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Abstract

A mechanical representation is introduced for the polarization electromagnetic field in
matter in terms of the displacement field of the mobile charges (the polarization field). It
is shown that the dynamics of this displacement field, and of the corresponding electromag-
netic field, is governed, in general, by three infinite sets of harmonic oscillators, one for the
longitudinal component, with the "plasmon" frequency (longitudinal mode), and two for the
transverse component, with polaritonic frequencies (coupled transverse and photonic modes).
The present method of treating the electromagnetic field in matter is illustrated here for non-
magnetic, homogeneous, isotropic matter, by using the well-known Lorentz-Drude model of
matter polarization. We give the representations of the electromagnetic field energy, Poynt-
ing vector, Lorentz force and charge-field interaction energy in terms of the eigenmodes of
the displacement field. It is shown that matter posesses a large amount of electromagnetic
energy, originating in the zero-point (vacuum) fluctuations of its polarization field. The elec-
tromagnetic coupling between two polarizable bodies is considered within the framework of
the present approach, and the corresponding polarization eigenmodes are identified. The
Casimir and van der Waals-London forces are derived, as arising from the zero-point fluc-
tuations of the polarization. The nature of the two bodies, represented by their individual
longitudinal and transverse polarization modes, is incorporated in the coefficients of these
forces. In addition, it is shown that the electromagnetic field (generated by the polarization
fluctuations) brings its own contribution to the forces acting between two polarizable bodies.
When a dielectric, at least, is present, this contribution is an attractive force which goes like
—1/d?, where d is the separation distance between the two bodies. When a conductor, at
least, is present, the electromagnetic field brings an additional contribution to the Casimir
force (~ —1/d*). The range of these forces is estimated. The approach is based on Fourier
decomposition and, consequently, it is not able to account for the surface (or shape) effects.
The particular case of point-like particles is also analyzed.
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1 Introduction

Recently, there is an extensive, ongoing interest in the Casimir and van der Waals-London forces
which act between two polarizable bodies.|1]-[38] The specific points in discussion are the effects of



the nature of the two bodies, the surface (or shape) effects, the temperature dependence, etc. The
difficulty resides in the lack of a convenient representation of the electromagnetic (polarization)
field in matter, other than the usual semi-phenomenological theory of the dielectric function.
We give here such a representation, which incorporates the nature of the electromagnetically
interacting bodies. Though not capable of accounting for finite-size effects, it points, at least
more specifically, toward the nature of this difficulty and its solution.

The electromagnetic field is generated by electric charges, usually in motion. The motion of the
electric charges in usual matter is non-relativistic, since their velocity is much smaller than the
light velocity c. For a sufficiently dense condensed matter the motion of the electric charges is
also in the quasi-classical limit of the quantum motion, so a quantum-statistical average is ap-
propriate. Therefore, we get a classical (both non-quantum and non-relativistic) motion for the
electric charges in matter and, consequently, a classical electromagnetic field. We show here that
the electromagnetic field in matter admits a mechanical representation in terms of the matter
polarization, which can be decomposed in harmonic oscillators. The polarization is identified as
being represented by a displacement field in the position of the mobile charges. The collective
motion of the polarization is governed, in general, by three distinct, infinite sets of harmonic
oscillators, corresponding to longitudinal, plasmon (one set) and transverse, polariton (two sets)
frequencies. This collective motion can be quantized, oferring an example of emergent dynamics.
The electromagnetic field generated by the polarization motion has a corresponding mechani-
cal representation in terms of the displacement field. This representation is given here for the
electromagnetic field energy, Poynting vector, Lorentz force and charge-field interaction energy.

The electromagnetic coupling between two polarizable bodies is examined in this framework, and
the corresponding plasmonic and polaritonic eigenfrequencies are identified. The Casimir and
van der Waals-London forces are derived, with coefficients which depend on the nature of the
two bodies. It is shown that these forces arise from the vacuum fluctuations of the polarization.
It is also shown that the electromagnetic field (generated by these fluctuations) brings its own
conribution to the forces acting between two polarizable bodies. When a dielectric, at least, is
present, the electromagnetic-field force goes like —1/d?, where d is the separation distance between
the two bodies. When a conductor, at least, is present, the electromagnetic-field force is of Casimir
type (~ —1/d*). All these forces are estimated here and their range of validity is given.

The important surface (or shape) effects are not accounted for within the present approach, as
a consequence of the use of Fourier decompositions, which do not represent correctly the sharp
surfaces (e.g., the well-known Gibbs phenomenon). In order to include such surface effects, we
should keep the dependence on the direct-space coordinate transverse to the surface, which is a
much more difficult task. In this context, the particular case of point-like, §-particles is analyzed.

2 Matter polarization

We adopt a generic model of matter polarization consisting of /N identical mobile charges ¢, with
mass m and density n = N/V, moving in a rigid, neutralizing background of volume V. A small
displacement field u(r, t) in the position r of these charges gives, at time ¢, a local density imbalance
on = —ndivu and a polarization charge density p = —ngdivu. We can see that P = nqu is the
polarization. Therefore, the displacement field u(r,t) is a representation for the polarization field
P(r,t). The displacement field obeys the Newton law of motion

mii = ¢E — mw?u — myta + ¢Eq , (1)



where E is the polarization electric field generated by the polarization charges (and currents),
w. is a characteristic frequency, v is a (small) damping factor and Eg is an external electric
field. This is the well-known Lorentz-Drude (plasma) model of polarizable matter,[39]-[43] which
assumes a homogeneous, isotropic matter, without spatial dispersion, represented by a field of
harmonic oscillators of frequency w.. Taking the temporal Fourier transform of equation (1),
with E, = E 4+ Eq the total electric field, we get the electric susceptibility x(w) = P/FE; and the

dielectric function
w? —w? —w? w? — W2
ew)=1+dmx(w)= 57—F—L =L (2)
W —w; +wy  w?—wp+awy

where w, = y/4mng?/m is the plasma frequency. This is also well known as the Lydane-Sachs-
Teller dielectric function,[44] with the longitudinal frequency wy, = (/w2 + w2 and the transverse
frequency wr = w.. The model can be generalized by including the spatial dispersion, several
characteristic frequencies w., or by adding an external magnetic field, etc. It is worth noting
the absence of the magnetic part of the Lorentz force in equation (1), according to the non-
relativistic motion of the slight displacement u. It is easy to see that, apart from relativistic
contributions, it would introduce non-linearities in equation (1), which are beyond our assumption
of a small displacement u. Using spatial Fourier transforms, this approximation can be formulated
as ku(k) < 1, where k is the wavevector.

