
1Journal of Theoretial PhysisFounded and Edited by M. Apostol 197 (2010)ISSN 1453-4428 Magi Binary Metalli ClustersLiviu-Cristian CuneDepartment of Theoretial Physis, National Institute for Physis and Nulear Engineering, PO Box MG-6,RO-077125 Magurele-Buharest, Romaniaemail: une�theory.nipne.roAbstratStrutures and binding energies for bimetalli lusters onsisting of a large variety of atomi speies areobtained for all atomi sizes N ≤ 40 and all onentrations, using an interatomi potential derived within aquasi-lassial desription. We �nd that inreasing the di�erene between the two types of atoms leads to agradual disappearane of the well-known homo-atomi geometri magi numbers and the appearane of magipairs orresponding to the number of atoms of eah atomi speies in binary nanostrutures with higher stability.This hange is aompanied by strutural transitions and ground-state↔isomer inversions, indued by hangesin omposition or onentration.Experimental and theoretial results show that alloying atomi lusters an lead to new nano-materials with newproperties and new funtionalities. [1℄ Therefore, there is a need of detailed studies of suh binary lusters, overinga wide range of atomi speies. Sine the omputational e�ort limits the use of the ab-initio methods to seletedompounds, guessed strutures or imposed symmetries, so far suh extensive studies have been performed usingsemi-empirial potentials, usually Lennard-Jones potentials (see for example Ref.[2℄). Studies using semi-empirialpotentials spei� to metals, like seond-moment approximation to tight-binding potentials, inluding Gupta [3℄and Sutton-Chen [4℄ potentials, are foused on spei� luster sizes and ompositions, oasionally for variousonentrations. (See for example Refs. [5, 6, 7, 8℄). Sometimes, the strutures obtained with these semi-empirialpotentials are loally re-optimized using density funtional theory (DFT) methods. [5, 6℄We present here a more general approah, similar in some respet to the one presented in Ref. [2℄ for binaryLennard-Jones lusters. Using a genuine metalli potential derived and applied previously to homo-atomi lusters,[9℄ we searh for the ground state strutures for all binary lusters of size less than 40 and for any onentration;moreover, by varying the oupling onstants in a range whih overs a large number of metalli elements we tryto map out the behavior of the bimetalli lusters in the ompositional spae. The theory employed in derivingthese potentials has been applied also to homo-atomi lusters deposited on surfaes, [10℄ or to the metalli ore ofan iron-hydroarbon luster.[11℄ We ould add also that the theory provides valuable information when applied tomarosopi objet like metalli surfaes, in�nite plates or slabs. It provides, for example, a theoretial derivationfor the well known Smoluhowski ansatz [12℄ for the eletron density at a metalli surfae. [10℄ The theory appliesstraightforwardly to hetero-metalli ompounds, the simplest ase of free binary lusters being reported here.Using a quasi-lassial desription for the eletrons partiipating in a metalli bonding, it has been shown thatthe atomi interations in a nanostruture an be desribed by an e�etive potential[9℄
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e−qRij , (1)where Rij are the interatomi distanes, q is a variational sreening wavevetor and z∗i are the e�etive ioniharges whih depends on the atomi speies.1 It is worth mentioning here that long time ago a similar potentialhas been suggested on semi-empirial grounds, with some suess, for the H2 moleule. [13℄ These e�etive hargeswhih play the role of oupling onstants in the e�etive atomi interation (1) an be estimated within the atomisreening theory. We have, for instane, z∗Na = 0.443 for sodium, z∗Ba = 0.339 for barium and z∗Fe = 0.579 foriron. The equilibrium strutures are obtained by minimizing the total potential energy, ∑

i<j Φij , and depend on
q only as a sale fator for the atomi positions. For binary lusters, the equilibrium strutures depends also onthe ratio between the e�etive harges of the two atomi types. On the other hand, the binding energy dependson the values of both e�etive valene harges; it is obtained by minimizing the quasi-lassial energy [9℄
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∼= 0.53Å for distanes and e2/aH

∼= 27.2eV for energies; −e is the eletron harge.



J. Theor. Phys. 2

Figure 1: Binding energy per atom for binary lusters AnBm with z∗B = 0.3.

