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tA me
hani
al representation is introdu
ed for the polarization ele
tromagneti
 �eld inmatter in terms of the displa
ement �eld of the mobile 
harges (the polarization �eld). Itis shown that the dynami
s of this displa
ement �eld, and of the 
orresponding ele
tromag-neti
 �eld, is governed, in general, by three in�nite sets of harmoni
 os
illators, one for thelongitudinal 
omponent, with the "plasmon" frequen
y (longitudinal mode), and two for thetransverse 
omponent, with polaritoni
 frequen
ies (
oupled transverse and photoni
 modes).The present method of treating the ele
tromagneti
 �eld in matter is illustrated here for non-magneti
, homogeneous, isotropi
 matter, by using the well-known Lorentz-Drude model ofmatter polarization. We give the representations of the ele
tromagneti
 �eld energy, Poynt-ing ve
tor, Lorentz for
e and 
harge-�eld intera
tion energy in terms of the eigenmodes ofthe displa
ement �eld. It is shown that matter posesses a large amount of ele
tromagneti
energy, originating in the zero-point (va
uum) �u
tuations of its polarization �eld. The ele
-tromagneti
 
oupling between two polarizable bodies is 
onsidered within the framework ofthe present approa
h, and the 
orresponding polarization eigenmodes are identi�ed. TheCasimir and van der Waals-London for
es are derived, as arising from the zero-point �u
-tuations of the polarization. The nature of the two bodies, represented by their individuallongitudinal and transverse polarization modes, is in
orporated in the 
oe�
ients of thesefor
es. In addition, it is shown that the ele
tromagneti
 �eld (generated by the polarization�u
tuations) brings its own 
ontribution to the for
es a
ting between two polarizable bodies.When a diele
tri
, at least, is present, this 
ontribution is an attra
tive for
e whi
h goes like
−1/d2, where d is the separation distan
e between the two bodies. When a 
ondu
tor, atleast, is present, the ele
tromagneti
 �eld brings an additional 
ontribution to the Casimirfor
e (∼ −1/d4). The range of these for
es is estimated. The approa
h is based on Fourierde
omposition and, 
onsequently, it is not able to a

ount for the surfa
e (or shape) e�e
ts.The parti
ular 
ase of point-like parti
les is also analyzed.Key Words: Matter polarization; Ele
tromagneti
 modes; Casimir and van der Waals-Londonfor
esPACS: 03.50.De; 41.20.Jb; 52.25.Mq; 78.20.Bh1 Introdu
tionRe
ently, there is an extensive, ongoing interest in the Casimir and van der Waals-London for
eswhi
h a
t between two polarizable bodies.[1℄-[38℄ The spe
i�
 points in dis
ussion are the e�e
ts of



2 J. Theor. Phys.the nature of the two bodies, the surfa
e (or shape) e�e
ts, the temperature dependen
e, et
. Thedi�
ulty resides in the la
k of a 
onvenient representation of the ele
tromagneti
 (polarization)�eld in matter, other than the usual semi-phenomenologi
al theory of the diele
tri
 fun
tion.We give here su
h a representation, whi
h in
orporates the nature of the ele
tromagneti
allyintera
ting bodies. Though not 
apable of a

ounting for �nite-size e�e
ts, it points, at leastmore spe
i�
ally, toward the nature of this di�
ulty and its solution.The ele
tromagneti
 �eld is generated by ele
tri
 
harges, usually in motion. The motion of theele
tri
 
harges in usual matter is non-relativisti
, sin
e their velo
ity is mu
h smaller than thelight velo
ity c. For a su�
iently dense 
ondensed matter the motion of the ele
tri
 
harges isalso in the quasi-
lassi
al limit of the quantum motion, so a quantum-statisti
al average is ap-propriate. Therefore, we get a 
lassi
al (both non-quantum and non-relativisti
) motion for theele
tri
 
