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2 J. Theor. Phys.the nature of the two bodies, the surfae (or shape) e�ets, the temperature dependene, et. Thedi�ulty resides in the lak of a onvenient representation of the eletromagneti (polarization)�eld in matter, other than the usual semi-phenomenologial theory of the dieletri funtion.We give here suh a representation, whih inorporates the nature of the eletromagnetiallyinterating bodies. Though not apable of aounting for �nite-size e�ets, it points, at leastmore spei�ally, toward the nature of this di�ulty and its solution.The eletromagneti �eld is generated by eletri harges, usually in motion. The motion of theeletri harges in usual matter is non-relativisti, sine their veloity is muh smaller than thelight veloity c. For a su�iently dense ondensed matter the motion of the eletri harges isalso in the quasi-lassial limit of the quantum motion, so a quantum-statistial average is ap-propriate. Therefore, we get a lassial (both non-quantum and non-relativisti) motion for theeletri harges in matter and, onsequently, a lassial eletromagneti �eld. We show here thatthe eletromagneti �eld in matter admits a mehanial representation in terms of the matterpolarization, whih an be deomposed in harmoni osillators. The polarization is identi�ed asbeing represented by a displaement �eld in the position of the mobile harges. The olletivemotion of the polarization is governed, in general, by three distint, in�nite sets of harmoniosillators, orresponding to longitudinal, plasmon (one set) and transverse, polariton (two sets)frequenies. This olletive motion an be quantized, oferring an example of emergent dynamis.The eletromagneti �eld generated by the polarization motion has a orresponding mehani-al representation in terms of the displaement �eld. This representation is given here for theeletromagneti �eld energy, Poynting vetor, Lorentz fore and harge-�eld interation energy.The eletromagneti oupling between two polarizable bodies is examined in this framework, andthe orresponding plasmoni and polaritoni eigenfrequenies are identi�ed. The Casimir andvan der Waals-London fores are derived, with oe�ients whih depend on the nature of thetwo bodies. It is shown that these fores arise from the vauum �utuations of the polarization.It is also shown that the eletromagneti �eld (generated by these �utuations) brings its ownonribution to the fores ating between two polarizable bodies. When a dieletri, at least, ispresent, the eletromagneti-�eld fore goes like −1/d2, where d is the separation distane betweenthe two bodies. When a ondutor, at least, is present, the eletromagneti-�eld fore is of Casimirtype (∼ −1/d4). All these fores are estimated here and their range of validity is given.The important surfae (or shape) e�ets are not aounted for within the present approah, asa onsequene of the use of Fourier deompositions, whih do not represent orretly the sharpsurfaes (e.g., the well-known Gibbs phenomenon). In order to inlude suh surfae e�ets, weshould keep the dependene on the diret-spae oordinate transverse to the surfae, whih is amuh more di�ult task. In this ontext, the partiular ase of point-like, δ-partiles is analyzed.2 Matter polarizationWe adopt a generi model of matter polarization onsisting of N idential mobile harges q, withmass m and density n = N/V , moving in a rigid, neutralizing bakground of volume V . A smalldisplaement �eld u(r, t) in the position r of these harges gives, at time t, a loal density imbalane
δn = −ndivu and a polarization harge density ρ = −nqdivu. We an see that P = nqu is thepolarization. Therefore, the displaement �eld u(r, t) is a representation for the polarization �eld
P(r, t). The displaement �eld obeys the Newton law of motion

mü = qE − mω2
cu− mγu̇ + qE0 , (1)



J. Theor. Phys. 3where E is the polarization eletri �eld generated by the polarization harges (and urrents),
ωc is a harateristi frequeny, γ is a (small) damping fator and E0 is an external eletri�eld. This is the well-known Lorentz-Drude (plasma) model of polarizable matter,[39℄-[43℄ whihassumes a homogeneous, isotropi matter, without spatial dispersion, represented by a �eld ofharmoni osillators of frequeny ωc. Taking the temporal Fourier transform of equation (1),with Et = E + E0 the total eletri �eld, we get the eletri suseptibility χ(ω) = P/Et and thedieletri funtion

ε(ω) = 1 + 4πχ(ω) =
ω2 − ω2

c − ω2
p

ω2 − ω2
c + iωγ

=
ω2 − ω2

L

ω2 − ω2
T + iωγ

, (2)where ωp =
√

4πnq2/m is the plasma frequeny. This is also well known as the Lydane-Sahs-Teller dieletri funtion,[44℄ with the longitudinal frequeny ωL =
√

ω2
c + ω2

p and the transversefrequeny ωT = ωc. The model an be generalized by inluding the spatial dispersion, severalharateristi frequenies ωc, or by adding an external magneti �eld, et. It is worth notingthe absene of the magneti part of the Lorentz fore in equation (1), aording to the non-relativisti motion of the slight displaement u. It is easy to see that, apart from relativistiontributions, it would introdue non-linearities in equation (1), whih are beyond our assumptionof a small displaement u. Using spatial Fourier transforms, this approximation an be formulatedas ku(k) ≪ 1, where k is the wavevetor.In general, an additional displaement u0 an be introdued in suh a model, originating in externalauses, subjeted to ollisions and obeying a di�erent, averaged equation of motion, mu̇0 = qEtτ ,where τ is a relaxation time; as it is well known, it gives rise to a density of "ondution" urrent
j0 = nqu̇0 = (nq2τ/m)Et and the ondutivity σ = nq2τ/m. We an see that it implies ωc = 0 inequation (1), a ondition whih de�nes the ondutors; for dieletris, ωc 6= 0. We leave aside theondution urrent j0.3 Eletromagneti �eldThe displaement u generates also a density of polarization urrent j = nqu̇, whih satis�esthe ontinuity equation ρ̇ + divj = 0. This equation allows an additional urrent, written as
jm = c · curlM (sine divjm = 0); it is easy to see, from Maxwell's equations, that M is themagnetization. Therefore, the eletromagneti soures are represented both by the displaement
u and magnetization M. These �elds (u and M) are determined, u by equation (1) and Mby the well-known equation of motion Ṁ = γB × M for the magnetization, where B is themagneti �eld and γ is the gyromagneti fator. With suh a representation for the soures, theMaxwell equations in matter are ompletely soluble. Here, we leave aside the magnetization, andonsider only non-magneti matter. With the polarization harge density ρ and urrent density jestablished above, and with usual notations, the Maxwell equations read

divE = 4πρ = −4πdivP = −4πnqdivu , divH = 0 ,

curlE = −1
c

∂H
∂t

, curlH = 1
c

∂E
∂t

+ 4π
c
j = 1

c
∂E
∂t

+ 4π
c
Ṗ = 1

c
∂E
∂t

+ 4π
c
nqu̇ .

