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Abstract

It is shown that Compton (Thomson) backscattering by polaritonic pulses of electrons
accelerated with relativistic velocities in a rarefied plasma may produce coherent X- and
gamma rays, as a consequence of the quasi-rigidity of the electrons inside the polaritonic
pulses and their relatively large number. The classical results of the Compton scattering are
re-examined in this context, the energy of the scattered photons and their cross-section are
analyzed, especially for backscattering, the great enhancement of the scattered flux of X- or
gamma rays due to the coherence effect is highlighted and numerical estimates are given for
some typical situations.
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It is well known that laser pulses focused in a rarefied plasma can accelerate electrons up to
considerable relativistic energies in the range of MeV’s or even GeV’s .[1]-[13] Various models, both
analytical and numerical, in particular the particle-in-cell simulations, point toward the basic role
played by plasmons and polaritons in laser-driven electron acceleration. It is widely agreed that
the propagation of the laser radiation in plasma is governed by polaritonic excitations, arising from
electrons interacting with the electromagnetic radiation. The well-known polaritonic dispersion
equation is given by Q = /w2 + w?, where w, = 4mne? /m is the plasma frequency (n being the
plasma density, —e - the electron charge and m - the electron mass) and w = ck is the frequency
of the laser electromagnetic wave (k being the wavevector and ¢- the light velocity). Polaritonic
pulses propagating with the group velocity v = ¢?k/§) can be formed by a superposition of plane
waves with wavevectors k = ko + q, where kg is the wavevector of the laser radiation (frequency
wo = ckg, wavelength \g = 27/kq) and the q’s are restricted to ¢ < ¢. < ko. A wavepacket of linear

size d ~ 1/q. > Ao is then obtained, propagating with the group velocity v = cwg/ 4 [w? + wi. In

the particular case of a sufficiently rarefied plasma w, < wy this group velocity can be written as
v~ ¢(1 — w}/2w§) and the mobile electrons are transported with the energy
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Figure 1: Head-on electron-photon collision.

which may acquire values much higher than the electron rest energy mc* = 0.5MeV.[14] For
typical values fwy = leV (A9 = 2mc/wy ~ 1pum and h is Planck’s constant) and an electron
density n = 10®¥cm ™3 we get hw, = 3 x 107%eV and E ~ 17TMeV.

It was shown recently[14] that the propagating polaritonic pulse is polarized, in the sense that
the mobile electrons in the propagating pulse are displaced from their equilibrium positions with
respect to the quasi-rigid background of positive ions, such that the polarization field compensates,
practically, the laser field. The electrons inside the pulse accumulate on the surface of the pulse,
along a direction which is transverse to the direction of pulse propagation (laser radiation is
transverse), such as a new equibrium is reached, in the presence of the laser field. The number of
polarized electrons in the polaritonic pulse, as estimated in Ref. [14], is given
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where ¢, = hw,, €9 = hwy (h is Planck’s constant), e, = €*/d and W, is the total amount
of field energy in the pulse (W, = [yd®/c, where I, is the laser intensity). For typical values
Iy = 108w/em?, d = Imm (W, = 10%eV and e, = 107%V), n = 10¥ecm™3 (¢, = 3 x 1072%eV),
go = leV (Mg =~ 1u) and mc®> = 0.5MeV we get N ~ 10! electrons in the pulse (transported
with the energy ~ 17MeV'), wich is a relatively high flux of electrons. Their total energy is
W ~ 10'8¢V, the remaining energy (up to Wy = 10*3¢V) being left in the polarized laser pulse.
Numerical data from recent experimental measurements[11]-[13] seem to be in fair agreement with
equations (1) and (2) given here.

It is worth emphasizing that the polarized electrons in the polaritonic pulse are practically quasi-
rigid (though subjected to very slow density oscillations). They are carried along by the pulse
in an inertial motion, while the quasi-rigid ions are depolarized by a wake field and an electron
backflow, which give rise to plasma oscillations outside the pulse. This is the well-known picture
of wakefield accelerated electrons, and the related bubble models, supported by many theoretical
models and numerical simulations.|[1], [15]-[19]

The quasi-rigid electrons in the polaritonic pulse moving with relativistic velocities may offer
a unique opportunity of coherent Compton backscattering, which may produce coherent high-
energetic X- or even gamma rays, i.e. an X-ray or gamma-ray laser.