harges in matter and, 
onsequently, a 
lassi
al ele
tromagneti
 �eld. We show here thatthe ele
tromagneti
 �eld in matter admits a me
hani
al representation in terms of the matterpolarization, whi
h 
an be de
omposed in harmoni
 os
illators. The polarization is identi�ed asbeing represented by a displa
ement �eld in the position of the mobile 
harges. The 
olle
tivemotion of the polarization is governed, in general, by three distin
t, in�nite sets of harmoni
os
illators, 
orresponding to longitudinal, plasmon (one set) and transverse, polariton (two sets)frequen
ies. This 
olle
tive motion 
an be quantized, oferring an example of emergent dynami
s.The ele
tromagneti
 �eld generated by the polarization motion has a 
orresponding me
hani-
al representation in terms of the displa
ement �eld. This representation is given here for theele
tromagneti
 �eld energy, Poynting ve
tor, Lorentz for
e and 
harge-�eld intera
tion energy.The ele
tromagneti
 
oupling between two polarizable bodies is examined in this framework, andthe 
orresponding plasmoni
 and polaritoni
 eigenfrequen
ies are identi�ed. The Casimir andvan der Waals-London for
es are derived, with 
oe�
ients whi
h depend on the nature of thetwo bodies. It is shown that these for
es arise from the va
uum �u
tuations of the polarization.It is also shown that the ele
tromagneti
 �eld (generated by these �u
tuations) brings its own
onribution to the for
es a
ting between two polarizable bodies. When a diele
tri
, at least, ispresent, the ele
tromagneti
-�eld for
e goes like −1/d2, where d is the separation distan
e betweenthe two bodies. When a 
ondu
tor, at least, is present, the ele
tromagneti
-�eld for
e is of Casimirtype (∼ −1/d4). All these for
es are estimated here and their range of validity is given.The important surfa
e (or shape) e�e
ts are not a

ounted for within the present approa
h, asa 
onsequen
e of the use of Fourier de
ompositions, whi
h do not represent 
orre
tly the sharpsurfa
es (e.g., the well-known Gibbs phenomenon). In order to in
lude su
h surfa
e e�e
ts, weshould keep the dependen
e on the dire
t-spa
e 
oordinate transverse to the surfa
e, whi
h is amu
h more di�
ult task. In this 
ontext, the parti
ular 
ase of point-like, δ-parti
les is analyzed.2 Matter polarizationWe adopt a generi
 model of matter polarization 
onsisting of N identi
al mobile 
harges q, withmass m and density n = N/V , moving in a rigid, neutralizing ba
kground of volume V . A smalldispla
ement �eld u(r, t) in the position r of these 
harges gives, at time t, a lo
al density imbalan
e
δn = −ndivu and a polarization 
harge density ρ = −nqdivu. We 
an see that P = nqu is thepolarization. Therefore, the displa
ement �eld u(r, t) is a representation for the polarization �eld
P(r, t). The displa
ement �eld obeys the Newton law of motion

mü = qE − mω2
cu− mγu̇ + qE0 , (1)



J. Theor. Phys. 3where E is the polarization ele
tri
 �eld generated by the polarization 
harges (and 
urrents),
ωc is a 
hara
teristi
 frequen
y, γ is a (small) damping fa
tor and E0 is an external ele
tri
�eld. This is the well-known Lorentz-Drude (plasma) model of polarizable matter,[39℄-[43℄ whi
hassumes a homogeneous, isotropi
 matter, without spatial dispersion, represented by a �eld ofharmoni
 os
illators of frequen
y ωc. Taking the temporal Fourier transform of equation (1),with Et = E + E0 the total ele
tri
 �eld, we get the ele
tri
 sus
eptibility χ(ω) = P/Et and thediele
tri
 fun
tion

ε(ω) = 1 + 4πχ(ω) =
ω2 − ω2

c − ω2
p

ω2 − ω2
c + iωγ

=
ω2 − ω2

L

ω2 − ω2
T + iωγ

, (2)where ωp =
√

4πnq2/m is the plasma frequen
y. This is also well known as the Lydane-Sa
hs-Teller diele
tri
 fun
tion,[44℄ with the longitudinal frequen
y ωL =
√