(3)We solve these equations, together with equation (1), for the eletri �eld E, the magneti �eld
H and the displaement �eld u (polarization P = nqu).To this end, as usually, we introdue the eletromagneti potentials A and Φ, through E =
−(1/c)∂A/∂t − gradΦ and H = curlA, subjeted to the Lorenz gauge divA + (1/c)∂Φ/∂t = 0,



4 J. Theor. Phys.and use Fourier transforms of the type
u(r, t) =

1

2π
√

N

∑

k

∫

dωu(k, ω)e−iωt+ikr (4)(and similar transforms for all the other funtions of position and time). We note the well-knownsymmetry property u∗(−k,−ω) = u(k, ω), orresponding to the real-valued �eld u(r, t). As itis well known, suh a Fourier representation does not aount for surfae e�ets, i.e. e�etsassoiated with sharp surfaes. In order to aount for �nite-size (surfae) e�ets an expansion ineigenfuntions of the laplaian (with outgoing-waves boundary onditions at in�nity) is appropiate,preserving the dependene on the diret-spae oordinate perpendiular to the surfae. It is easyto see that, in general, suh a deomposition implies urvilinear oordinates, and leads to serioustehnial di�ulties. The density of these eigenmodes (whih appears in summations over states)di�ers, in general, from the density of the plane waves whih appear in the Fourier transformations.Therefore, additional ontributions, whih depend on the extension and the shape of the bodies,may appear. In addition, the sharpness of the surfaes generates the well-known "depolarizing"fators, espeially in the long-wavelength limit, whih annot be taken into aount by Fouriertransforms.As it is well known, the Maxwell equations (3) lead to the wave equations with soures
1

c2

∂2Φ

∂t2
− ∆Φ = 4πρ ,

1

c2

∂2A

∂t2
− ∆A =

4π

c
j (5)for the eletromagneti potentials. Taking the Fourier transforms, we get

A(k, ω) = 4πiλF (k, λ)u(k, ω) (6)and Φ(k, ω) = kA(k, ω)/λ, where λ = ω/c, F (k, λ) = (λ2 − k2)−1 is the Green funtion (for theHelmholtz equation) and the fator nq is left aside (it is restored in the �nal formulae). The latterrelationship is the Lorenz gauge, whih expresses the harge onservation, i.e. the ontinuityequation. In order to aount for the retardation, the funtion F must atually be written as
F (k, λ) = (λ2 − k2 + iλ0+)−1, as it an be seen by taking the Fourier transforms of the retardedKirho�'s potentials

Φ(r, t) =
∫

dr′ ρ(r′,t−|r−r′|/c)
|r−r′|

,

A(r, t) = 1
c

∫

dr′ j(r
′,t−|r−r′|/c)
|r−r′|

, .

(7)whih are solutions of equations (5). For simpliity, we often leave aside the arguments k, ω inthe Fourier transforms. Making use of equation (6), we get straightforwardly
E = −4πF

[

λ2u − k(ku)
]

, H = −4πλFk × u . (8)It is onvenient to introdue the longitudinal displaement u1 = ku/k and the transverse displae-ment u2 = k⊥u/k, where k⊥ is a vetor perpendiular to k and of the same magnitude as k, andto write u = u1k/k + u2k⊥/k. We note the symmetry property −u∗
1,2(−k,−ω) = u1,2(k, ω). Insummations over states we take into aount that there are in fat two transverse omponents u2of the displaement, orresponding to two polarizations. Making use of these notations we get

E1 = −4πu1 , E2 = −4πλ2Fu2 . (9)



J. Theor. Phys. 5We an see that the longitudinal omponent of the internal (polarization) �eld ompensates thelongitudinal omponent of the polarization, as expeted, while the transverse polarization intro-dues a spatial dispersion. Introduing these �elds in the equation of motion (1) we get
(ω2 − ω2

c − ω2
p + iωγ)u1 = − q

m
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(ω2 − ω2
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pλ
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(10)whene the longitudinal and transverse polarizabilities
α1 = E01/P1 = − 1
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,

α2 = E02/P2 = − 1
4π

ω2
p
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.

(11)It is worth noting that for �nite-size bodies the plasma frequeny in equations (10) is modi�ed bythe "depolarizing" fators. For instane, for a half-spae it aquires the well-known form ωp/
√

2of the surfae plasmon,[45℄ for a sphere in the dipole approximation it beomes the spherialplasmon ωp/
√

3.[46℄ For uniform �elds (in the long-wavelength limit k → 0) the two polarizabilitiesoinide, as expeted. Making use of equations (10) and (11) we get straightforwardly the eletrisuseptibility
χ =
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1 − 4πα1

=
α2

1 − 4πλ2Fα2

= − 1

4π

ω2
p

ω2 − ω2
c

, (12)the same for both longitudinal and transverse �eld omponents, as given by equation (2). Wean see that the eletri suseptibility does not exhibit the spatial dispersion, in ontrast with thetransverse polarizability.4 Polarization eigenmodesThe longitudinal polarizability does not depend on the wavevetor k. Its singularity (leaving asidethe damping parameter γ) gives the longitudinal ("plasmon") mode Ω1 = ωL =
√

ω2
c + ω2

p, asresulting from two osillatory motions, one with the loal, harateristi frequeny ωc and anotherolletive, driven by the polarization �eld, with the frequeny ωp. It an also be obtained from thezero of the dieletri funtion, ε = 0. The singularities of the transverse polarizability orrespondto propagating polaritons. They are given by the well-known dispersion relation εω2 = c2k2.For ωc = 0 (ondutors), they aquire the well-known form Ω2(k) =
√

ω2
p + c2k2, whih again,exhibits the harateristi pattern of two osillatory motions (plasmons with frequeny ωp andphotons with frequeny ck). For ωc 6= 0, we have two polaritoni branhes, Ω2,3(k), orrespondingto the ourrene of a third fore, with frequeny ωc. In the long-wavelenght limit (k → 0) theybehave like
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√
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2k2/ω2

L , Ω3 ≃
ωT

ωL

ck , (13)while in the short-wavelenght limit (k → ∞) they go like
Ω2 ≃

√

c2k2 + ω2
p , Ω3 ≃ ωT = ωc . (14)We an see that the frequeny Ω3 in the long-wavelength limit orresponds to "photons" witha renormalized phase veloity v = cωT /ωL (Ω3 = vk). These two polaritoni branhes arise
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Figure 1: The polarization longitudinal eigenmode Ω1 and the two transverse eigenmodes Ω2,3,aording to equations (10). We note the veloity v of the renormalized "photons" (ck is thephoton frequeny).from the transverse mode ωc and the photoni mode ck, splitted in the region ωc ≃ ck by theplasmoni oupling ωp. If ωp is a small parameter, we may take approximately ωc and ck for thetwo transverse frequenies, as for non-polarizable matter.For the sake of the generality we preserve three distint frequenies, Ω1 for the longitudinalomponent and Ω2,3(k) for the transverse omponents. They are shown shematially in Fig. 1.Aording to equations (10) the frequenies Ω1,2,3 are the eigenfrequenies of three types of har-moni osillators, given by
u1(k, ω) = 2πδ(ω − Ω1)u1(k) ,

u2(k, ω) = 2πδ(ω − Ω2)u
(1)
2 (k) + 2πδ(ω − Ω3)u

(2)
2 (k) ,

(15)or
u1(k, t) = u1(k)e−iΩ1t ,

u2(k, t) = u
(1)
2 (k)e−iΩ2t + u

(2)
2 (k)e−iΩ3t .