The Compton scattering of gamma rays by a moving electron is shown schematically in Fig. 1. We
assume a head-on (unpolarized) collision. From the momentum-energy conservation p+k = p'+ k£’
(where, with usual notations, p = (E,p), k = (w,k), etc, c = h = 1), written as p’ = p + k — ¥/,
we get pk — pk’ — kk' = 0, or, making use of p* = p? = m?, k* = k”? =0,

) E + |p|
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Figure 2: The ratio of the energy of the scattered photon to the energy of the incident photon wvs
scattering angle for a few values of the polariton (electron) velocity v (equation (4) for 1 — v >
493 (1 4 v)).

Since |p| = vE = mv/v/1 — v?, this equation can also be written as

o 1+v
14+ vcosd + /1 —v2(1 —cosf)

where v = w/m and v is the velociy of the electron (velocity of the polaritonic pulse). For all
relevant situations (except ultrarelativistic limit) the inequality 2v4/1 + v< /1 — v is satisfied
(Thomson scattering). The ratio w’/w given by equation (4) vs angle 6 is shown in Fig. 2 in this
case (for 492(1 + v)< 1 — v) for a few values of the parameter v. The maximum value of the
frequency w’ of the scattered photon is obtained for the scattering angle # ~ 7 (backscatering).
This increase is sometimes assigned to a Doppler effect, which would introduce a relativistic
factor 4/(1 — v?) ~ (1 4+ v)/(1 —v) for v ~ 1. For the typical parameter values used in this
paper 1 — v ~ w? /2w ~ 4.5 x 107, which is much greater than 2yy/1 —v? ~ 1077 (we take the
frequency of the incident photon w = 1eV, v ~ 2 x 107%). Therefore, we may neglet the y-term
in equation (4), and get a maximum scattered frequency

(4)

, 14w
w =W

~ 10keV (5)
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for the backscattering angle # = 7. It is easy to see that an increase by an order of magnitude
in the energy of the accelerated electrons (E. ~ muwy/w,) means a decrease by two orders of
magnitude in 1 —v (1 — v ~ w?/2wf), such that, by equation (5), we may get w’ ~ 1MeV for the
frequency of the backscattered gamma rays. Such high backscattering frequencies are concentrated

around ¢ = 7 within a range Af ~ /2(1 — v)/3wv.

The well-known Compton cross-section can be written as|20]
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where r, = e%/m is the classical electron radius and
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Figure 3: Compton cross-section vs scattering angle for a few values of the polariton (electron)
velocity v (equation (9), 1 — v > 4+%(1 + v)).

are the invariant kinematical variables. By straightforward calculations this expression can be put

in the form
2 (1—v?) sin 6d0

¢ [1+v cos 0+vv/1—v2(1—cos 9)] 2
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where the transport velociy v is shown explicitly. Similarly, for the parameter values used here we

may neglect the v-terms in equation (8) (Thomson scattering), and get
2
v+ cos 0
+1
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This cross-section is shown in Fig. 3 for a few values of the parameter v. The total backscattering

cross-section is given by
2
v+ cosd
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and the rate of the bakscattered photons is dN,,/dt = coyn,y, where ny, is the photon density
in the incident flux. The energy loss of the scattered (recoil) electron for backscatering is AE =
W —w ~2wv/(1—v) (AE/E ~ 2yv\/(1 +v)/(1 —v) < 1), which is approximately equal with
the energy of the scattered photon w' ~ w(1 + v)/(1 — v) given above for v ~ 1 (since w K W').
The momentum transferred to the electron in the scattering process is very small, in comparison
with the initial momentum of the electron. It is important to note that for a polaritonic pulse
this momentum is transferred to the whole ensemble of electrons, as a consequence of the rigidity
of the electrons in the polaritonic pulse. For the sake of the comparison, we note that the total
cross-section is 8712 /3 ~ 20y, as it is well known.
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The cross-section computed above refers to one electron (and one photon). The field bi-spinors in
the interaction matrix element (the scattering amplitude) between the initial state and the final
state are normalized to unity. If we have N electrons, then each of them contributes individually to
the cross-section, which is multiplied by N (i.e. 0, — Noy). This is an incoherent scattering. For
the electrons in the polaritonic pulse the situation is different. These electrons are not independent
anymore (because of their rigidity inside the pulse), and they suffer the scattering collectively.
This amounts to normalize the bi-spinors to N, such that each bi-spinor carries now a factor
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V/N. Consequently, the scattering amplitude acquires an additional factor N and the cross-
section acquires an additional factor N2. In comparison with the incoherent scattering we get an
additional factor NV in the coherent scattering, which increases considerably the cross-section for
large values of N.[21]-[25]