Figure 2: Stability spetrum for lusters AnBm.with respet to the variational sreening wavevetor q, and by adding the exhange energy Eex = −(9/32)q2
∑

i z∗i .In equation (2) the �rst term is the kineti energy of the eletrons moving in the self-onsistent Hartree �eld ϕ =
∑

i z∗i exp(−q |r−Ri|)/ |r−Ri|, where Ri are the atomi positions, and having the eletron density n = q2ϕ/4π;the seond term plays the role of an eletron self-energy and the last term is the total potential energy.It is worth emphasizing that the e�etive potential given by equation (1) is a genuine many-body potentialbeause the variational sreening wavevetor q has an impliit dependene on all the atomi positions Ri. On theother hand, in the numerial problem of �nding equilibrium luster strutures we an avoid the di�ult task ofminimizing an energy omposed of multipartile potentials by minimizing �rst a redued total potential energy,
Epot/q, with respet to the saled positions qRi.The theory outlined above has been applied to binary lusters AnBN−n, with N = 2, 40, n = 0, N and the ratio
1 ≤ z∗A/z∗B ≤ 2.5 (step 0.1) of the e�etive valene harges of the two elements A and B. These parameters overa very large domain of binary metalli ompounds. The minimization of the potential energy has been performedby usual gradient method starting from random initial positions. The use of large statistial ensembles is requiredby the inreasing number of isomers ompared with the homo-atomi ase; eah isomer is aompanied by theso alled homotops, lusters whih, up to permutations between di�erent type of atoms, share approximately thesame geometri struture and energy. A way to overome this di�ulty is to make suh permutations during theminimization of the potential energy, provided they are energetially favorable. Beause other authors use theword omposition with other meaning it is important to speify that we use the term onentration for the ratiobetween the number of atoms A and the total number of atoms and omposition for the ratio z∗A/z∗B. With thisonventions, a hanged onentration means that some atoms A are replaed by atoms of type B (or vie versa)and a hanged ompositions means that all the atoms of one type (say A for example) are replaed by atoms ofanother type (say C for example) and this hange is re�eted in a variation of the ratio z∗A/z∗B. The ground-statebinding energies per atom for two values of the ratio z∗A/z∗B are presented in Figure 1. The energies presented inFigure 1 orrespond to z∗B = 0.3 but an be easily saled to di�erent values of z∗B. We an see in Figure 1 how theenergy range inreases for higher z∗A/z∗B values; we obtain, for instane, a range of less than 0.5eV for z∗A/z∗B = 1.1and more than 8eV for z∗A/z∗B = 2.5. This energy range variation an be understand as a rapid hange in the meane�etive valene harge when we hange the onentration for lusters omposed of very dissimilar atoms.For homo-atomi lusters the stability with respet to the variation of the number of atoms is tested by theseond di�erene of the energy; [14℄ it de�nes the so alled stability spetrum, sometimes well orrelated with theexperimental mass-abundane spetrum; its maxima indiate the magi numbers, lusters with higher stabilityompared to their neighbors. The magi numbers obtained for homo-atomi metalli lusters are 6, 13, 19, 23,26, 29, 34, ... ;[9℄ these numbers, now known as geometrial magi numbers, beause they are given by the lose
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Figure 3: The luster A13B20 (left), magi for z∗A/z∗B ≥ 1.7 and ground-state for z∗A/z∗B ≥ 1.6, displaying an A13iosahedron ore (enter) and a B20 dodeahedron shell (right).paking in the iosahedral strutures, have been obtained with various other methods like, for example with Morsepotentials. [15℄ For binary lusters we an de�ne two families of suh spetra for eah type of atoms:

∆A
2 E = En+1,m + En−1,m − 2En,m (3)

∆B
2 E = En,m+1 + En,m−1 − 2En,mwhere En,m is the binding energy of the binary luster AnBm, ∆A

2 E and ∆B
2 E indiate the luster stability withrespet to the variation of the number of A-atoms (or B-atoms respetively) at �xed number of B-atoms (or A-atomsrespetively). Eah spetrum has magi numbers; the oinidene of a maximum in both spetra de�ne a magipair {n, m}, i.e. a double magi lusters AnBm. The maxima in a sum spetrum de�ned as ∆2E = ∆A