(16)Equations (15) and (16) inlude only the positive frequenies. The negative frequenies −Ω1,2,3are inluded whenever the ase. We emphasize that the funtions u1(k, ω) and u
(1,2)
2 (k, ω) aresolutions of equations (10) for a vanishing external �eld. Making use of equations (9), we get the�eld generated by the polarization
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(17)Aording to equations (16), the dynamis of the oordinates u1(k, t), u
(2,3)
2 (k, t) is governed by aharmoni-osillator hamiltonian
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∑
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∣
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J. Theor. Phys. 7where p1 and p
(1,2)
2 are the orresponding momenta (here the negative frequenies are automatiallyinluded). By taking the inverse (spatial) Fourier transform we may get a very ompliatedinteration, involving the displaement �eld u(r, t), generated by the polarization �eld in the diretspae. More interesting, we an quantize the motion of the harmoni osillators desribed by thehamiltonian given above. For instane, the mean square displaements are given by equationslike |u1|2 = (~/mΩ1)(n1 + 1/2), where n1 is the quantum number (and ~ is Plank's onstant).These osillators have also an energy of the form ~Ω1(n1 + 1/2) (inluding the zero-point energy

~Ω1/2), et. We an also take a statistial average orresponding to a given temperature, or wean aount for the quantum-statistial �utuations. Aording to the results given above, theinternal, polarization �eld an be represented entirely in terms of the oordinates u1 and u
(1,2)
2 , thusaquiring a mehanial representation. It is worth noting that the quantum numbers n1,2,3 dependon the wavevetor k (as well as the frequenies Ω2,3(k), whih depend only on the magnitude kof the wavevetor). The energy quanta assoiated with the frequenies Ω1,2,3 are muh higherthan the usual temperatures, so we may neglet the temperature e�ets, and limit ourselves tothe zero-point ontributions (vauum �utuations), exept for the long-wavelength limit of thefrequeny Ω3 = vk, whose ontribution, usually, is omparatively small.By usual proedure, from Maxwell's equations (3) we get the well-known energy onservation
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8π

∂

∂t
(E2 + H2) +

c

4π
div(E× H) = −nqEu̇ , (19)where the rhs is the rate of hange of the density of the kineti energy of the mobile harges. Wemay write equation (19) as

∂

∂t
(u + t) = −divs , (20)where u = (E2 + H2)/8π is the density of the eletromagneti �eld energy, t = nmu̇2/2 is thedensity of kineti energy and s = c(E ×H)/4π is the density of the Poynting vetor.We estimate below the time averages of total quantities, like the energy

U =
1

8πT

∫

dtdr(E2 + H2) , (21)where T is a time su�ietly long in omparison with any relevant frequeny. Making use of theFourier transforms and of equations (8) and (9) we get straightforwardly
U =

nq2
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∫
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ω2 − c2k2
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]

, (22)where we have introdued the fator 2 for the two transverse polarizations. We insert here thesolutions u1,2(k, ω) given by equations (15) and take into aount that δ2(ω) = (T/2π)δ(ω). Inaddition, we note that the negative frequenies give the same ontribution as the positive ones, sowe aount for them by a pre-fator 2. We get
U = 4πnq2
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(23)The mean square �utuations in equations (23) an be replaed by their zero-point values of theform |u1(k)|2 = ~/2mΩ1, et; we get
U = 2π~nq2
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8 J. Theor. Phys.The summation (integration) over k in equation (24) is divergent. It is reasonable to introduean ultraviolet uto� kc ≃ 1/a, where a is the mean separation distane between the mobileharges (density n = 1/a3). Under these irumstanes we may neglet ck in omparison withthe relevant frequenies ourring in equation (24), and replae approximately the integrand by
1/Ω ≃ 1/Ω1 + 2/ωL + 2/ωT . We get an estimate

U ≃ N
q2

a

~
2/ma2

~Ω
(25)for the energy. In equation (25) we an identify the Coulomb energy q2/a per partile, the partileloalization energy ~

2/ma2 and the energy quanta ~Ω. We an see that matter stores a largeamount of eletromagneti energy, arising from the zero-point motion of its polarization.Similarly, we an estimate the Poynting vetor
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k .
(26)We an see that it is given only by the transverse omponents of the displaement �eld u and it isdireted along the propagation wavevetors k, as expeted. The total kineti energy of the mobileharges is given by
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.
(27)It an be estimated as K ≃ N ·~Ω, and we an see that it is omparable with the eletromagnetienergy U . Comparing with equation (18), we an see that K inludes also the potential energy(therefore it is the total mehanial energy) of the harmoni osillators, by the pre-fator 2.It is also well-known that we get the Lorentz fore

fi = ρEi + 1
c
(j× H)i = ∂jσij − ∂

∂t
gi (28)from the Maxwell equations (3), arising from the stress tensor
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] (29)and the eletromagneti momentum g = s/c2, where ρ = −nqdivu and j = nqu̇ are the polariza-tion harge and urrent densities. We give here the representation of the Lorentz fore in termsof the displaement (polarization) �eld
f = 1

T

∫

dtdr
(

ρE + 1
c
j× H

)

=

= −8πinq2
∑

k

[

|u1(k)|2 +
2Ω2

2

Ω2

2
−c2k2

∣

∣

∣
u

(1)
2 (k)

∣

∣

∣

2

+
2Ω2

3

Ω2

3
−c2k2

∣

∣

∣
u

(2)
2 (k)

∣

∣

∣

2
]

k .
(30)Sine, usually, u1 and u

(1,2)
2 depend only on the magnitude of the wavevetor (and not of itsdiretion), the fore given by equation (30) is zero. Similarly, we get the harge-�eld interation
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Eint = 1

T

∫

dtdr
(

ρΦ − 1
c
jA
)

=

= 8πnq2
∑

k

[

|u1(k)|2 +
2Ω2

2

Ω2

2
−c2k2

∣

∣

∣
u

(1)
2 (k)