In general, an additional displacement ug can be introduced in such a model, originating in external
causes, subjected to collisions and obeying a different, averaged equation of motion, muy = qE,,
where 7 is a relaxation time; as it is well known, it gives rise to a density of "conduction" current
jo = nqug = (ng*>t/m)E; and the conductivity o = ng*r/m. We can see that it implies w. = 0 in
equation (1), a condition which defines the conductors; for dielectrics, w. # 0. We leave aside the
conduction current jo.

3 Electromagnetic field

The displacement u generates also a density of polarization current j = ngu, which satisfies
the continuity equation p + divj = 0. This equation allows an additional current, written as
jm = ¢ curlM (since divj,, = 0); it is easy to see, from Maxwell’s equations, that M is the
magnetization. Therefore, the electromagnetic sources are represented both by the displacement
u and magnetization M. These fields (u and M) are determined, u by equation (1) and M
by the well-known equation of motion M = ~B x M for the magnetization, where B is the
magnetic field and v is the gyromagnetic factor. With such a representation for the sources, the
Maxwell equations in matter are completely soluble. Here, we leave aside the magnetization, and
consider only non-magnetic matter. With the polarization charge density p and current density j
established above, and with usual notations, the Maxwell equations read

divE = 47p = —AndivP = —4nmnqdiva , divH =0 |
(3)

_ _1oHm _10BE | 4n; _ 10E | dnp _ 10E | 4m o
curlEE = Cat,curlH—cat—l—CJ—Cat+CP—Cat+cnqu.

We solve these equations, together with equation (1), for the electric field E, the magnetic field
H and the displacement field u (polarization P = nqu).

To this end, as usually, we introduce the electromagnetic potentials A and ®, through E =
—(1/¢)0A /0t — grad® and H = curlA, subjected to the Lorenz gauge divA + (1/¢)0®/0t = 0,



and use Fourier transforms of the type

1 ) .
u(r.t) = ; / duu(k, w)e— e (4)
(and similar transforms for all the other functions of position and time). We note the well-known
symmetry property u*(—k, —w) = u(k,w), corresponding to the real-valued field u(r,t). As it
is well known, such a Fourier representation does not account for surface effects, i.e. effects
associated with sharp surfaces. In order to account for finite-size (surface) effects an expansion in
eigenfunctions of the laplacian (with outgoing-waves boundary conditions at infinity) is appropiate,
preserving the dependence on the direct-space coordinate perpendicular to the surface. It is easy
to see that, in general, such a decomposition implies curvilinear coordinates, and leads to serious
technical difficulties. The density of these eigenmodes (which appears in summations over states)
differs, in general, from the density of the plane waves which appear in the Fourier transformations.
Therefore, additional contributions, which depend on the extension and the shape of the bodies,
may appear. In addition, the sharpness of the surfaces generates the well-known "depolarizing"
factors, especially in the long-wavelength limit, which cannot be taken into account by Fourier
transforms.

As it is well known, the Maxwell equations (3) lead to the wave equations with sources

1 0% 1 0%2A 47,
Zgr A=A GgE —AA=T (5)

for the electromagnetic potentials. Taking the Fourier transforms, we get
A(k,w) = 4miAF(k, Nu(k,w) (6)

and ®(k,w) = kA(k,w)/\, where A = w/c, F(k,\) = (A\* — k*)~! is the Green function (for the
Helmholtz equation) and the factor nq is left aside (it is restored in the final formulae). The latter
relationship is the Lorenz gauge, which expresses the charge conservation, i.e. the continuity
equation. In order to account for the retardation, the function F' must actually be written as
F(k,\) = (\* — k> +4X0")™!, as it can be seen by taking the Fourier transforms of the retarded
Kirchoff’s potentials

O(r,t) = [ dy'erlilrxi/o

r—r|

. / (7)
A(I‘, t) _ 1 fdr/J(l" ;t—lr—r'|/c) ..

¢ [r—r/|

which are solutions of equations (5). For simplicity, we often leave aside the arguments k, w in
the Fourier transforms. Making use of equation (6), we get straightforwardly

E = —47F [\u —k(ku)] , H= —47A\Fk x u . (8)

It is convenient to introduce the longitudinal displacement u; = ku/k and the transverse displace-
ment uy = kju/k, where k, is a vector perpendicular to k and of the same magnitude as k, and
to write u = u;k/k + usk, /k. We note the symmetry property —uj,(—k, —w) = u1z(k,w). In
summations over states we take into account that there are in fact two transverse components s
of the displacement, corresponding to two polarizations. Making use of these notations we get

By, = —4mu, , By = —47\*Fus, . (9)



We can see that the longitudinal component of the internal (polarization) field compensates the
longitudinal component of the polarization, as expected, while the transverse polarization intro-
duces a spatial dispersion. Introducing these fields in the equation of motion (1) we get

22 .2 _ _4a
(W? = w; —wy +iwy)uy = —LEor

(10)
(W? — w2 —wWINF 4 iwy)uy = —LEgy

whence the longitudinal and transverse polarizabilities

2
a1 = EOl/Pl T dm w?—wZ—witiwy

11
) ( )

g = Eg /Py = — “r

T 4w w2—w? —wZA2 F4iwy *

It is worth noting that for finite-size bodies the plasma frequency in equations (10) is modified by
the "depolarizing" factors. For instance, for a half-space it acquires the well-known form w,/ V2
of the surface plasmon,|[45] for a sphere in the dipole approximation it becomes the spherical
plasmon w, /+/3.[46] For uniform fields (in the long-wavelength limit k — 0) the two polarizabilities
coincide, as expected. Making use of equations (10) and (11) we get straightforwardly the electric
susceptibility

Q1 Qi 1 wﬁ

- (12)

T 1—dra, 11— 47A’Fay CAmw? — w2

X

the same for both longitudinal and transverse field components, as given by equation (2). We
can see that the electric susceptibility does not exhibit the spatial dispersion, in contrast with the
transverse polarizability.

