservation of energy
Eem + 2mc2N =

12

35
(6π2)1/3 e

2

d

(

λc

d

)4

N2 + 2mc2N = W , (33)where W is the total energy and we have negle
ted the single-parti
le energy −~λ. It is easyto see that the N2-term brings an extremely small 
ontribution (due to the fourth power of theratio λc/d ≪ 1), so the number of pairs is given by N ≃ W/2mc2. For a numeri
al referen
e, we
an take W = 1J and get N ≃ 1013 pairs. We 
an see that the pairs number does not dependpra
ti
ally on the size of the spot where the energy is 
on
entrated.It is also worth 
ommenting upon the solutions
β(r) = Be−iΩt+iλt (34)(for r < d). A

ording to equation (23) they represent the single-parti
le eigenstates. We 
an seethat they 
orrespond to ele
trons (positrons) lo
alized in spa
e. We 
an divide the spa
e in small,identi
al 
ells of volume v ≪ V , and write the number of parti
les (equation (24)) as

N =
4

V

∫

dr |B(r)|2 =
4v

V

∑

r

B2 =
vN

V

∑

r

1 , (35)when
e one 
an see that the �o

upation� number in ea
h 
ell of volume v is unity, as for fermions.This substantiates the pi
ture of ele
trons ( positrons) lo
alized in spa
e and represented by �eldsgiven by equation (34).We 
an see that the va
uum 
an be polarized with ele
tron-positron pairs, whi
h 
reate a polar-ization �eld and a
quire an additional −~λ energy for ea
h ele
tron (positron). Even for veryhigh energy densities the number of pairs, the polarization energy and the single-parti
le ener-gies are extremely small. Comparing the �rst equation (19) with the 
lassi
al wave equation
∂2A/∂t2 − c2∆A = 4πcj, where j is the density of the polarization 
urent, we get

j(k) = ecb
V

∑

p β
∗
pβp+k = 4ecb

V 2

∫

dr |B(r)|2 e−ikr ≃

≃ ecb
V
N = 1√

35
(6π2)2/3 ec

V

(

λc

d

)2
N , k < 1/d ,

(36)for the Fourier tranform of the 
urrent density (for one polarization). This is a very small 
urrentdensity.



8 J. Theor. Phys.We introdu
e now a (polarized) external �eld Aext
k0

= Aext
−k0

= A0 = 2a0 cosω0t (mono
hromati
wave), with the frequen
y ω0 = ck0. The se
ond equation (19) be
omes
iβ̇p = Ωβp −

∑

k

gkβp−kAk − g0(βp−k0
+ βp+k0

)A0 , (37)where g0 = 2ecb
√

2π/V ~ω0. The solution is given by
β(r) = B(r)e−iΩt+iλt+iϕ(r,t) , (38)where
ϕ(r, t) =

4g0a0

ω0

sinω0t cosk0r . (39)This phase implies a lo
alized energy
δε(r, t) = −4~g0a0 cosω0t cosk0r = −2~g0a0 [cos(k0r − ω0t) + cos(k0r + ω0t)] , (40)for the ele
tron-positron pairs, whi
h appears as a stationary wave driven by the external �eld. Itis worth noting that, in 
ontrast with the polarization energy −~λ given by equation (31), whi
his quadrati
 in the 
oupling 
oe�
ient b, the energy 
aused by the external �eld is linear in b, asexpe
ted. It is 
onvenient to estimate the mean value of this energy by making use of the external�eld energy W0 = 2~ω0 |a0|2. We get straightforwardly

δε =
4√
35

(6π2)2/3 c

ω0d

(

λc

d

)2
√

e2W0

d
, (41)whi
h, even for reasonably high energy densities, is still a very low energy. The energy of theexternal �eld is distributed over the energy of the polarization �eld (whi
h is very low) and theenergy of the pairs, a

ording to equation (33). It is worth noting that the above results aresensitive to de
reasing d (ex
ept for the number of pairs), so we 
an enhan
e the relevant valuesby the fo
alization of the energy in very small volumes. However, for usually available energiesthis enhan
ement is still insu�
ient for getting any appre
iable result.The external �eld indu
es a polarization �eld whi
h is stationary (the ve
tor potential does notdepend on the time), as a 
onsequen
e of the stationary dynami
s of the ele
trons and positrons.Therefore, the polarization ele
tri
 �eld is vanishing, and we are left only with a stati
 magneti
�eld. Under the a
tion of an external �eld the va
uum gets magnetized. The 
orresponding ve
torpotential of the polarization �eld is given by Apol

0 = g0N/2ω0, a

ording to the dis
ussion madeabove. This polarization �eld depends on the strength A0 of the external �eld through the �eldenergy W0 whi
h generates the number of pairs N . Consequently, we 
an de�ne a stati
 magneti
sus
eptibility of the polarized va
uum. We get straightforwardly the magneti
 permeability
µ = 1 +