∣

∣

∣

2

+
2Ω2

3

Ω2

3
−c2k2

∣

∣

∣
u

(2)
2 (k)

∣

∣

∣

2
]

.
(31)Writing f =

∑

k f(k) and Eint =
∑

k Eint(k), we an see that the Fourier omponents of the foreare given by f(k) = −ikEint(k), as expeted.5 Two eletromagnetially oupled bodiesWe onsider two polarizable bodies, denoted by a and b, one (a) plaed at the origin r = 0 andanother (b) plaed at r0. The displaement �eld for the body a is ua(r, t) = u(r, t) and thedisplaement �eld for the body b is denoted by ub(r, t) = v(r − r0, t). We use Fourier transformsof the type given by equation (4), with the pre-fator N−1/2 = (Na + Nb)
−1/2, where Na,b are thenumber of mobile harges in body a and, respetively, b, both enlosed in the same volume V . Thedensities are given by na,b = Na,b/V . The Fourier transform of ub(r, t) aquires an exponentialfator e−ikr0, ub(k, ω) = v(k, ω)e−ikr0, whih appears in the �eld Eb generated by the body b,aording to equations (9). Consequently, we an write the equations of motion for ua = u as

(ω2 − ω2
ca − ω2

pa)u1 = ω2
pbv1e

−ikr0 ,

(ω2 − ω2
ca − ω2

paλ
2F )u2 = ω2

pbλ
2Fv2e

−ikr0 .
(32)We an see that the b-�eld orresponds to the propagating wavevetor −k and the soure plaedat r0, i.e. it ontains the fator ei(−k)r0 = e−ikr0, in aordane with the retardation requirements(for positive frequenies). In order to ful�l the retardation requirements, we must limit ouselvesonly to �elds outgoing from their soures. Similar equations of motion an be written for ub,where the �eld originates in the soure a. In the b-frame this �eld orresponds to the propagatingwavevetor k and soure plaed at −r0, i.e. it must ontains the fator eik(−r0) = e−ikr0. Inaddition we must restrit to kr0 > 0 for positive frequenies and kr0 < 0 for negative frequenies.We get

(ω2 − ω2
cb − ω2

pb)v1 = ω2
pau1e

−ikr0 ,

(ω2 − ω2
cb − ω2

pbλ
2F )v2 = ω2

paλ
2Fu2e

−ikr0 .
(33)We an see that the polarizations of the two bodies are oupled, through their interation, whihdepends on their mutual position r0. The two homogeneous systems of equations (32) and (33)have eigenfrequenies whih depend on this interation, given by the dispersion equations

[

(ω2 − ω2
ca − ω2

pa)(ω
2 − ω2

cb − ω2
pb) − ω2

paω
2
pbe

−2ikr0
]

u1 = 0 ,

[

(ω2 − ω2
ca − ω2

paλ
2F )(ω2 − ω2

cb − ω2
pbλ

2F ) − ω2
paω

2
pbλ

4F 2e−2ikr0
]

u2 = 0 .
(34)They orrespond to the equations

(4π)2αa1,2αb1,2e
−2ikr0 = 1 (35)for the polarizabilities of the two bodies.Equations (34), or (35), require 2kr0 = πn, where n is a positive integer, n = 0, 1, 2.... . Forrealisti values of the parameters ωca,b and ωpa,b we get real solutions of these equations for n an
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k

ωTb
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ΩT1

ΩT2
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ΩL2

ΩT3

ΩT4v

O

ck

Figure 2: The longitudinal (ΩL1,2) and transverse (ΩT1,2,3,4) eigenmodes for twoeletromagnetially-oupled bodies a and b, as given by the roots of equations (34). The transversemodes ωTa,b = ωca,b are also shown, together with the veloity v of the two modes ΩT3,4 (the slopeof the urves ΩT3,4 at the origin). ck is the photon frequeny.even integer, so we set kr0 = πn, n = 0, 1, 2..... The interation shifts the longitudinal modes
ωLa,b of the two bodies, the new longitudinal frequenies being given by

Ω2
L1,2 =

1

2

[

ω2
La + ω2

Lb ±
√

(ω2
La − ω2

Lb)
2 + 4ω2

paω
2
pb

] (36)(we note that they do not depend on the wavevetor k); for ondutors we have only one longitudi-nal frequeny ΩL1 =
√

ω2
pa + ω2

pb, but we keep both frequnies ΩL1,2 for the sake of the generality.The solution of the �rst equation (34) is given by
u1(k, ω) = 2πδ(ω − ΩL1)u

(1)
1 (k) + 2πδ(ω − ΩL2)u

(2)
1 (k) (37)for kr0 > 0 and a similar ontribution for negative frequenies and kr0 < 0. The oordinate v1 isobtained diretly from equations (34).Similarly, from the seond equation (34) we get four frequenies, in general, for the polaritonitransverse modes, denoted by ΩT i, i = 1, 2, 3, 4. In the long-wavelengh limit they behave like

Ω2
T1,2 ≃

1

2

[

ω2
La + ω2

Lb ±
√

(ω2
La + ω2

Lb)
2 − 4ω2

caω
2
cb − 4ω2

caω
2
pb − 4ω2

cbω
2
pa

] (38)(plus a small ontribution of the form const · k2) and
ΩT3,4 ≃ vk , v = c

ωcaωcb
√

ω2
caω

2
cb + ω2

caω
2
pb + ω2

cbω
2
pa

; (39)for k → ∞,
Ω2

T1,2 ≃ c2k2 + ω2
pa + ω2

pb , ΩT3,4 ≃ ωca,b . (40)For small ouplings (ωpa,b ≪ ωca,b) these frequenies redue approximately to the two transversemodes ωca,b and two photon mode ω ≃ ck. For ondutors (ωca = ωcb = 0) we get only onepolaritoni branh ΩT =
√

ω2
pa + ω2

pb + c2k2. The eigenfrequenies ΩL1,2 and ΩT1,...4 of two ele-tromagnetially oupled bodies a and b are shown shematially in Fig. 2.The solution of the seond equation (34) an be written as
u2(k, ω) = 2π

4
∑

i=1

δ(ω − ΩT i)u
(i)
2 (k) (41)



J. Theor. Phys. 11for kr0 > 0 and a orresponding deomposition for negative frequenies and kr0 < 0. Theoordinate v2 is obtained diretly from the seond equation (34) as a funtion of u2.It is worth omputing the Lorentz fore ating on one body on behalf of the other; for instane,the fore by whih body a ats upon body b. We follow the same proedure as that whih led toequation (30) and use the oupled equations (32) and (33) in order to eliminate the oordinates
v1,2 in favour of the oordinates u1,2. We get

fab = 1
T

∫

dtdr
(

ρbEa + 1
c
jb × Ha

)