4 Polarization eigenmodes

The longitudinal polarizability does not depend on the wavevector k. Its singularity (leaving aside
the damping parameter 7) gives the longitudinal ("plasmon") mode € = w; = /w? + w2, as
resulting from two oscillatory motions, one with the local, characteristic frequency w,. and another
collective, driven by the polarization field, with the frequency w,. It can also be obtained from the
zero of the dielectric function, ¢ = 0. The singularities of the transverse polarizability correspond
to propagating polaritons. They are given by the well-known dispersion relation ew? = k2.
For w. = 0 (conductors), they acquire the well-known form (k) = /w2 4 ¢?k?, which again,
exhibits the characteristic pattern of two oscillatory motions (plasmons with frequency w, and
photons with frequency ck). For w. # 0, we have two polaritonic branches, Qs 3(k), corresponding
to the occurrence of a third force, with frequency w.. In the long-wavelenght limit (k — 0) they
behave like

0y ~ \/w% +w2ck?jwi , Qg ~ gck : (13)
L

while in the short-wavelenght limit (kK — oo) they go like

Q= /k?+ w2, W3~ wr=w, . (14)

We can see that the frequency €23 in the long-wavelength limit corresponds to "photons" with
a renormalized phase velocity v = cwr/wy (3 = vk). These two polaritonic branches arise
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Figure 1: The polarization longitudinal eigenmode €2; and the two transverse eigenmodes €y 3,
according to equations (10). We note the velocity v of the renormalized "photons" (ck is the
photon frequency).

from the transverse mode w,. and the photonic mode ck, splitted in the region w. ~ ck by the
plasmonic coupling w,. If w, is a small parameter, we may take approximately w. and ck for the
two transverse frequencies, as for non-polarizable matter.

For the sake of the generality we preserve three distinct frequencies, €2; for the longitudinal
component and €2y 3(k) for the transverse components. They are shown schematically in Fig. 1.

According to equations (10) the frequencies €2; 55 are the eigenfrequencies of three types of har-
monic oscillators, given by

uy(k,w) = 218 (w — Qp)uy (k)
(15)
us(k, w) = 276 (w — Qo)ul? (k) + 270 (w — Q3)us? (k) |

or |
U1 (k’ t) = U (k)e—ZQ1t 7
(16)
us(k, 1) = us (k)e it 4 ul) (k)e st

Equations (15) and (16) include only the positive frequencies. The negative frequencies —2; 53
are included whenever the case. We emphasize that the functions u;(k,w) and ugm)(k,w) are
solutions of equations (10) for a vanishing external field. Making use of equations (9), we get the
field generated by the polarization

Ei(k, t) = —4mu (k)e *ht
(17)

2

EQ(k, t) — _471_(2%:%&1(2; ugl) (k)e—iﬂgt _ 47'(_(2372“)6 ugZ) (k)e_iﬂg’t ‘

“p

According to equations (16), the dynamics of the coordinates u, (k,t), u§2’3)(k, t) is governed by a
harmonic-oscillator hamiltonian

=5 Tl 2 4 LnO2 s 2 2P 02,0
_Zk [Zm‘pl‘ +2m 1‘“1’]+Zk am |P2 +2m 2 |U +
(18)
2 2
F S| [ 3 o]




where p; and pél’Q) are the corresponding momenta (here the negative frequencies are automatically

included). By taking the inverse (spatial) Fourier transform we may get a very complicated
interaction, involving the displacement field u(r, t), generated by the polarization field in the direct
space. More interesting, we can quantize the motion of the harmonic oscillators described by the
hamiltonian given above. For instance, the mean square displacements are given by equations

like |uy|> = (h/mQy)(ny 4+ 1/2), where ny is the quantum number (and A is Planck’s constant).
These oscillators have also an energy of the form A€ (n; + 1/2) (including the zero-point energy
Ry /2), etc. We can also take a statistical average corresponding to a given temperature, or we
can account for the quantum-statistical fluctuations. According to the results given above, the
internal, polarization field can be represented entirely in terms of the coordinates u; and ué“’, thus
acquiring a mechanical representation. It is worth noting that the quantum numbers n; 5 3 depend
on the wavevector k (as well as the frequencies Qs 3(k), which depend only on the magnitude k
of the wavevector). The energy quanta associated with the frequencies € 53 are much higher
than the usual temperatures, so we may neglect the temperature effects, and limit ourselves to
the zero-point contributions (vacuum fluctuations), except for the long-wavelength limit of the
frequency €23 = vk, whose contribution, usually, is comparatively small.

By usual procedure, from Maxwell’s equations (3) we get the well-known energy conservation
1 0
1 Ot
where the rhs is the rate of change of the density of the kinetic energy of the mobile charges. We
may write equation (19) as

(E* + H?) + idw(E « H) = —ngEu (19)

%(u +t) = —divs (20)

where u = (E? + H?)/87 is the density of the electromagnetic field energy, t = nmu?/2 is the
density of kinetic energy and s = ¢(E x H) /47 is the density of the Poynting vector.