ω2
c + ω2

p and the transversefrequen
y ωT = ωc. The model 
an be generalized by in
luding the spatial dispersion, several
hara
teristi
 frequen
ies ωc, or by adding an external magneti
 �eld, et
. It is worth notingthe absen
e of the magneti
 part of the Lorentz for
e in equation (1), a

ording to the non-relativisti
 motion of the slight displa
ement u. It is easy to see that, apart from relativisti

ontributions, it would introdu
e non-linearities in equation (1), whi
h are beyond our assumptionof a small displa
ement u. Using spatial Fourier transforms, this approximation 
an be formulatedas ku(k) ≪ 1, where k is the waveve
tor.In general, an additional displa
ement u0 
an be introdu
ed in su
h a model, originating in external
auses, subje
ted to 
ollisions and obeying a di�erent, averaged equation of motion, mu̇0 = qEtτ ,where τ is a relaxation time; as it is well known, it gives rise to a density of "
ondu
tion" 
urrent
j0 = nqu̇0 = (nq2τ/m)Et and the 
ondu
tivity σ = nq2τ/m. We 
an see that it implies ωc = 0 inequation (1), a 
ondition whi
h de�nes the 
ondu
tors; for diele
tri
s, ωc 6= 0. We leave aside the
ondu
tion 
urrent j0.3 Ele
tromagneti
 �eldThe displa
ement u generates also a density of polarization 
urrent j = nqu̇, whi
h satis�esthe 
ontinuity equation ρ̇ + divj = 0. This equation allows an additional 
urrent, written as
jm = c · curlM (sin
e divjm = 0); it is easy to see, from Maxwell's equations, that M is themagnetization. Therefore, the ele
tromagneti
 sour
es are represented both by the displa
ement
u and magnetization M. These �elds (u and M) are determined, u by equation (1) and Mby the well-known equation of motion Ṁ = γB × M for the magnetization, where B is themagneti
 �eld and γ is the gyromagneti
 fa
tor. With su
h a representation for the sour
es, theMaxwell equations in matter are 
ompletely soluble. Here, we leave aside the magnetization, and
onsider only non-magneti
 matter. With the polarization 
harge density ρ and 
urrent density jestablished above, and with usual notations, the Maxwell equations read

divE = 4πρ = −4πdivP = −4πnqdivu , divH = 0 ,

curlE = −1
c

∂H
∂t

, curlH = 1
c

∂E
∂t

+ 4π
c
j = 1

c
∂E
∂t

+ 4π
c
Ṗ = 1

c
∂E
∂t

+ 4π
c
nqu̇ .

(3)We solve these equations, together with equation (1), for the ele
tri
 �eld E, the magneti
 �eld
H and the displa
ement �eld u (polarization P = nqu).To this end, as usually, we introdu
e the ele
tromagneti
 potentials A and Φ, through E =
−(1/c)∂A/∂t − gradΦ and H = curlA, subje
ted to the Lorenz gauge divA + (1/c)∂Φ/∂t = 0,



4 J. Theor. Phys.and use Fourier transforms of the type
u(r, t) =

1

2π
√

N

∑

k

∫

dωu(k, ω)e−iωt+ikr (4)(and similar transforms for all the other fun
tions of position and time). We note the well-knownsymmetry property u∗(−k,−ω) = u(k, ω), 
orresponding to the real-valued �eld u(r, t). As itis well known, su
h a Fourier representation does not a

ount for surfa
e e�e
ts, i.e. e�e
tsasso
iated with sharp surfa
es. In order to a

ount for �nite-size (surfa
e) e�e
ts an expansion ineigenfun
tions of the lapla
ian (with outgoing-waves boundary 
onditions at in�nity) is appropiate,preserving the dependen
e on the dire
t-spa
e 
oordinate perpendi
ular to the surfa
e. It is easyto see that, in general, su
h a de
omposition implies 
urvilinear 
oordinates, and leads to seriouste
hni
al di�
ulties. The density of these eigenmodes (whi
h appears in summations over states)di�ers, in general, from the density of the plane waves whi
h appear in the Fourier transformations.Therefore, additional 
ontributions, whi
h depend on the extension and the shape of the bodies,may appear. In addition, the sharpness of the surfa
es generates the well-known "depolarizing"fa
tors, espe
ially in the long-wavelength limit, whi
h 
annot be taken into a