=

== −2inanbq
2V

Tω2

pb
N

∑

k

∫

dω(ω2 − ω2
ca − ω2

pb) |u1(k, ω)|2 k−

−4inanbq2V
Tω2

pb
N

∑

k

∫

dω(ω2 − ω2
ca − ωpaλ

2F ) |u2(k, ω)|2 k =

=
inanbq

2ω2
paV

2πTω2

pb
N

∑

k

∫

dω
[

1
αa1

|u1(k, ω)|2 + 2
αa2

|u2(k, ω)|2
]

k ,

(42)
where αa1,2 are the polarizabilities of the body a, as given by equations (11). If we eliminatethe oordinates u1,2 in favour of the oordinates v1,2 (by using equations (32) and (33), we get asimilar expression for the fore fab, with a and b interhanged; this orresponds to the fore fbaand, sine the sign does not hange, we onlude that fab = fba = 0. Indeed, when introduing thedeompositions given by equations (37) and (41), we note that for positive frequenies kr0 > 0,while kr0 < 0 for negative frequenies. Sine both ontributions are equal, we an write

fab = −4πinanbq2V
ω2

pb
N

∑

k

∑2
i=1(Ω

2
Li − ω2

La)
∣

∣

∣
u

(i)
1 (k)

∣

∣

∣

2

k

−8πinanbq
2V

ω2

pb
N

∑

k

∑4
i=1(Ω

2
T i − ω2

ca −
ω2

paΩ2

Ti

Ω2

Ti
−c2k2 )

∣

∣

∣
u

(i)
2 (k)

∣

∣

∣

2

k ,

(43)where the summation extends over the whole k-spae. We an see, indeed, that fab = 0, as longas the amplitudes u
(i)
1,2 do not depend on the direion of the wavevetor k.6 Casimir foreEquations (32) and (33) desribe two pairs of oupled harmoni osillators. One pair, say v1,2is ompletely determined by the motion of the pair u1,2; its energy is taken up in the modi�edfrequenies given by the dispersion equations (34). Therefore, we have, in fat, only one pair ofharmoni osillators for the two oupled bodies a and b, of oordinates u1,2 and eigenfrequenies

ΩLi, i = 1, 2 and ΩT i, i = 1, 2, 3, 4, governed by a harmoni-osillator hamiltonian of the typegiven in equation (18). Its ground-state (zero-point) energy reads
E =

∑

k

(

2
∑

i=1

1

2
~ΩLi +

4
∑

i=1

~ΩT i(k)

)

, (44)where we have introdued a fator 2 in order to aount for the two transverse polarizations. Wemay hoose to eliminate u1,2 in favour of the oordinates v1,2. The energy given by equation (44)remains unhanged. Both situations are equally valid, though they introdue an asymmetry, inthe sense that in eah ase one pair of oordinates are ompletely determined by the other pair.



12 J. Theor. Phys.These frequenies are obtained from equations (34) by requiring kr0 = πn. It is onvenient tointrodue the omponent κ of the wavevetor k along the position vetor r0, whose magnitudeis denoted by d (r0 = d). Therefore, we have κn = πn/d and k2
n = k2

⊥ + κ2
n, where k⊥ is thetransverse wavevetor, i.e. the omponent of the wavevetor k perpendiular to r0. The energygiven by equation (44) an then be written as

E =
S

2π

∑

n=0

∫

dk⊥k⊥

(

2
∑

i=1

1

2
~ΩLi +

4
∑

i=1

~ΩT i(kn)

)

, (45)where S is the transverse area. We estimate the hange brought about by the �nite distane d inthe energy E by using the Euler-Malaurin formula:[47℄
∆E =

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!
f (2m−1)(0) , (46)where Bm are the Bernoulli's numbers and

f(κ) =
S

2π

∫

dk⊥k⊥

(

2
∑

i=1

1

2
~ΩLi +

4
∑

i=1

~ΩT i(
√

k2
⊥ + κ2)

)

. (47)It is easy to see that the longitudinal frequenies ΩLi do not ontribute to equation (46). Similarly,the transverse frequenies ΩT1,2, whih, aording to equation (38), go like ∼
√

const + κ2 in thelong-wavelength limit, do not ontribute to equation (46), sine all their odd-order derivatives arevanishing for κ = 0. We are left with the ontributions arising from ΩT3,4, whih behave like vkin the long-wavelength limit, aording to equation (39). Equation (46) beomes
∆E =

~vS

2π

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!

(
∫

κ2

du
√

u

)(2m−1)

0

, (48)where we have introdued u = k2
⊥ + κ2. The only ontribution to equation (48) omes from thethird-order derivative. We get (B2 = 1/30)

∆E = −π2
~vS

360
· 1

d3
(49)and an attrative fore

F = −π2
~vS

120
· 1

d4
(50)ating between the two bodies. This is the Casimir fore, arising between two polarizable bodiesfrom the polarization vauum �utuations. It di�ers from the lassial formula F = −π2

~cS/240d4,derived for two onduting half-spaes,[2, 8℄ by a fator 2, arising from the two branhes ΩT3,4(whih behave identially in the long-wavelength limit), as well as by the presene of the renor-malized veloity v instead of c. The nature of the bodies is inorporated in the polariton veloity
v = c

ωcaωcb
√

ω2
caω

2
cb + ω2

caω
2
pb + ω2

cbω
2
pa

(51)as given by equation (39). It is worth noting that this veloity v di�ers from the orrespondingpre-fator in the formula given in Ref. 8 for two dieletris. For idential bodies there remainsonly one vk-branh, with veloity v given by equation (51) for ωc,pa = ωc,pb. The formula (50) forthe fore should then be modi�ed aordingly.