We estimate below the time averages of total quantities, like the energy

1
U=— [ dtdr(E* + H® 21
87TT r( + ) ? ( )
where T is a time sufficietly long in comparison with any relevant frequency. Making use of the
Fourier transforms and of equations (8) and (9) we get straightforwardly

2 2
ng Z 2 W 2

where we have introduced the factor 2 for the two transverse polarizations. We insert here the
solutions u; 5(k,w) given by equations (15) and take into account that 6*(w) = (7/2m)d(w). In
addition, we note that the negative frequencies give the same contribution as the positive ones, so
we account for them by a pre-factor 2. We get

2
U=4mng® Y, [\ul(k)\Q + g U

(23)

QQ
+8mng* >, o u’ (k)

The mean square fluctuations in equations (23) can be replaced by their zero-point values of the
2
form |u;(k)|” = h/2mS, etc; we get

_ 27mhng? 1 2Q5 203
U= m Zk |:Ql + Q%_c2k2 + Qg_c2k2 . (24)




The summation (integration) over k in equation (24) is divergent. It is reasonable to introduce
an ultraviolet cutoff k. ~ 1/a, where a is the mean separation distance between the mobile
charges (density n = 1/a®). Under these circumstances we may neglect ck in comparison with
the relevant frequencies occurring in equation (24), and replace approximately the integrand by
1/Q >~ 1/ +2/wr, + 2/wr. We get an estimate

N ¢2 12 /ma?

U~N — (25)
a k)

for the energy. In equation (25) we can identify the Coulomb energy ¢*/a per particle, the particle
localization energy h?/ma?® and the energy quanta A). We can see that matter stores a large
amount of electromagnetic energy, arising from the zero-point motion of its polarization.

Similarly, we can estimate the Poynting vector
S = % [ dtdrE x H =

2
o

1
Ug )(k) + (Q§_62k2)2

2 (26)
ul? (k) ] k.

O3
= 16’/’(”(]202 Zk {m

We can see that it is given only by the transverse components of the displacement field u and it is
directed along the propagation wavevectors k, as expected. The total kinetic energy of the mobile
charges is given by

K =2 [ dtdrima® =

2
= 255, |49 a0 + 3 [0 0) |+ 93 [uf? ()

2] | (27)

It can be estimated as K ~ N -AS), and we can see that it is comparable with the electromagnetic
energy U. Comparing with equation (18), we can see that K includes also the potential energy
(therefore it is the total mechanical energy) of the harmonic oscillators, by the pre-factor 2.

It is also well-known that we get the Lorentz force
fi = pEi+ £(j x H); = 9;0i; — 2.9, (28)

from the Maxwell equations (3), arising from the stress tensor
1 1 9 9
O = o EE; + HiH; — §5ij(E + H7) (29)
7r

and the electromagnetic momentum g = s/c?, where p = —ngdivu and j = nqu are the polariza-
tion charge and current densities. We give here the representation of the Lorentz force in terms
of the displacement (polarization) field

f =1 [ditdr (p)E+ 1j x H) =

202 2

2
= —8ming® ¥, {10 + ks [u8” ()| +

+ Q3 —c2k?

2 (30)
u? (k) } k.

Since, usually, u; and ugl’Q) depend only on the magnitude of the wavevector (and not of its
direction), the force given by equation (30) is zero. Similarly, we get the charge-field interaction



energy
Bt = 7 [ dtdr (p@ — LjA) =

02 2 Q2
= 8mng® ¥ |l (0 + e [u (W] + b |u” (k)

2] | (31)

Writing f = >, f(k) and Ej,,; = >, Einu(k), we can see that the Fourier components of the force
are given by f(k) = —ikE;,;(k), as expected.

5 Two electromagnetically coupled bodies

We consider two polarizable bodies, denoted by a and b, one (a) placed at the origin r = 0 and
another (b) placed at ro. The displacement field for the body a is u,(r,t) = u(r,t) and the
displacement field for the body b is denoted by u,(r,t) = v(r — ro,t). We use Fourier transforms
of the type given by equation (4), with the pre-factor N~Y/2 = (N, + N,)~'/2, where N, are the
number of mobile charges in body a and, respectively, b, both enclosed in the same volume V. The
densities are given by n,, = N,p/V. The Fourier transform of u(r,t) acquires an exponential
factor e~ u,(k,w) = v(k,w)e 0 which appears in the field E, generated by the body b,
according to equations (9). Consequently, we can write the equations of motion for u, = u as

2 2 2 _ 2. _ikro
(W — w2, wpa)ul— V1€ ,

(32)
(w2 _ wza — wza)\2F)u2 — w}%b)\2FU26—ikr0 )

We can see that the b-field corresponds to the propagating wavevector —k and the source placed
at ro, i.e. it contains the factor e(-¥ro = ¢=ro_in accordance with the retardation requirements
(for positive frequencies). In order to fulfil the retardation requirements, we must limit ouselves
only to fields outgoing from their sources. Similar equations of motion can be written for uy,
where the field originates in the source a. In the b-frame this field corresponds to the propagating
wavevector k and source placed at —rp, i.e. it must contains the factor e®(-r0) = ¢ In
addition we must restrict to kry > 0 for positive frequencies and kry < 0 for negative frequencies.
We get

—ikrg

2,2 2N\ 2. —ikro
(W? —wg — wp v = wiuse ,

(33)
(W? — w2y — WA N F)vy = w2 N2 Fuge™ o
We can see that the polarizations of the two bodies are coupled, through their interaction, which

depends on their mutual position rg. The two homogeneous systems of equations (32) and (33)
have eigenfrequencies which depend on this interaction, given by the dispersion equations

(W — Wi, —wp ) (W — Wy — wiy) — whawppe 0] uy =0,
(34)
[(W? — w2, — W2 NF)(w? — W — Wi NF) — w2 wi X F2em2kro] 4y =
They correspond to the equations
(47’(’)20[&172()%1,26_22‘1(1‘0 =1 (35)
for the polarizabilities of the two bodies.
Equations (34), or (35), require 2kry = 7n, where n is a positive integer, n = 0,1,2.... . For

realistic values of the parameters w.q; and wy,, we get real solutions of these equations for n an
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Figure 2: The longitudinal (€Qg;2) and transverse (071234) eigenmodes for two
electromagnetically-coupled bodies a and b, as given by the roots of equations (34). The transverse
modes Wr, p = Weqp are also shown, together with the velocity v of the two modes €734 (the slope
of the curves {r3 4 at the origin). ck is the photon frequency.

even integer, so we set krg = m, n = 0,1,2..... The interaction shifts the longitudinal modes
Wrap of the two bodies, the new longitudinal frequencies being given by

1
02 ==
L12 = 5

(we note that they do not depend on the wavevector k); for conductors we have only one longitudi-

[+ & (W, — w3 + A, (36)

nal frequency 7, = /w2, + w?,, but we keep both frequncies €2 5 for the sake of the generality.

pb?
The solution of the first equation (34) is given by

ur (k,w) = 276 (w — Q)ulV (k) + 276 (w — Qp2)ul® (k) (37)

for kry > 0 and a similar contribution for negative frequencies and kry < 0. The coordinate v, is
obtained directly from equations (34).