2 E + ∆B
2 Ean also be viewed as magi pairs; by analogy with the homo-atomi ase,[9℄ we an de�ne a relative abundane

D = ln I4
n,m/In+1,mIn−1,mIn,m+1In,m−1, where In,m is the Boltzmann statistial weight; up to a onstant we have

D ≃ ∆2E. We have found a very lose similarity between the results obtained with these two de�nitions in thewhole range of e�etive valene harges we have studied. The de�nitions given here for magi pairs follows loselythe de�nition for magi numbers in homo-atomi lusters, whih re�ets an enhaned stability relative to all theneighbors with one atom more or one atom less. The de�nition of magi spetra re�et also the ondensation andevaporation proesses that take plae in a majority of experimental setups. Only the �rst order proesses (involvingloosing or aquiring of a single atom) are taken into aount. It is somehow tempting to onsider also, for example,the luster An−1Bm+1 as a neighbor of AnBm in the stability spetrum; but AnBm an evolve into An−1Bm+1 orvie versa only through seond order proesses (losing an atom of one type and aquiring an atom of another type).Stability relative to suh neighbors an be tested by de�ning a spetrum at �xed size and variable onentration.[1, 7, 16℄The sum spetrum de�ned above is shown in Figure 2 for two values of z∗A/z∗B; the darker squares indiatemagi pairs; also, the magi pairs aording to the �rst de�nition are marked with white dots; we an see the abovementioned similarity between the two de�nitions. We an see in Figure 2 that for small values of the ratio z∗A/z∗Bthe magi pairs orrespond to the homo-atomi magi numbers for N = n + m. One the disrepany betweenatomi speies inreases, this homo-atomi behavior gradually disappears giving plae to new magi pairs. This anbe explained by the small distortions in the iosahedral symmetry aused by the small di�erene in the interatomiinterations A− A, A−B, B −B, and by strutural transitions to f or disordered geometries. The magi pairsare on�ned to ertain regions in the range of the parameter z∗A/z∗B. Varying the omposition, the magi peaksgradually appear, starting with some value z∗A/z∗B and may vanish at a higher z∗A/z∗B value. We obtained, forinstane, the magi pairs {6,32} for z∗A/z∗B ≥ 1.4, {10,22} for 1.5 ≤ z∗A/z∗B ≤2.4, {13,20} for z∗A/z∗B ≥ 1.7, {14,24}for 1.4 ≤ z∗A/z∗B ≤ 2.0 and {26,12} for z∗A/z∗B ≥ 1.8, whih orrespond to lusters having N=32, 33 or 38 whih arenot homo-atomi magi numbers.[9℄In the lowest range of the z∗A/z∗B values the equilibrium strutures have with preponderane iosahedral sym-metry and display a ore-shell atomi arrangement, with the 'heavier', i.e. greater e�etive harge, A-atoms in theenter and a B-atoms shell. There is experimental and theoretial evidene for this radial segregation in binarylusters (see for example Refs. [5, 17, 18℄). In our model segregation is favored over mixing beause the strengthof the A−B interation is always smaller than the A−A interation. The A atoms segregate in the enter whereatoms have greater oordination numbers and an inreasing number of A−A bonds is energetially favorable. Themixing ould take plae if A−B had been the strongest interation. [1℄ Although new strutures and symmetriesappear, the iosahedral symmetry is often obtained for larger values of the ratio of the e�etive harges of the twoatomi speies. For example, the magi luster A13B20, whose struture is presented in Figure 3, has a perfetiosahedral symmetry and a ore-shell atomi arrangement with a ore iosahedron formed by the A-atoms and anoutside shell of B-atoms grouped in a perfet dodeahedron. The high stability of this luster an be explained bythe favorable ratio of the numbers of atoms A and B (favorable onentration). The A13-iosahedron ore is alsomagi in the homo-atomi series. In spite of di�erent strengths in the inter-atomi interation, eah atom speiesoupies distint iosahedral shells, whih do not lead to symmetry distortions, and gives stability. Moreover, the