J. Theor. Phys. 13The e�et of the temperature T = 1/β an be inorporated in equation (48) by the hange
∫

κ2

du
√

u →
∫

κ2

du
√

u coth

[

1

2
β~v

√
u

]

. (52)For realisti values of the parameters we have β~v/d ≫ 1, so we get a temperature orretionfator ≃ coth(β~v/d) in the expression of the fore. In the opposite limit (very high temperature,
β~v/d ≪ 1) the fore is vanishing.The situation desribed above orresponds to two dieletris (ωca,b 6= 0). Let us assume thatwe have a ondutor a (ωca = 0) and a dieletri b (ωcb 6= 0). The two transverse modes ΩT3,4disappear in this ase, and the two longitudinal modes ΩL1,2 do not ontribute to the energy. Weare left with the two transverse modes ΩT1,2, whih, in the long-wavelength limit go like

Ω2
T1,2 ≃ Ω2

L1,2 + v2
1,2k

2 , (53)where
v2
1,2 =

1

2
c2



1 ±
ω2

pa + ω2
pb − ω2

cb
√

(ω2
pa + ω2

pb + ω2
cb)

2 − 4ω2
paω

2
cb



 . (54)It is worth noting that, while ΩT1 goes like ∼ ck for k → ∞, the mode ΩT2 approahes ωcb in thesame limit. The frequenies ΩT1,2 given by equation (53) an be written as
ΩT1,2 = v1,2

√

k2
⊥ + Ω2

L1,2/v
2
1,2 + κ2 (55)and we an see that k⊥ may aquire imaginary values, suh that k2

⊥ + Ω2
L1,2/v

2
1,2 = k

′2
⊥ behaves asthe square of a new transverse wavevetor k

′

⊥ ranging from 0 to ΩL1,2/v1,2 (a similar situation fortwo dieletris would imply imaginary frequenies Ω3,4 whih are not physially aeptable). Thetransverse k⊥-waves are damped waves in this ase. It is easy to see that the Casimir fore will havethe same expression as given by equation (50) above, with the proper replaement of the veloity
v by (v1 +v2)/2. The same situation holds for two ondutors, where we have only one polaritonibranh ΩT1 =

√

ω2
pa + ω2

pb + c2k2. In this ase, we get the lassial result F = −π2
~cS/240d4(orresponding to two half-spaes).7 van der Waals-London foreIn the non-retarded regime λ = 0, whih orresponds to k = 0 for free waves. It follows that

κ = −ik⊥ aquires purely imaginary values (the waves are damped along the r0). The seondequations (34) give the transverse modes ωca,b, whih do not depend on k⊥ and, onsequently donot ontribute to the hange in energy. We are left with the longitudinal modes, given by the �rstequation (34) whih reads now
(ω2 − ω2

La)(ω
2 − ω2

Lb) − ω2
paω

2
pbe

−2k⊥d = 0 . (56)For realisti situations we may take ωLa ≃ ωLb and neglet (ω2
La−ω2

Lb)
2 in omparison with ω2

paω
2
pb.Further, we may expand the solutions of equation (56) in powers of ωpaωpbe

−k⊥d, and subtrat theenergy orresponding to d → ∞. We get the approximate hange in the ground-state (zero-point)energy
∆E ≃ − ~S

4π
√

2

ω2
paω

2
pb

(ω2
La + ω2

Lb)
3/2

∫

0

dk⊥k⊥e−2k⊥d (57)
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F ≃ − ~S

8π
√

2

ω2
paω

2
pb

(ω2
La + ω2

Lb)
3/2

· 1

d3
. (58)We note that the pre-fator in equation (58) di�ers from the result given in Ref. 8.Comparing equations (50) and (58), we get a rossover distane of the order d1 ≃ c/ωp, whihseparates the ranges of the Casimir and van der Waals-London fores (ωp being a frequeny of theorder of the plasma frequenies of the two bodies).It is worth noting the solutions of equation (56) for two idential ondutors: Ω2 = ω2

p(1 ± e−kd).They di�er from the well-known solutions Ω2 = ω2
p(1 ± e−kd)/2 orresponding to two half-spaesseparated by distane d, whih exhibit the surfae plasmons (for instane, for d → ∞ we getthe well-known surfae plasmon ωp/

√
2). This is a partiular example that our approah does notaount for surfae e�ets, as we disussed before. The surfae e�ets may bring signi�ant hangesboth in numerial oe�ients, as well as in the d-dependene of the fores, espeially through thedepolarizing �elds the surfaes generate, with ontributions that may di�er for idential, or distintbodies. Suh e�ets are more signi�ant for the non-retarded regime.In order to make this situation more lear, we resort here to another well-known deompositionof the spherial wave. Indeed, we preserve the oordinate z along the diretion between the twobodies, and use only transverse Fourier transforms. The deomposition reads[45, 48℄

eiλR

R
=

i

2π

∫

dk
1

κ
eikreiκ|z| . (59)If we further take the Fourier transform with respet to the z-oordinate we get the funtion

F (k, λ) used here. Now, the derivatives of the funtion eiκ|z| are given by
∂

∂z
eiκ|z| = iκsgn(z)eiκ|z| ,

∂2

∂z2
eiκ|z| = 2iκδ(z) − κ2eiκ|z| . (60)We an see easily that, while the Fourier transform reprodues the �rst derivative of the funtion

eiκ|z|, it does not reprodue the seond derivative (as a onsequene of the Gibbs phenomenon inthe Fourier transform of the funtion sgn(z)). Suh seond-derivative-terms are responsible forthe surfae harges.8 Eletromagneti �eld energyIt is worth examining the eletromagneti �eld energy, as given by equation (21), for the total�eld generated by the two bodies. The �elds are given by E = Ea + Eb and H = Ha + Hb, where
Ea,b and Ha,b are given by equation (8) and (9). We get straightforwardly

U =
nq2

T

∑

k

∫

dω
(

|w1|2 + 2λ2F |w2|2
)

, (61)where w = (na/n)u + (nb/n)v. We hoose �rst to eliminate the oordinates v1,2 in favour of theoordinates u1,2, by using equations (32). Introduing the zero-point mean values for |u1,2|2, weget
U = π~n2

aq2

nm

∑

k

∑2
i=1

(

Ω2

Li
−ω2

ca

ω2
pa

)2
1

ΩLi
+

+2π~n2
aq2

nm

∑

k

∑4
i=1

(

Ω2

Ti
−ω2

ca

ω2
pa

)2
Ω2

Ti
−c2k2

Ω3

Ti

.

(62)



J. Theor. Phys. 15If we eliminate u1,2 in favur of the oordinates v1,2, and use the zero-point mean square �utuationsfor |v1,2|2, we get a similar equation for U , with a and b interhanged. Sine both situations areequally valid we take the mean value, orresponding to a symmetrized ontribution arising fromthe two bodies.Let us assume that we have two dieletris. It is easy to see that the hange in energy broughtby the �nite distane d omes from the two branhes ΩT3,4 = vk of "renormalized" photons. Theorresponding energy an be written as
U3,4 ≃ −2π~q2

nm





(

naω
2
ca

ω2
pa

)2

+

(

nbω
2
cb

ω2
pb

)2




c2 − v2

v3

∑

n=0

∑

k⊥

1
√

k2
⊥ + κ2

n

. (63)We apply the usual proedure of extrating the �nite hange in energy given by the Euler-Malaurin formula (46). The ontribution omes from the �rst-order derivative in equation (46).We get
∆U = −π~q2S

12nm





(

naω
2
ca

ω2
pa

)2

+

(

nbω
2
cb

ω2
pb

)2




c2 − v2

v3
· 1

d
. (64)We an see that the eletromagneti �eld generates an attrative fore (v < c) whih goes like