Similarly, from the second equation (34) we get four frequencies, in general, for the polaritonic
transverse modes, denoted by Q7;, ¢ = 1,2,3,4. In the long-wavelengh limit they behave like

1
V1o = 5 [0ha+wh £/ (0h, +0h)? — 4202, — Bl — 4wl (38)

(plus a small contribution of the form const - k%) and

WeaWeb
Qrss~vk, v=c L (39)
2,2 2 ,,2 2,.,2
\/wcawcb + wcawpb + wcbwpa
for k£ — oo,
2 212 2 2 -
Q710 = k™ +wy, +wpy s Q134 > Weap - (40)

For small couplings (wpep < weqep) these frequencies reduce approximately to the two transverse
modes we,p and two photon mode w ~ ck. For conductors (w.,, = we = 0) we get only one

polaritonic branch Qp = \/ w2, + ng + c2k2. The eigenfrequencies 7,5 and Qpq, 4 of two elec-

tromagnetically coupled bodies a and b are shown schematically in Fig. 2.

The solution of the second equation (34) can be written as

us(k,w) = 2 24: 5w — Qr)ud) (k) (41)

i=1



for kry > 0 and a corresponding decomposition for negative frequencies and kro < 0. The
coordinate v, is obtained directly from the second equation (34) as a function of wus.

It is worth computing the Lorentz force acting on one body on behalf of the other; for instance,
the force by which body a acts upon body b. We follow the same procedure as that which led to
equation (30) and use the coupled equations (32) and (33) in order to eliminate the coordinates
v1,2 in favour of the coordinates u; 5. We get

fab = %fdtdr (pra -+ %.]b X Ha> =

. . 2 2
== 2V 5 [ do(w? -, — ) |us (k@) k-

— Hitapg V Yo S dw(w® = W, — wp A F) [ug(k, W)‘Q k =

2
Twp WV

; 2,2
= Sl S S o [ 2 (k@) + 2 s )] K
where g2 are the polarizabilities of the body a, as given by equations (11). If we eliminate
the coordinates u; o in favour of the coordinates vy 5 (by using equations (32) and (33), we get a
similar expression for the force f,;,, with a and b interchanged; this corresponds to the force f,,
and, since the sign does not change, we conclude that f,, = f,, = 0. Indeed, when introducing the
decompositions given by equations (37) and (41), we note that for positive frequencies kry > 0,
while kry < 0 for negative frequencies. Since both contributions are equal, we can write

2

fp = S0 ST (O — wi,) [uf ()| K

(43)
mnan w%aQQi i 2
ST S S (U — wh — ) (s ()] K

where the summatlon extends over the whole k-space. We can see, indeed, that f,, = 0, as long
as the amplitudes ul 2 do not depend on the direcion of the wavevector k.

6 Casimir force

Equations (32) and (33) describe two pairs of coupled harmonic oscillators. One pair, say vy 2
is completely determined by the motion of the pair wu, 9; its energy is taken up in the modified
frequencies given by the dispersion equations (34). Therefore, we have, in fact, only one pair of
harmonic oscillators for the two coupled bodies a and b, of coordinates u;» and eigenfrequencies
Qri, v = 1,2 and Qp;, @ = 1,2,3,4, governed by a harmonic-oscillator hamiltonian of the type
given in equation (18). Its ground-state (zero-point) energy reads

E=Y (i SHO 24: mmm) | (44)

where we have introduced a factor 2 in order to account for the two transverse polarizations. We
may choose to eliminate u, » in favour of the coordinates vy 5. The energy given by equation (44)
remains unchanged. Both situations are equally valid, though they introduce an asymmetry, in
the sense that in each case one pair of coordinates are completely determined by the other pair.



These frequencies are obtained from equations (34) by requiring kry = 7n. It is convenient to
introduce the component x of the wavevector k along the position vector ry, whose magnitude
is denoted by d (rg = d). Therefore, we have x, = 7n/d and k? = k? + k2, where k is the
transverse wavevector, ¢.e. the component of the wavevector k perpendicular to ro. The energy
given by equation (44) can then be written as

s 21 .
E = Py Z / dk, k) (Z ihQLi + Z hQTi(kn)> ) (45)
I i=1 i=1

where S'is the transverse area. We estimate the change brought about by the finite distance d in
the energy F by using the Euler-Maclaurin formula:[47]

A = 37 U S o) (46)

m=1

where B,, are the Bernoulli’s numbers and

It is easy to see that the longitudinal frequencies €27; do not contribute to equation (46). Similarly,
the transverse frequencies €7y 5, which, according to equation (38), go like ~+/const + k2 in the
long-wavelength limit, do not contribute to equation (46), since all their odd-order derivatives are
vanishing for k = 0. We are left with the contributions arising from )3 4, which behave like vk
in the long-wavelength limit, according to equation (39). Equation (46) becomes

A WS 3 (=1)™ By, (7/d)?m=1 ( / " @) (@m=1) | (48)

2m e~ (2m)! 0

where we have introduced v = k% + k2. The only contribution to equation (48) comes from the
third-order derivative. We get (B, = 1/30)

S 1
AFE = — C— 49
360 & (49)
and an attractive force 2h0S 1
m*hv
F=- C— 50
120 a4 (50)
acting between the two bodies. This is the Casimir force, arising between two polarizable bodies
from the polarization vacuum fluctuations. It differs from the classical formula F' = —7w2heS/240d?,

derived for two conducting half-spaces,|2, 8] by a factor 2, arising from the two branches Qs 4
(which behave identically in the long-wavelength limit), as well as by the presence of the renor-
malized velocity v instead of ¢. The nature of the bodies is incorporated in the polariton velocity

WealWeb

vV=2¢
2 ,,2 2 ,,2 2,2
\/ wcawcb + wcawpb + wcbwpa

(51)

as given by equation (39). It is worth noting that this velocity v differs from the corresponding
pre-factor in the formula given in Ref. 8 for two dielectrics. For identical bodies there remains
only one vk-branch, with velocity v given by equation (51) for weq = wepp. The formula (50) for
the force should then be modified accordingly.