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Figure 4: The bimetalli 38-atoms luster orresponding to the magi pairs {6,32} (the top row), {14,24} (themiddle row) and {26,12} (the bottom row).strength of the inter-atomi interation A − B, greater than the B − B interation, equilibrates the inompleteoutside shell (the so alled anti-Makay shell whih beomes omplete at N = 45) by maximizing the numbersof A − B bounds in detriment of the weaker B − B bounds. One the ratio between the two e�etive harges isdereased this geometri arrangement beomes energetially unfavorable, the homo-atomi ground-state having arather disordered struture. This is a �rst example of strutural transition indued by omposition. Suh ore-magi strutures (the ore is magi itself, as a homo-atomi luster) whih are also stable against the variation ofthe number of B atoms, forming in this way magi pairs, have been obtained, usually for higher z∗A/z∗B values,for various magi numbers of A-atoms. For instane, we an identify the magi pairs {6, 32}, {13, 20}, {23, m},whit m = 3, 6 and {26, m} , with m = 3, 6, 9, 12. A partiular luster is the 38-atoms lusters whih beomeshighly stable, in di�erent equilibrium strutures, for the magi pairs {6, 32}, {14, 24} and {26, 12}. The equilibriumgeometri forms for these lusters are shown in Figure 4. The lusters A6B32 and A26B12 belong to the abovementioned ore-magi strutures. The struture A14B24 has a f symmetry, his A14-ore being a fae enteredube and the outside B24-shell a trunated otahedron.The strutures presented in Figure 4 suggest an iosahedral-f transition for the AnB38−n lusters driven bythe variation of onentration (variation of n) at �xed omposition (at �xed z∗A/z∗B ratio). A similar transition, hasbeen previously reported for the binary lusters ComPt38−m, [7℄ for the 38-atoms mixed rare-gas lusters [19℄ andMorse binary lusters. [16℄ This type of transition has been obtained for various luster sizes, espeially at large
z∗A/z∗B ratio.A new kind of strutural transition, a omposition indued transition, is obtained for �xed numbers of atoms
A and B (�xed onentration), by varying z∗A/z∗B, i.e. by replaing at least one type of atom with one having adi�erent e�etive harge. For instane, the luster A14B24 has two strutural transitions, its ground-state being ofiosahedral type (slightly disordered) for z∗A/z∗B ≤ 1.2, f for 1.3 ≤ z∗A/z∗B ≤ 2.2 and iosahedral for z∗A/z∗B ≥ 2.3.The existene of these strutural domains bounded by strutural transition points is a general feature of binarylusters. Beause we have performed our study with step 0.1 of the parameter z∗A/z∗B we an identify with thisauray the loation of the transition points. For instane, in the above example, we have two transition points,one loated between 1.2 − 1.3 and another between 2.2 − 2.3. Often, for the left-right values whih border thetransition points we an observe ground-state←→isomer inversions, i.e. the left ground-state beomes the rightisomer and (or) the left isomer beomes the right ground-state. This implies that, at the transition points, theground state is degenerate; we have two strutures with di�erent symmetries but with the same ohesion energy.Of ourse, there remains the question of �nding two atomi speies whose e�etive valene ratio has this ritialvalue. On the other hand, even if we �nd suh atomi speies, it is likely that quantum orretions to the quasi-lassial desription[9℄ remove this degeneray. In this respet, the orret onlusion is that it is possibly tosynthesize binary metalli lusters, made up of spei� atoms, with very small gaps between the ground-state andthe �rst isomers. These small gaps ould imply an inreased experimental abundane even if they are not magi(the theoretial abundane spetrum is referred to the ground-state strutures; the existene of suh small gaps forspei� ompositions ould loally alter this spetrum). On the other hand the task of produing lusters with a
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Figure 5: (Color online) The domain walls segregation in the luster A7B12 irrespetive of the ratio z∗A/z∗B.spei� geometry will beome di�ult in the presene of this shape degeneray.Beside the ore-shell segregation, whih is dominant for binary nano-lusters, we an identify another typeof segregation. In some strutures the B-atoms oupy two distint regions (up-down) separated by an A-atomsregion. This kind of domains walls segregation is very rare, the ore-shell segregation being predominant; it has beenobtained for the luster A7B12, whose struture is presented in Figure 5. A similar segregation has been obtainedfor the Lennard-Jones luster A7B12 [2℄ and also in Co − Pd nanolusters for sizes N = 13 and N = 19, usinga geneti algorithm in ombination with a Gupta potential. On the other hand the segregation shown in Figure5 an be desribed as a surfae segregation, beause the 12 B atoms, instead of forming a uniform losed surfaearound the 7 atoms A-ore, segregate in two distint regions diametrially opposite on that surfae. Moreover,a surfae segregation an be observed also in the struture of the luster A26B12 shown in Figure 4. There, the