−1/d2; it ats at long distane, beyond d2 ≃ a
√

mc2

q2/a
, where mc2 is the rest energy of the mobileharges and q2/a is their Coulomb energy (a being the mean separation distane between theharges). It is easy to see that d2 = c

√

a3/(q2/m) ≃ c/ωp ≃ d1, i.e. the −1/d4-Casimir foreand the −1/d2-eletromagneti �eld fore are ompetitive for moderate distanes. Aording toequation (52), the e�et of the temperature on this d2-fore ould more visible, as the fore atsat a longer distane.If body a is a ondutor (ωca = 0), then its ontribution to the hange in the eletromagneti �eldenergy goes like −1/d3 (as for a Casimir fore). The ratio of this fore to the Casimir fore is ofthe order of (~2/ma2)(q2/a)/(~ωp)
2. The ontribution of the dieletri (ωcb 6= 0) to the energygoes like −1/d; it is given by the orresponding term (ωcb) in equation (64). Both ontributionsarise from the damped ΩT1,2-modes. Finally, for two ondutors, the eletromagneti �eld energyontributes a Casimir fore, given by F = −~cS/480πd4. It is muh smaller (by fator 1/2π3)than the Casimir fore F = −π2

~cS/240d4 arising from polarization.9 Point-like partilesWe speialize the above alulations to point-like, δ-partiles, sine suh loalized partiles exhibitertain important partiularities. Let us onsider a displaement �eld given by
u(r, t) = u(t)a3δ(r) (65)for a δ-partile of volume a3 plaed at r = 0. Aording to equation (4), its Fourier transform is

u(k, ω) =
a3
√

N

V
u(ω) , (66)where N is the number of mobile harges in the partile (density n = N/a3). The harge andurrent densities are given by

ρ = −i
nqa3

√
N

V
ku , j = −iω

nqa3
√

N

V
u . (67)
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E = −4πF

nqa3
√

N

V

[

λ2u− k(ku)
]

, H = −4πλF
nqa3

√
N

V
k × u (68)and the omponents

E1 = −4π
nqa3

√
N

V
u1 , E2 = −4πλ2F

nqa3
√

N

V
u2 . (69)The internal, polarization �eld E in the equation of motion (1) does not appear anymore in thisase, in view of the lak of spatial extension of the δ-partile. We an use the external �eld E0 atthe loation r = 0 of the partile, and the equation of motion reads (with γ = 0)

(ω2 − ω2
c )u(ω) = − q

m
E0(r = 0, ω) . (70)We an see that there is only one polarizability, whih oinides with the eletri suseptibiity

α(ω) = χ(ω) = − 1

4π

ω2
p

ω2 − ω2
c

. (71)In the absene of an external �eld equation (70) has harmoni-osillator solutions
u(ω) = 2πδ(ω − ωc)u , (72)where u are now onstant amplitudes, orresponding to u(t) = ue−iωct. Their dynamis is governedby the hamiltonian
H =

1

2m
p2 +

1

2
mω2

cu
2 , (73)where p is the momentum. The zero-point mean square �utuations are ~/2mωc for eah ompo-nent.Following the alulations whih led to equation (23), the energy of the eletromagneti �eld anbe written as

U = 4π
(nqa3)2

V

∑

k

(

|u1|2 +
2ω2

c

ω2
c − c2k2

|u2|2
)

, (74)where, for zero-point �utuations |u1,2|2 are replaed by ~/2mωc. Similarly, we an have a repre-sentation in terms of the u-oordinates for the Poynting vetor, the "self-Lorentz fore" and theharge-�eld "self-interation", though, the latter two quantities are in fat meaningless, sine the�eld ats only outside the partile.We onsider another point-like partile of volume b3 plaed at r0, with the displaement �eld
v(t)b3δ(r − r0), and follow the treatment given in the preeding setions. The oupled equations(32) and (33) beome

(ω2 − ω2
ca)a

3u1 = ω2
pbb

3v1e
−ikr0 ,

(ω2 − ω2
ca)a

3u2 = ω2
pbb

3λ2Fv2e
−ikr0

(75)and
(ω2 − ω2

cb)b
3v1 = ω2

paa
3u1e

−ikr0 ,

(ω2 − ω2
cb)b

3v2 = ω2
paa

3λ2Fu2e
−ikr0 .

(76)
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Ω2

L1,2 =
1

2

[

ω2
ca + ω2

cb ±
√

(ω2
ca − ω2

cb)
2 + 4ω2

paω
2
pb

] (77)orresponding to the osillator oordinates
u1(ω) = 2πδ(ω − ΩL1)u

(1)
1 + 2πδ(ω − ΩL2)u

(2)
1 (78)and, in general, four branhes of transverse modes ΩT i, i = 1, ...4. In the long-wavelength limitthey go like

Ω2
T1,2 ≃ Ω2

L1,2 + const · k2 , ΩT3,4 ≃ vk , (79)where the veloity v is given by
v = c

√

ωcaωcb

ωcaωcb + ωpaωpb
. (80)We an see that all these transverse modes depend on the magnitude of the wavevetor k, while ourmodel, given by equation (65), for δ-partiles does not allow for a k-dependene of the displaement�eld. Therefore, all these "transverse" solutions of the dispersion equations are not aeptable,and we are left with the longitudinal modes only. We onlude that there is not a Casimir fore(nor an eletromagneti �eld fore) for two δ-partiles (the longitudinal modes do not give suhfores). This is an expeted result, beause the transverse modes are spatially-dispersive andthe δ-partiles, in view of their lak of spatial extension, annot aomodate them. The sameonlusion holds for the interation of a δ-partile and a spatially-extended body.Similarly, in the non-retarded regime, the dispersion equation (56) (with ωLa,b → ωca,b) givesdamped modes whih annot be sustained by the δ-loalized partiles. Therefore, we onludethat our approah gives not a van der Waals-London fore for two δ-partiles.The δ-partiles o�er the opportunity of a diret-spae approah. Indeed, the displaement �eldgiven by equation (65) gives a urrent density j(r, ω) = −iωnqa3u(ω)δ(r) (and a harge density

ρ(r, ω) = −nqa3[u(ω)grad]δ(r)). By equations (7) we get immediately the vetor potential
A = −iλnqa3uf(r) , (81)where f(r) = eiλr/r is the (outgoing) spherial wave. From the Lorenz gauge we get the salarpotential
Φ = −nqa3ur

r
f

′

(r) , (82)so we have straightforwardly the eletri �eld
E = nqa3

[

λ2fu +
f

′

r
u − (ru)f

′

r3
r +

(ru)f
′′

r2
r

]

. (83)We estimate this �eld, produed by partile a, at the loation r = r0 = (0, 0, d) of the partile b. Itis onvenient to use the longitudinal projetion ‖ on the z-diretion and the transverse projetion
⊥ on the (x, y)-plane. We get

Ea‖ = naqa
3(λ2f + f

′′

)u‖ , Ea⊥ = naqa
3(λ2f +

1

d
f

′

)u⊥ , (84)



18 J. Theor. Phys.where f = eiλd/d. The equations of motion for the displaement �eld v(t)b3δ(r−r0) of the partile
b reads

(ω2 − ω2
cb)v‖ = −ω2

pa

4π
a3(λ2f + f

′′

)u‖ ,

(ω2 − ω2
cb)v⊥ = −ω2

pa

4π
a3(λ2f + 1

d
f

′

)u⊥ .