The effect of the temperature 7= 1/ can be incorporated in equation (48) by the change

/K dui / duy/iicoth Bﬁm\/ﬂ} | (52)

For realistic values of the parameters we have Shv/d > 1, so we get a temperature correction
factor ~ coth(Shv/d) in the expression of the force. In the opposite limit (very high temperature,
Bhv/d < 1) the force is vanishing.

The situation described above corresponds to two dielectrics (wep # 0). Let us assume that
we have a conductor a (w., = 0) and a dielectric b (wy # 0). The two transverse modes Qs 4
disappear in this case, and the two longitudinal modes 27, » do not contribute to the energy. We
are left with the two transverse modes €27 2, which, in the long-wavelength limit go like

Q2T1,2 = Q%1,2 + Ui2k2 ) (53)

where

2 2 2
Wha + Wpp — Wep

2 2 232 __ 2 4,2
\/ (wpa + wpb + wcb) 4wpawcb

It is worth noting that, while Q271 goes like ~ ck for k — oo, the mode (279 approaches w,, in the
same limit. The frequencies Q7 5 given by equation (53) can be written as

(54)

1
viQ = 502 1+

QTLZ = V1,2 \/ki + 9%172/’0%72 + /12 (55)

and we can see that k; may acquire imaginary values, such that k% + 9%1,2/032 = k2 behaves as
the square of a new transverse wavevector k’l ranging from 0 to Qp/v1 2 (a similar situation for
two dielectrics would imply imaginary frequencies €23 4 which are not physically acceptable). The
transverse k | -waves are damped waves in this case. It is easy to see that the Casimir force will have
the same expression as given by equation (50) above, with the proper replacement of the velocity
v by (v +wv2)/2. The same situation holds for two conductors, where we have only one polaritonic

branch Qp; = \/wga + w2, + k2. In this case, we get the classical result F' = —7*heS/240d*

(corresponding to two half-spaces).

7 van der Waals-London force

In the non-retarded regime A\ = 0, which corresponds to k£ = 0 for free waves. It follows that
k = —ik, acquires purely imaginary values (the waves are damped along the ry). The second
equations (34) give the transverse modes we,p, which do not depend on k; and, consequently do
not contribute to the change in energy. We are left with the longitudinal modes, given by the first
equation (34) which reads now

(W = wi,) (W — wi,) — wpwpe =0 (56)

2
pb*
Further, we may expand the solutions of equation (56) in powers of wy,wype "%, and subtract the

energy corresponding to d — oo. We get the approximate change in the ground-state (zero-point)
energy

For realistic situations we may take wy, ~ wry and neglect (w7, —w37,)* in comparison with w?,w

2 ,,2
hS wpawpb

AE ~ — dk ke 2kd
472 (w%a+w%b)3/2/o i

(57)



and the van der Waals-London force

o PS w1
A
We note that the pre-factor in equation (58) differs from the result given in Ref. 8.

(58)

Comparing equations (50) and (58), we get a crossover distance of the order d; ~ ¢/w,, which
separates the ranges of the Casimir and van der Waals-London forces (w, being a frequency of the
order of the plasma frequencies of the two bodies).

It is worth noting the solutions of equation (56) for two identical conductors: Q% = w2(1 £ e~ ).
They differ from the well-known solutions ©* = w2(1 4 e~*?)/2 corresponding to two half-spaces
separated by distance d, which exhibit the surface plasmons (for instance, for d — oo we get
the well-known surface plasmon w,,/ \/5) This is a particular example that our approach does not
account for surface effects, as we discussed before. The surface effects may bring significant changes
both in numerical coefficients, as well as in the d-dependence of the forces, especially through the
depolarizing fields the surfaces generate, with contributions that may differ for identical, or distinct
bodies. Such effects are more significant for the non-retarded regime.

In order to make this situation more clear, we resort here to another well-known decomposition
of the spherical wave. Indeed, we preserve the coordinate z along the direction between the two
bodies, and use only transverse Fourier transforms. The decomposition reads|45, 48]

iAR ~

e 7 1 ... .

= — [ dk=ereilel 59

R 2m K (59)

If we further take the Fourier transform with respect to the z-coordinate we get the function
F(k, )\) used here. Now, the derivatives of the function e**/* are given by
0 4 0% . 4

—ell = ksgn(z)e? me“ﬂz‘ = 2ikd(2) — k2"l (60)

z

0z

We can see easily that, while the Fourier transform reproduces the first derivative of the function
e™I#l it does not reproduce the second derivative (as a consequence of the Gibbs phenomenon in
the Fourier transform of the function sgn(z)). Such second-derivative-terms are responsible for
the surface charges.

8 Electromagnetic field energy

It is worth examining the electromagnetic field energy, as given by equation (21), for the total
field generated by the two bodies. The fields are given by E = E, + E, and H = H, + H;, where
E,; and H,, are given by equation (8) and (9). We get straightforwardly

2
ng 2 2
U - T%:/dw(\wl\ L ONF [wnl?) (61)

where w = (n,/n)u+ (ny/n)v. We choose first to eliminate the coordinates v; 5 in favour of the

. . . . . 2
coordinates uy o, by using equations (32). Introducing the zero-point mean values for |u;»|”, we
get

I 242 2 02— (210, 2
U=t 2k i ( LL;: ) ont
(62)

2
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If we eliminate u; » in favur of the coordinates v; o, and use the zero-point mean square fluctuations
for \01,2|2, we get a similar equation for U, with a and b interchanged. Since both situations are
equally valid we take the mean value, corresponding to a symmetrized contribution arising from
the two bodies.