From the above estimations we can see that the energy of the backscattered photons is much
higher than the energy of the incident photons. Therefore, in the following estimations we can
neglect the energy of the incident photons. The energy of the scattered photons is produced at the
expense of the energy of the electrons. By successive Compton scattering we may expect a certain
limitation on the duration of the scattering process for electron pulses (beside the limitations
caused by the pulse duration, both for the electrons and the incident photons). Such a limitation
is more stringent for the coherent scattering (due to the occurrence of the factor N?).

Making use of the rate d?N,,/d0dt = c(do /d)n,;, of the scattered photons we can write down the
rate of the energy produced by Compton (Thomson) scattering

dE“h = ( / dOw'dN,, /d@) dt = N?cn,, ( / w’dcr) dt . (11)

The integral in equation (11) can be computed by using w’ given by equation (4) (with v = 0)
and the differential cross-section given by equation (9). The result is

8 1
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This energy must be compared with the energy loss of the electrons in the polaritonic pulse,

1
—NdE = —Nmd———— . (13)
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Integrating the equation dE“" = —NdE with the new variable z = m/E, we get easily

1
1
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where zo = m/FEy < 1 corresponds to the initial energy of the polaritonic pulse. The integral in
equation (14) can easily be estimated (~ 7/2 — 1), so we get the duration At of the scattering

3me

At: (W/Q—l)m s

(15)

where we have re-established in full the universal constants.

We assume an incident, flow of photons with intensity I = 10%w/cm? focused on a spatial region
of size d = 1mm (picosecond pulses); the energy is W = Id®/c ~ 3J and, for photon energy
w = leV, we get a photon density n,, ~ 5 x 10*2cm™3. For N = 10'! given before for the
polaritonic pulse (and r, = 2.8 x 107 cm) we get At ~ 107 s (femtoseconds). This time is an
estimate for the duration of the collision, and for the duration of emission of the backscattered
photons. As we can see, it does not depend, practically, on the electron energy in the polaritonic
pulse (Ep), for high, relativistic energies. It is expected that the polaritonic pulse is "stopped",
and, in fact, destroyed, after the lapse of this time.

The total energy of the backscatterd photons can be estimated similarly, by using equation (11)
and dt/dE from dE“" = —NdE, where dE" is given by equation (12). Let us assume that we
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are interested in the photon bakscattering within an angle A0 = a+/2(1 —v)/3v, with o < 1.
Then, we get easily

1 Ey 1 2
Eeh = —Na2/ S (16)
4 m v

and, folowing the same technique as above, we get E¢°" ~ o?N E,, where we can recognize the total
energy of the polaritonic pulse W = NFE,. This result is valid for « < 1. For high, relativistic
velocities o ~ 1, and practically the whole polaritonic energy is recovered in the backscattering
photons.

In conclusion, we may say that the polaritonic pulses of electrons transported by laser radiation
focused in a rarefied plasma may serve as targets for coherent Compton backscattering in the
X-rays or gamma rays energy range, therefore as a means for obtaining an X-ray or gamma ray
laser. The coherent scattering, which enhances considerably the photon output and ensure its
coherence, is due to the quasi-rigidity of the electrons in the propagating polaritonic pulse, which
ensures (within certain limits) the stability of this interacting formation of matter and electro-
magnetic radiation. The energy and cross-section of the Compton (Thomson) backscattering was
re-examined in this paper in the context of the coherent scattering by polaritonic pulses, and
the (pulse) duration of the backscattering emission was also estimated. Similar ideas have been
advanced recently, especially for laser-driven accelerated electron mirrors.[26]-[32]
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