ount by Fouriertransforms.As it is well known, the Maxwell equations (3) lead to the wave equations with sour
es
1

c2

∂2Φ

∂t2
− ∆Φ = 4πρ ,

1

c2

∂2A

∂t2
− ∆A =

4π

c
j (5)for the ele
tromagneti
 potentials. Taking the Fourier transforms, we get

A(k, ω) = 4πiλF (k, λ)u(k, ω) (6)and Φ(k, ω) = kA(k, ω)/λ, where λ = ω/c, F (k, λ) = (λ2 − k2)−1 is the Green fun
tion (for theHelmholtz equation) and the fa
tor nq is left aside (it is restored in the �nal formulae). The latterrelationship is the Lorenz gauge, whi
h expresses the 
harge 
onservation, i.e. the 
ontinuityequation. In order to a

ount for the retardation, the fun
tion F must a
tually be written as
F (k, λ) = (λ2 − k2 + iλ0+)−1, as it 
an be seen by taking the Fourier transforms of the retardedKir
ho�'s potentials

Φ(r, t) =
∫

dr′ ρ(r′,t−|r−r′|/c)
|r−r′|

,

A(r, t) = 1
c

∫

dr′ j(r
′,t−|r−r′|/c)
|r−r′|

, .

(7)whi
h are solutions of equations (5). For simpli
ity, we often leave aside the arguments k, ω inthe Fourier transforms. Making use of equation (6), we get straightforwardly
E = −4πF

[

λ2u − k(ku)
]

, H = −4πλFk × u . (8)It is 
onvenient to introdu
e the longitudinal displa
ement u1 = ku/k and the transverse displa
e-ment u2 = k⊥u/k, where k⊥ is a ve
tor perpendi
ular to k and of the same magnitude as k, andto write u = u1k/k + u2k⊥/k. We note the symmetry property −u∗
1,2(−k,−ω) = u1,2(k, ω). Insummations over states we take into a

ount that there are in fa
t two transverse 
omponents u2of the displa
ement, 
orresponding to two polarizations. Making use of these notations we get

E1 = −4πu1 , E2 = −4πλ2Fu2 . (9)



J. Theor. Phys. 5We 
an see that the longitudinal 
omponent of the internal (polarization) �eld 
ompensates thelongitudinal 
omponent of the polarization, as expe
ted, while the transverse polarization intro-du
es a spatial dispersion. Introdu
ing these �elds in the equation of motion (1) we get
(ω2 − ω2

c − ω2
p + iωγ)u1 = − q

m
E01 ,

(ω2 − ω2
c − ω2

pλ
2F + iωγ)u2 = − q

m
E02 ,

(10)when
e the longitudinal and transverse polarizabilities
α1 = E01/P1 = − 1

4π

ω2
p

ω2−ω2
c−ω2

p+iωγ
,

α2 = E02/P2 = − 1
4π

ω2
p

ω2−ω2
c−ω2

pλ2F+iωγ
.

(11)It is worth noting that for �nite-size bodies the plasma frequen
y in equations (10) is modi�ed bythe "depolarizing" fa
tors. For instan
e, for a half-spa
e it a
quires the well-known form ωp/
√

2of the surfa
e plasmon,[45℄ for a sphere in the dipole approximation it be
omes the spheri
alplasmon ωp/
√

3.[46℄ For uniform �elds (in the long-wavelength limit k → 0) the two polarizabilities
oin
ide, as expe
ted. Making use of equations (10) and (11) we get straightforwardly the ele
tri
sus
eptibility
χ =