Let us assume that we have two dielectrics. It is easy to see that the change in energy brought
by the finite distance d comes from the two branches {173 4 = vk of "renormalized" photons. The
corresponding energy can be written as

2mhq? (naw2 )2 nbeb
Usy ~ — + | —== 63
3,4 nm wlg)a wﬁb g ; /k2 + I€2 ( )

We apply the usual procedure of extracting the finite change in energy given by the Euler-
Maclaurin formula (46). The contribution comes from the first-order derivative in equation (46).

We get
2
Thq*S now?, 2 npw?, 2 —v? 1
AU = — Z C— 64
12nm ( w2, ) - w2, vi o d (64)

We can see that the electromagnetic field generates an attractive force (v < ¢) which goes like

—1/d?; it acts at long distance, beyond dy ~ a 2/ , where mc? is the rest energy of the mobile

charges and ¢*/a is their Coulomb energy (a being the mean separation distance between the
charges). It is easy to see that dy = cy/a’/(¢?/m) ~ ¢/w, ~ dy, i.e. the —1/d*-Casimir force
and the —1/d*-electromagnetic field force are competitive for moderate distances. According to
equation (52), the effect of the temperature on this d*>-force could more visible, as the force acts
at a longer distance.

If body a is a conductor (w., = 0), then its contribution to the change in the electromagnetic field
energy goes like —1/d® (as for a Casimir force). The ratio of this force to the Casimir force is of
the order of (h?/ma*)(¢*/a)/(hwy)?. The contribution of the dielectric (ww # 0) to the energy
goes like —1/d; it is given by the corresponding term (ws) in equation (64). Both contributions
arise from the damped €7y o-modes. Finally, for two conductors, the electromagnetic field energy
contributes a Casimir force, given by F = —heS/480wd*. It is much smaller (by factor 1/273)
than the Casimir force F' = —72hcS/240d" arising from polarization.

9 Point-like particles

We specialize the above calculations to point-like, d-particles, since such localized particles exhibit
certain important particularities. Let us consider a displacement field given by

u(r,t) = u(t)a*s(r) (65)

for a §-particle of volume a® placed at r = 0. According to equation (4), its Fourier transform is

a*v/'N
V

u(k,w) = u(w) , (66)
where N is the number of mobile charges in the particle (density n = N/a®). The charge and
current densities are given by

nqa*v/'N . nga®VvVN
—1u

p= —szu , J = —iw % (67)



We get the electric and magnetic fields

3 /N 3 /N
E= —47TF% [\2u — k(ku)] , H = —4wAF%k xu (68)
and the components
5N 35N
E = —4n%ul , By = —4wA2F%u2 . (69)

The internal, polarization field E in the equation of motion (1) does not appear anymore in this
case, in view of the lack of spatial extension of the d-particle. We can use the external field Eq at
the location r = 0 of the particle, and the equation of motion reads (with v = 0)

(w? — wu(w) = —%Eo(r = 0,w) . (70)

We can see that there is only one polarizability, which coincides with the electric susceptibiity

W) = x(w) = — = (71)

CAmw? — w2
In the absence of an external field equation (70) has harmonic-oscillator solutions
u(w) =210 (w — w)u (72)

where u are now constant amplitudes, corresponding to u(t) = ue *<!. Their dynamics is governed

by the hamiltonian

1 1
H= %pQ + Qmwqu : (73)

where p is the momentum. The zero-point mean square fluctuations are h/2mw,. for each compo-
nent.

Following the calculations which led to equation (23), the energy of the electromagnetic field can

be written as (nga®: 0?2
nqa 2 We 2
k C

where, for zero-point fluctuations |u172\2 are replaced by i/2mw,.. Similarly, we can have a repre-
sentation in terms of the u-coordinates for the Poynting vector, the "self-Lorentz force" and the
charge-field "self-interaction", though, the latter two quantities are in fact meaningless, since the
field acts only outside the particle.

We consider another point-like particle of volume b® placed at rg, with the displacement field
v(t)b30(r — rp), and follow the treatment given in the preceding sections. The coupled equations
(32) and (33) become

(W? — w2, )aPuy = wibPvie o

(75)
(W? — w2, )auy = wib* N> Fuye= ko

and

(W? — w0y = w2 aPue” ™

2 2 V1B — 2 432 —ikro
(w? — wy)b’va = wy,a’ N Fuge .



From the dispersion equations we get two longitudinal modes

1
9%1,2 = 5 |:w3a + wcb + \/ >+ 4w2a pr (77)
corresponding to the oscillator coordinates
u(w) —27r(5(w—QL1) +27r(5(w—QL2) (78)

and, in general, four branches of transverse modes €27, © = 1,...4. In the long-wavelength limit
they go like

QFy 5~ Q715+ const - k>, Qpsy ~ vk | (79)

where the velocity v is given by

v = c\/ Wealeh . (80)

WealWeb + WpaWpb

We can see that all these transverse modes depend on the magnitude of the wavevector k, while our
model, given by equation (65), for d-particles does not allow for a k-dependence of the displacement
field. Therefore, all these "transverse" solutions of the dispersion equations are not acceptable,
and we are left with the longitudinal modes only. We conclude that there is not a Casimir force
(nor an electromagnetic field force) for two d-particles (the longitudinal modes do not give such
forces). This is an expected result, because the transverse modes are spatially-dispersive and
the d-particles, in view of their lack of spatial extension, cannot accomodate them. The same
conclusion holds for the interaction of a J-particle and a spatially-extended body.

Similarly, in the non-retarded regime, the dispersion equation (56) (with wr.p — Weap) gives
damped modes which cannot be sustained by the d-localized particles. Therefore, we conclude
that our approach gives not a van der Waals-London force for two d-particles.