(85)Similarly, we ompute the �eld produed by partile b at the loation r = 0 of the partile a (inequation (83) r is replaed by r − r0), and get the equations of motion
(ω2 − ω2

ca)u‖ = −ω2

pb

4π
b3(λ2f + f

′′

)v‖ ,

(ω2 − ω2
ca)u⊥ = −ω2

pb

4π
b3(λ2f + 1

d
f

′

)v⊥ .

(86)From equations (85) and (86) we get the dispersion equations
(ω2 − ω2

ca)(ω
2 − ω2

cb) =
ω2

paω2

pb

(4π)2
a3b3(λ2f + f

′′

)2 ,

(ω2 − ω2
ca)(ω

2 − ω2
cb) =

ω2
paω2

pb

(4π)2
a3b3(λ2f + 1

d
f

′

)2 .

(87)It is easy to see that the two equations (87) ae not ompatible with one another, so we set either
u‖ = v‖ = 0, or u⊥ = v⊥ = 0. Let us take u⊥ = v⊥ = 0, so we have the �rst equation (87), whihan be ast in the form

(ω2 − ω2
ca)(ω

2 − ω2
cb) = 4

ω2
paω

2
pb

(4π)2
a3b3 e2i(λd+ϕ)

d6
, (88)where tanϕ = λd. This equation implies λd + ϕ = πn, where n is any integer, and

(ω2 − ω2
ca)(ω

2 − ω2
cb) = 4

ω2
paω

2
pb

(4π)2

a3b3

d6
. (89)It is easy to see that these two onditions annot be satis�ed simultaneously. The same resultholds for the other dispersion equation, orresponding to u‖ = v‖ = 0. We onlude that thedispersion equations have not solutions, and, therefore, the energy is not hanged by the preseneof the �nite distane d, i.e. there is not a Casimir fore.In the non-retarded regime λ = 0 and the dispersion equations (87) beome

(ω2 − ω2
ca)(ω

2 − ω2
cb) =

4ω2
paω

2
pb

(4π)2

a3b3

d6
(90)for the longitudinal omponents and

(ω2 − ω2
ca)(ω

2 − ω2
cb) =

ω2
paω

2
pb

(4π)2

a3b3

d6
(91)for the transverse omponents. The two equations (90) and (91) di�er by a fator 4. For realistisituations we may take ωca ≃ ωcb = ωc, as for idential partiles; we take also ωpa = ωpb = ωp.We may onsider the rhs term of these equations as a small perturbation. The �rst equation (90)gives

ω = ωc

[

1 ±
ω2

p

4πω2
c

(

a3b3

d6

)1/2

−
ω4

p

32πω4
c

a3b3

d6
+ ...

] (92)



J. Theor. Phys. 19and a hange in the zero-point energy
∆E = −

~ω4
p

32π2ω3
c

· a3b3

d6
. (93)This energy gives a −1/d7-fore, whih is the lassial van der Waals-London fore ating betweentwo point-like partiles. A similar result is obtined from the seond dispersion equation, orre-sponding to the transverse modes. Statistially, the latter fore appears with a weight fator 2 inomparison with the former, due to the two transverse polarizations of the displaement �eld. Itis easy to see that the average energy ontains a fator 1/2 whih multplies equation (93).The di�erene between the result obtained here regarding the van der Waals-London fore for

δ-partiles and the (null) result obtained by using the Fourier-transform approah is an extremeinstane of the inadequay of the Fourier-transform approah to problems onerning the matterpolarization and the interation of eletromagnetially-oupled bodies. In general, the Fourier-transform approah to suh problems is valid for bodies of a su�ient spatial extension, suhthat the surfae e�ets an be negleted in omparison with the bulk ontribution. However, for�nite-size bodies, espeially in the long-wavelength limit, this requirement is never ahieved, dueto the long-range harater of the Coulomb interation. Therefore, we expet deviations from ourresults presented here, whenever �nite-size bodies are involved.10 Conluding remarksThe matter polarization an be represented by a displaement �eld of the mobile harges, withinthe well-known Lorentz-Drude model. By Maxwell's equations, the eletromagneti �eld generatedby the polarization aquires a orresponding mehanial representation in terms of the displae-ment �eld. The olletive motion of the polarization (re�eted in the polarization eletromagneti�eld) is an example of emergent dynamis. In general, it onsists of three in�nite sets of har-moni osillators, orresponding to longitudinal (plasmons, one set) and transverse (polaritons,two sets), whih an be quantized. The eletromagneti �eld energy, Poynting vetor, Lorentzfore and harge-�eld interation energy are represented in terms of these three types of eigen-modes. It is shown that the polarizable matter stores a large amount of eletromagneti energy,arising from the zero-point (vauum) �utuations of the displaement (polarization) �eld.Two eletromagnetially-oupled bodies are treated within this framework, and their polarizationeigenmodes are identi�ed. The Casimir and van der Waals-London fores are derived, as arisingfrom the zero-point �utuations of the displaement (polarization) �eld. These fores inorpo-rate the nature of the two bodies (by their individual longitudinal and transverse frequenies).The eletromagneti �eld (generated by the polarization �utuations) brings its own ontribu-tion to the fores ating bewteen two polarizable bodies. If a dieletri, at least, is present, theeletromagneti-�eld fore goes like ∼ −1/d2, where d is the separation distane between the twobodies (it is a long-range fore). If a ondutor, at least, is present, the eletromagneti �eld addsits own ontribution to the Casimir fore (∼ −1/d4). The magnitude and their range of ationhave been estimated here for all these fores.The Fourier deomposition employed throughout as a general tool does not allow for inludingsurfae (or shape) e�ets. In general, the Fourier deomposition an be replaed by expansions ineigenmodes of the laplaian for spei�, �nite-size bodies (with outgoing-waves boundary onditionat in�nity), preserving the diret-spae oordinae perpendiular to the surfae. Suh expansions
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