α1

1 − 4πα1

=
α2

1 − 4πλ2Fα2

= − 1

4π

ω2
p

ω2 − ω2
c

, (12)the same for both longitudinal and transverse �eld 
omponents, as given by equation (2). We
an see that the ele
tri
 sus
eptibility does not exhibit the spatial dispersion, in 
ontrast with thetransverse polarizability.4 Polarization eigenmodesThe longitudinal polarizability does not depend on the waveve
tor k. Its singularity (leaving asidethe damping parameter γ) gives the longitudinal ("plasmon") mode Ω1 = ωL =
√

ω2
c + ω2

p, asresulting from two os
illatory motions, one with the lo
al, 
hara
teristi
 frequen
y ωc and another
olle
tive, driven by the polarization �eld, with the frequen
y ωp. It 
an also be obtained from thezero of the diele
tri
 fun
tion, ε = 0. The singularities of the transverse polarizability 
orrespondto propagating polaritons. They are given by the well-known dispersion relation εω2 = c2k2.For ωc = 0 (
ondu
tors), they a
quire the well-known form Ω2(k) =
√

ω2
p + c2k2, whi
h again,exhibits the 
hara
teristi
 pattern of two os
illatory motions (plasmons with frequen
y ωp andphotons with frequen
y ck). For ωc 6= 0, we have two polaritoni
 bran
hes, Ω2,3(k), 
orrespondingto the o

urren
e of a third for
e, with frequen
y ωc. In the long-wavelenght limit (k → 0) theybehave like

Ω2 ≃
√

ω2
L + ω2

pc
2k2/ω2

L , Ω3 ≃
ωT

ωL

ck , (13)while in the short-wavelenght limit (k → ∞) they go like
Ω2 ≃

√

c2k2 + ω2
p , Ω3 ≃ ωT = ωc . (14)We 
an see that the frequen
y Ω3 in the long-wavelength limit 
orresponds to "photons" witha renormalized phase velo
ity v = cωT /ωL (Ω3 = vk). These two polaritoni
 bran
hes arise
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Figure 1: The polarization longitudinal eigenmode Ω1 and the two transverse eigenmodes Ω2,3,a

ording to equations (10). We note the velo
ity v of the renormalized "photons" (ck is thephoton frequen
y).from the transverse mode ωc and the photoni
 mode ck, splitted in the region ωc ≃ ck by theplasmoni
 
oupling ωp. If ωp is a small parameter, we may take approximately ωc and ck for thetwo transverse frequen
ies, as for non-polarizable matter.For the sake of the generality we preserve three distin
t frequen
ies, Ω1 for the longitudinal
omponent and Ω2,3(k) for the transverse 
omponents. They are shown s
hemati
ally in Fig. 1.A

ording to equations (10) the frequen
ies Ω1,2,3 are the eigenfrequen
ies of three types of har-moni
 os
illators, given by
u1(k, ω) = 2πδ(ω − Ω1)u1(k) ,

u2(k, ω) = 2πδ(ω − Ω2)u
(1)
2 (k) + 2πδ(ω − Ω3)u

(2)
2 (k) ,

(15)or
u1(k, t) = u1(k)e−iΩ1t ,

u2(k, t) = u
(1)
2 (k)e−iΩ2t + u

(2)
2 (k)e−iΩ3t .

(16)Equations (15) and (16) in
lude only the positive frequen
ies. The negative frequen
ies −Ω1,2,3are in
luded whenever the 
ase. We emphasize that the fun
tions u1(k, ω) and u
(1,2)
2 (k, ω) aresolutions of equations (10) for a vanishing external �eld. Making use of equations (9), we get the�eld generated by the polarization

E1(k, t) = −4πu1(k)e−iΩ1t ,

E2(k, t) = −4π
Ω2

2
−ω2

c

ω2
p

u
(1)
2 (k)e−iΩ2t − 4π

Ω2

3
−ω2

c

ω2
p

u
(2)
2 (k)e−iΩ3t .