eb

4mcω0
H0 = 1 +

(6π2)2/3

4
√

35

(

λc

d

)2
eH0

mcω0
, (42)where it is worth noting the linear dependen
e on the strength H0 of the external magneti
 �eld.As expe
ted, the va
uum polarized under the a
tion of an external �eld, a
quires a (very small,stati
) magneti
 sus
eptibility, and, 
onsequently, a refra
tive index n =
√
µ (slightly greater thanunity). It is worth noting in equation (42) the ratio of the magneti
 energy (Bohr magneton inthe magneti
 �eld H0) to the energy quanta ~ω0 of the external �eld.In 
on
lusion, we may say that the va
uum gets polarized with ele
tron-positron pairs under thea
tion of an external 
lassi
al �eld of ele
tromagneti
 radiation. The polarization �eld is stati
,
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tri
 �eld is vanishing and the va
uum sustains only a stati
 magneti
 �eld. The
orresponding magneti
 permeability (the refra
tive index of the va
uum) has been 
omputed foran external mono
hromati
 wave. The ele
tron-positron pairs are 
ondensed on low-momentastates and exhibit a quasi-stationary dynami
s. They a
quire a single-parti
le energy, whi
h isquasi-lo
alized in spa
e as a stationary wave driven by the mono
hromati
 external �eld. Thenumber of pairs are determined by the external energy, while the single-parti
le energies and theenergy of the polarization �eld depend on the energy density of the external �eld. All thesenumeri
al results are extremely small, even for reasonably high external energies and energydensities. An important role in the magnitude of these e�e
ts is played by the Compton wavelengthof the ele
tron, whi
h is very small in 
omparison with the extent of the spatial region overwhi
h we 
an 
on
entrate the energy of the external �eld. The results presented here have beenderived by treating the ele
tron-positron and photon dynami
s by means of 
lassi
al �elds, apro
edure justi�ed by the polarization pro
ess, whi
h implies 
ontinuous 
reation and annihilationof ele
tron-positron pairs under the a
tion of a 
lassi
al �eld of radiation, resembling a plasma ofele
tron-positron pairs. The 
oupled non-linear equations of motion have been solved for these�elds, and the solution led to the results des
ribed above.Appendix A: The 
oe�
ients A, B and C in equation (9)Making use of the bi-spinor de�nition (equations (5)) and the algebra of the Pauli spin matri
es(in parti
ular σiσj = δij + iεijkσk, where εijk is the totally antisymmetri
 tensor of rank 3), the
oe�
ients A, B and C appearing in the intera
tion hamiltonian (equation (9)) 
an be 
omputedstraightforwardly (leaving aside the spin dependen
e in the ele
tron-positron operators). Theyare given by
A(p,p′) = 1

2
√

εε′
{
√

(ε−mc2)(ε′ +mc2)
[

2en − i
−→
σ (e × n)

]

+

+
√

(ε+mc2)(ε′ −mc2)
[

2en′ + i
−→
σ (e × n′)

]

} ,

B(p,p′) = − 1

2
√

εε′
{
√

(ε+mc2)(ε′ +mc2)[2ey + i(e ×−→
σ )y]+

+
√

(ε−mc2)(ε′ −mc2)[2(en)n′
y − 2(nn′)ey + 2(en′)ny−

−i(en)(n′ ×−→
σ )y + in′

yn(e ×−→
σ ) + i(e

−→
σ )(n′ × n)y + i(n

−→
σ )(e × n′)y]} ,

C(p,p′) = 1

2
√

εε′
{
√

(ε−mc2)(ε′ +mc2)[2en− iσy(e × n)y−

−iny(e ×−→
σ )y + iey(n×−→

σ )y]+

+
√

(ε+mc2)(ε′ −mc2)[2(n′e) + iσy(e × n′)y+

+in′
y(e ×−→

σ )y − iey(n
′ ×−→

σ )y]} ,where ε =
√

c2p2 +m2c4, ε′ =
√

c2p′2 +m2c4, e =
∑

µ eµ(k) and −→
σ =

∑

σσ′ w∗
σ
−→σ wσ′ .
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tor −→
σThe most general form of the spinor wσ(p) is

w+1 = e−iϕ cos θu+ eiϕ sin θv ,

w−1 = −e−iϕ sin θu+ eiϕ cos θv ,where u, v are the eigenve
tors of the Pauli matrix σz (σzu = u, σzv = −v) and the angles θ, ϕ,
orresponding to the waveve
tor p, are arbitrary; for p′ (in wσ(p′)) we denote these angles by
θ′, ϕ′. It is worth noting that, in spite of some resemblan
e, these spinors are not those related tothe heli
ities. The 
al
ulations of the ve
tor −→

σ =
∑

σσ′ w∗
σ(p)−→σ wσ′(p′) is then straightforward.We get

σx = 2i sin(ϕ− ϕ′) sin(θ − θ′) + 2 cos(ϕ− ϕ′) cos(θ + θ′) ,

σy = 2i cos(ϕ− ϕ′) sin(θ − θ′) + 2 sin(ϕ− ϕ′) cos(θ + θ′) ,

σz = −2i sin(ϕ+ ϕ′) cos(θ − θ′) − 2 cos(ϕ+ ϕ′) sin(θ + θ′) .It is worth noting that −→
σ is a 
omplex ve
tor, whi
h depends on four parameters (the angles

ϕ, ϕ′, θ, θ′), as expe
ted for the polarization of an ensemble of two fermions of spin 1/2. Indeed,we have a polarization ve
tor for one fermion, relative to the dire
tion of the polarization ve
torof the other fermion, i.e. 3 parameters, and another parameter for the magnitude of the formerpolarization ve
tor. We 
an have various 
hoi
es for −→σ , for instan
e we may take it perpendi
ularto the two waveve
tors p, p′ (whi
h amouns to four equations with four unknowns). We 
an alsowrite−→σ as−→σ = 2is1+2s2, where s1,2 are two real, linearly independent ve
tors, and take s1 parallelwith p (in whi
h 
ase we are left with only one free parameter). None of su
h 
hoi
es brings anappre
iable simpli�
ation in the intera
tion matrix elements, and, in fa
t, any parti
ular 
hoi
e isarbitrary. The only meaningfull pro
edure is the averaging over angles, whi
h gives (
−→
σ )av = 0, asfor unpolarized elementary intera
tion a
ts. This assumption is equivalent to a uniform statisti
alaverage of the intera
tion with respe
t to the "spin" polarization, as noted in the main text. Wenote that su
h an average is 
onsistent with the 
lassi
al treament of the intera
tion given here.Referen
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