12 B atoms forming the outside shell segregate in 4 distint regions, eah region onsisting of 3 B atoms loselybound together. Suh a surfae segregation ould be interpreted as a variable surfae omposition in experimentalmeasurements. Evidene for a variable surfae omposition in Ar/Xe lusters in photoeletron spetrosopy hasbeen reported in Ref. [17℄.In onlusion, we have obtained the general harateristis of binary metalli lusters: the magi pairs in thestability spetra, the radial, domain walls and surfae segregation and the strutural transitions indued by hangein omposition or onentration. These features are expeted to hold also for larger binary lusters althoughnew strutures and segregation types ould appear. It is worth noting that by adding an interation energy with ametalli surfae[10℄ to the quasi-lassial energy given by (2), the present approah an be applied to binary metallilusters deposited on surfaes, whih is the ommon environment for most of the intended tehnial appliations.The author is indebted to M. Apostol for useful disussions. This work was partially supported by ContratNos CEx05-D11-67 and PN-09-37-01-02 of the Romanian Ministry of Eduation and Researh.Referenes[1℄ R. Ferrando, J. Jellinek and R. Johnston, Chem. Rev. 108, 845 (2008).[2℄ J. P. K. Doye and L. Meyer, Phys. Rev. Lett. 95, 063401 (2005); arXiv:ond-mat/0604250v1.[3℄ R. P. Gupta, Phys. Rev. B 23, 6265 (1981); V. Rosato, M. Guillope and B. Legrand, Philos. Mag. A 59, 321(1989).[4℄ A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, 139 (1990).[5℄ G. Rossi et al., Phys. Rev. Lett. 93, 105503 (2004).[6℄ G. Bararo et al., J. Phys. Chem. B 110, 23197 (2006).[7℄ Q. L. Lu et al., Phys. Lett. A 350, 258 (2006).[8℄ C. Massen, T. V. Mortimer-Jones and R. L. Johnston, J. Chem. So., Dalton Trans., 4375 (2002); L. D. Lloydet al., J. Mater. Chem. 14, 1691 (2004); F. Aguilera-Granja et al., Phys. Rev. B 74, 224405 (2006).[9℄ L. C. Cune and M. Apostol, Phys. Lett. A 273, 117 (2000).[10℄ L. C. Cune and M. Apostol, in Low-Dimensional Systems: Theory, Preparation, and Some Appliations, 1,eds. Luis M. Liz-Marzan et al. (Kluwer Aademi Publisher, 2003); Dig. J. Nano. Bio. 2, 315 (2007).[11℄ L. C. Cune and M. Apostol, Chem. Phys. Lett. 344, 287 (2001).[12℄ R. Smoluhowski, Phys. Rev. 60 661 (1941).



J. Theor. Phys. 6[13℄ A. A. Frost and B. Muslin, J. Chem. Phys. 22 1077 (1954).[14℄ W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993); M. Brak, Rev. Mod. Phys. 65, 677 (1993); F. Baletto andR. Ferrando, Rev. Mod. Phys. 77, 371 (2005).[15℄ J. P. K. Doye and D. J. Wales. J. Chem. So. Faraday Trans. 93, 4233 (1993).[16℄ D. Parodi and R. Ferrando, Phys. Lett. A 367, 215 (2007).[17℄ M. Thaplyguine et al., Phys. Rev. A 69, 031201R (2004).[18℄ F. Calvo, E. Cottanin and M. Broyer, Phys. Rev. B 77, 121406R (2008); M. Cazayous et al., Phys. Rev. B73, 113402 (2006); M. Gaudry et al., Phys. Rev. B 67, 155409 (2003).[19℄ F. Calvo and E. Yurtsever, Phys. Rev. B 70, 045423 (2004).© J. Theor. Phys. 2010, apoma�theor1.theory.nipne.ro