(17)A

ording to equations (16), the dynami
s of the 
oordinates u1(k, t), u
(2,3)
2 (k, t) is governed by aharmoni
-os
illator hamiltonian

H =
∑

k

[

1
2m

|p1|2 + 1
2
mΩ2

1 |u1|2
]

+
∑

k

[

1
2m

∣

∣

∣
p

(1)
2

∣

∣

∣

2

+ 1
2
mΩ2

2

∣

∣

∣
u

(1)
2

∣

∣

∣

2
]

+

+
∑

k

[

1
2m

∣

∣

∣
p

(2)
2

∣

∣

∣

2

+ 1
2
mΩ2

3

∣

∣

∣
u

(2)
2

∣

∣

∣

2
]

,

(18)



J. Theor. Phys. 7where p1 and p
(1,2)
2 are the 
orresponding momenta (here the negative frequen
ies are automati
allyin
luded). By taking the inverse (spatial) Fourier transform we may get a very 
ompli
atedintera
tion, involving the displa
ement �eld u(r, t), generated by the polarization �eld in the dire
tspa
e. More interesting, we 
an quantize the motion of the harmoni
 os
illators des
ribed by thehamiltonian given above. For instan
e, the mean square displa
ements are given by equationslike |u1|2 = (~/mΩ1)(n1 + 1/2), where n1 is the quantum number (and ~ is Plan
k's 
onstant).These os
illators have also an energy of the form ~Ω1(n1 + 1/2) (in
luding the zero-point energy

~Ω1/2), et
. We 
an also take a statisti
al average 
orresponding to a given temperature, or we
an a

ount for the quantum-statisti
al �u
tuations. A

ording to the results given above, theinternal, polarization �eld 
an be represented entirely in terms of the 
oordinates u1 and u
(1,2)
2 , thusa
quiring a me
hani
al representation. It is worth noting that the quantum numbers n1,2,3 dependon the waveve
tor k (as well as the frequen
ies Ω2,3(k), whi
h depend only on the magnitude kof the waveve
tor). The energy quanta asso
iated with the frequen
ies Ω1,2,3 are mu
h higherthan the usual temperatures, so we may negle
t the temperature e�e
ts, and limit ourselves tothe zero-point 
ontributions (va
uum �u
tuations), ex
ept for the long-wavelength limit of thefrequen
y Ω3 = vk, whose 
ontribution, usually, is 
omparatively small.By usual pro
edure, from Maxwell's equations (3) we get the well-known energy 
onservation

1

8π

∂

∂t
(E2 + H2) +

c

4π
div(E× H) = −nqEu̇ , (19)where the rhs is the rate of 
hange of the density of the kineti
 energy of the mobile 
harges. Wemay write equation (19) as

∂

∂t
(u + t) = −divs , (20)where u = (E2 + H2)/8π is the density of the ele
tromagneti
 �eld energy, t = nmu̇2/2 is thedensity of kineti
 energy and s = c(E ×H)/4π is the density of the Poynting ve
tor.We estimate below the time averages of total quantities, like the energy

U =
1

8πT

∫

dtdr(E2 + H2) , (21)where T is a time su�
ietly long in 
omparison with any relevant frequen
y. Making use of theFourier transforms and of equations (8) and (9) we get straightforwardly
U =

nq2

T

∑

k

∫

dω

[

|u1|2 + 2
ω2

ω2 − c2k2
|u2|2

]

, (22)where we have introdu
ed the fa
tor 2 for the two transverse polarizations. We insert here thesolutions u1,2(k, ω) given by equations (15) and take into a

ount that δ2(ω) = (T/2π)δ(ω). Inaddition, we note that the negative frequen
ies give the same 
ontribution as the positive ones, sowe a

ount for them by a pre-fa
tor 2. We get
U = 4πnq2

∑

k

[

|u1(k)|2 +
2Ω2

2

Ω2

2
−c2k2

∣

∣

∣
u

(1)
2 (k)

∣

∣

∣

2
]

+

+8πnq2
∑

k

Ω2

3

Ω2

3
−c2k2

∣

∣

∣
u

(2)
2 (k)

∣

∣

∣

2

.