The d-particles offer the opportunity of a direct-space approach. Indeed, the displacement field
given by equation (65) gives a current density j(r,w) = —iwnga*u(w)d(r) (and a charge density
p(r,w) = —nga’[u(w)grad]é(r)). By equations (7) we get immediately the vector potential

A = —idnga*uf(r) , (81)

where f(r) = " /r is the (outgoing) spherical wave. From the Lorenz gauge we get the scalar

potential

o = —nqa?’% ,(T) , (82)

so we have straightforwardly the electric field

E = nga® |\ fu+ ]%u — (rl;:zf r+ (I‘:Zf r| . (83)

"

We estimate this field, produced by particle a, at the location r = ro = (0, 0, d) of the particle b. It
is convenient to use the longitudinal projection || on the z-direction and the transverse projection
L on the (z, y)-plane. We get

7 1,
Eaj = naqa®(Wf + [ )uy , Bar = naga®(Vf + S f)ur (84)



where f = ¢ /d. The equations of motion for the displacement field v(¢)b33(r —ry) of the particle
b reads ,
(W? —wgvy = =Fra® N f + )y,
(85)

w2 /
(W —wi)or = —2d* (N f + 5 f Ju .

Similarly, we compute the field produced by particle b at the location r = 0 of the particle a (in
equation (83) r is replaced by r —r¢), and get the equations of motion

(w? — w2y = —ZBNf + )y,

(86)
(W = wZur = =P F + 5 f)vr
From equations (85) and (86) we get the dispersion equations
w2aw2 "
(@ — W)W — ) = ROy 1 )
(87)

w2, w? /
(2 = W) (W2 — wh) = EER O] 4 L)
It is easy to see that the two equations (87) ae not compatible with one another, so we set either
u=v =0,o0ru; =v, =0. Let us take u; = v, = 0, so we have the first equation (87), which
can be cast in the form

WQaWQb e2i(Ad+p)
(WQ - wza)(WQ - wgb) =4 (Z,/T)pQ b’ 6 ) (88)
where tan ¢ = Ad. This equation implies Ad + ¢ = mn, where n is any integer, and
(W — W2) (W - wh) = 4L (89)

(4m)2 dS

It is easy to see that these two conditions cannot be satisfied simultaneously. The same result
holds for the other dispersion equation, corresponding to u; = v = 0. We conclude that the
dispersion equations have not solutions, and, therefore, the energy is not changed by the presence
of the finite distance d, i.e. there is not a Casimir force.

In the non-retarded regime A\ = 0 and the dispersion equations (87) become

2 2 313
dwp,wiy, a’b

2 2 2 2y _
(w - wca)(w - wcb) - (4’/T)2 W (90)
for the longitudinal components and
(w2 — w2 (* — wh) = 2D (91)

(4m)2 dS

for the transverse components. The two equations (90) and (91) differ by a factor 4. For realistic
situations we may take w., ~ we = we, as for identical particles; we take also w,, = wp, = wy.
We may consider the rhs term of these equations as a small perturbation. The first equation (90)

gives
wg 33\ 12 wﬁ a3b3
L= Anw? \  db 327wt df e (92)

W = W,




and a change in the zero-point energy

hwf) a3b3

AE = — R
32m2wd b

(93)

This energy gives a —1/d"-force, which is the classical van der Waals-London force acting between
two point-like particles. A similar result is obtined from the second dispersion equation, corre-
sponding to the transverse modes. Statistically, the latter force appears with a weight factor 2 in
comparison with the former, due to the two transverse polarizations of the displacement field. It
is easy to see that the average energy contains a factor 1/2 which multplies equation (93).

The difference between the result obtained here regarding the van der Waals-London force for
d-particles and the (null) result obtained by using the Fourier-transform approach is an extreme
instance of the inadequacy of the Fourier-transform approach to problems concerning the matter
polarization and the interaction of electromagnetically-coupled bodies. In general, the Fourier-
transform approach to such problems is valid for bodies of a sufficient spatial extension, such
that the surface effects can be neglected in comparison with the bulk contribution. However, for
finite-size bodies, especially in the long-wavelength limit, this requirement is never achieved, due
to the long-range character of the Coulomb interaction. Therefore, we expect deviations from our
results presented here, whenever finite-size bodies are involved.

10 Concluding remarks

The matter polarization can be represented by a displacement field of the mobile charges, within
the well-known Lorentz-Drude model. By Maxwell’s equations, the electromagnetic field generated
by the polarization acquires a corresponding mechanical representation in terms of the displace-
ment field. The collective motion of the polarization (reflected in the polarization electromagnetic
field) is an example of emergent dynamics. In general, it consists of three infinite sets of har-
monic oscillators, corresponding to longitudinal (plasmons, one set) and transverse (polaritons,
two sets), which can be quantized. The electromagnetic field energy, Poynting vector, Lorentz
force and charge-field interaction energy are represented in terms of these three types of eigen-
modes. It is shown that the polarizable matter stores a large amount of electromagnetic energy,
arising from the zero-point (vacuum) fluctuations of the displacement (polarization) field.

Two electromagnetically-coupled bodies are treated within this framework, and their polarization
eigenmodes are identified. The Casimir and van der Waals-London forces are derived, as arising
from the zero-point fluctuations of the displacement (polarization) field. These forces incorpo-
rate the nature of the two bodies (by their individual longitudinal and transverse frequencies).
The electromagnetic field (generated by the polarization fluctuations) brings its own contribu-
tion to the forces acting bewteen two polarizable bodies. If a dielectric, at least, is present, the
electromagnetic-field force goes like ~ —1/d?, where d is the separation distance between the two
bodies (it is a long-range force). If a conductor, at least, is present, the electromagnetic field adds
its own contribution to the Casimir force (~ —1/d*). The magnitude and their range of action
have been estimated here for all these forces.

The Fourier decomposition employed throughout as a general tool does not allow for including
surface (or shape) effects. In general, the Fourier decomposition can be replaced by expansions in
eigenmodes of the laplacian for specific, finite-size bodies (with outgoing-waves boundary condition
at infinity), preserving the direct-space coordinae perpendicular to the surface. Such expansions



may change, in general, the density of modes, which enters summations over states. In the long-
wavelength limit, which gives usually the relevant contributions, this change is not significant; but
the sharpness of the surfaces may bring important effects, through the depolarizing fields. Such
effects are more evident for the van der Waals—London forces. The particular case of point-like, -
particles was analyzed in this context, as a limiting case of inadequacy of the Fourier-decomposition
approach.
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