(23)The mean square �u
tuations in equations (23) 
an be repla
ed by their zero-point values of theform |u1(k)|2 = ~/2mΩ1, et
; we get
U = 2π~nq2

m

∑

k

[

1
Ω1

+ 2Ω2

Ω2

2
−c2k2 + 2Ω3

Ω2

3
−c2k2

]

. (24)



8 J. Theor. Phys.The summation (integration) over k in equation (24) is divergent. It is reasonable to introdu
ean ultraviolet 
uto� kc ≃ 1/a, where a is the mean separation distan
e between the mobile
harges (density n = 1/a3). Under these 
ir
umstan
es we may negle
t ck in 
omparison withthe relevant frequen
ies o

urring in equation (24), and repla
e approximately the integrand by
1/Ω ≃ 1/Ω1 + 2/ωL + 2/ωT . We get an estimate

U ≃ N
q2

a

~
2/ma2

~Ω
(25)for the energy. In equation (25) we 
an identify the Coulomb energy q2/a per parti
le, the parti
lelo
alization energy ~

2/ma2 and the energy quanta ~Ω. We 
an see that matter stores a largeamount of ele
tromagneti
 energy, arising from the zero-point motion of its polarization.Similarly, we 
an estimate the Poynting ve
tor
S = c

4πT

∫

dtdrE×H =

= 16πnq2c2
∑

k

[

Ω3

2

(Ω2

2
−c2k2)2

∣

∣

∣
u

(1)
2 (k)

∣

∣

∣

2

+
Ω3

3

(Ω2

3
−c2k2)2

∣

∣

∣
u

(2)
2 (k)

∣

∣

∣

2
]

k .
(26)We 
an see that it is given only by the transverse 
omponents of the displa
ement �eld u and it isdire
ted along the propagation waveve
tors k, as expe
ted. The total kineti
 energy of the mobile
harges is given by

K = n
T

∫

dtdr1
2
mu̇2 =

= 2
∑

k

[

1
2
mΩ2

1 |u1(k)|2 + mΩ2
2

∣

∣

∣
u

(1)
2 (k)

∣

∣

∣

2

+ mΩ2
3

∣

∣

∣
u

(2)
2 (k)

∣

∣

∣

2
]

.
(27)It 
an be estimated as K ≃ N ·~Ω, and we 
an see that it is 
omparable with the ele
tromagneti
energy U . Comparing with equation (18), we 
an see that K in
ludes also the potential energy(therefore it is the total me
hani
al energy) of the harmoni
 os
illators, by the pre-fa
tor 2.It is also well-known that we get the Lorentz for
e

fi = ρEi + 1
c
(j× H)i = ∂jσij − ∂

∂t
gi (28)from the Maxwell equations (3), arising from the stress tensor

σij =
1

4π

[

EiEj + HiHj −
1

2
δij(E

2 + H2)

] (29)and the ele
tromagneti
 momentum g = s/c2, where ρ = −nqdivu and j = nqu̇ are the polariza-tion 
harge and 
urrent densities. We give here the representation of the Lorentz for
e in termsof the displa
ement (polarization) �eld
f = 1

T

∫

dtdr
(

ρE + 1
c
j× H

)

=

= −8πinq2
∑

k

[

|u1(k)|2 +
2Ω2

2

Ω2

2
−c2k2

∣

∣

∣
u

(1)
2 (k)

∣

∣

∣

2

+
2Ω2

3

Ω2

3
−c2k2

∣

∣

∣
u

(2)
2 (k)

∣

∣

∣

2
]

k .
(30)Sin
e, usually, u1 and u

(1,2)
2 depend only on the magnitude of the waveve
tor (and not of itsdire
tion), the for
e given by equation (30) is zero. Similarly, we get the 
harge-�eld intera
tion
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Eint = 1

T

∫

dtdr
(

ρΦ − 1
c
jA
)

=

= 8πnq2
∑

k

[

|u1(k)|2 +
2Ω2

2

Ω2

2
−c2k2

∣

∣

∣
u

(1)
2 (k)

∣

∣

∣

2

+
2Ω2

3

Ω2

3
−c2k2

∣

∣

∣
u

(2)
2 (k)

∣

∣

∣

2
]

.
(31)Writing f =

∑

k f(k) and Eint =
∑

k Eint(k), we 
an see that the Fourier 
omponents of the for
eare given by f(k) = −ikEint(k), as expe
ted.5 Two ele
tromagneti
ally 
oupled bodiesWe 
onsider two polarizable bodies, denoted by a and b, one (a) pla
ed at the origin r = 0 andanother (b) pla
ed at r0. The displa
ement �eld for the body a is ua(r, t) = u(r, t) and thedispla
ement �eld for the body b is denoted by ub(r, t) = v(r − r0, t). We use Fourier transformsof the type given by equation (4), with the pre-fa
tor N−1/2 = (Na + Nb)
−1/2, where Na,b are thenumber of mobile 
harges in body a and, respe
tively, b, both en
losed in the same volume V . Thedensities are given by na,b = Na,b/V . The Fourier transform of ub(r, t) a
quires an exponentialfa
tor e−ikr0, ub(k, ω) = v(k, ω)e−ikr0, whi
h appears in the �eld Eb generated by the body b,a

ording to equations (9). Consequently, we 
an write the equations of motion for ua = u as

(ω2 − ω2
ca − ω2

pa)u1 = ω2
pbv1e

−ikr0 ,

(ω2 − ω2
ca − ω2

paλ
2F )u2 = ω2

pbλ
2Fv2e

−ikr0 .
(32)We 
an see that the b-�eld 
orresponds to the propagating waveve
tor −k and the sour
e pla
edat r0, i.e. it 
ontains the fa
tor ei(−k)r0 = e−ikr0, in a

ordan
e with the retardation requirements(for positive frequen
ies). In order to ful�l the retardation requirements, we must limit ouselvesonly to �elds outgoing from their sour
es. Similar equations of motion 
an be written for ub,where the �eld originates in the sour
e a. In the b-frame this �eld 
orresponds to the propagatingwaveve
tor k and sour
e pla
ed at −r0, i.e. it must 
ontains the fa
tor eik(−r0) = e−ikr0. Inaddition we must restri
t to kr0 > 0 for positive frequen
ies and kr0 < 0 for negative frequen
ies.We get

(ω2 − ω2
cb − ω2

pb)v1 = ω2
pau1e

−ikr0 ,

(ω2 − ω2
cb − ω2

pbλ
2F )v2 = ω2

paλ
2Fu2e

−ikr0 .
(33)We 
an see that the polarizations of the two bodies are 
oupled, through their intera
tion, whi
hdepends on their mutual position r0. The two homogeneous systems of equations (32) and (33)have eigenfrequen
ies whi
h depend on this intera
tion, given by the dispersion equations

[

(ω2 − ω2
ca − ω2

pa)(ω
2 − ω2

cb − ω2
pb) − ω2

paω
2
pbe

−2ikr0
]

u1 = 0 ,

[

(ω2 − ω2
ca − ω2

paλ
2F )(ω2 − ω2

cb − ω2
pbλ

2F ) − ω2
paω

2
pbλ

4F 2e−2ikr0
]

u2 = 0 .
(34)They 
orrespond to the equations

(4π)2αa1,2αb1,2e
−2ikr0 = 1 (35)for the polarizabilities of the two bodies.Equations (34), or (35), require 2kr0 = πn, where n is a positive integer, n = 0, 1, 2.... . Forrealisti
 values of the parameters ωca,b and ωpa,b we get real solutions of these equations for n an
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Ω

k

ωTb

ωTa

ΩT1

ΩT2

ΩL1

ΩL2

ΩT3

ΩT4v

O

ck

Figure 2: The longitudinal (ΩL1,2) and transverse (ΩT1,2,3,4) eigenmodes for twoele
tromagneti
ally-
oupled bodies a and b, as given by the roots of equations (34). The transversemodes ωTa,b = ωca,b are also shown, together with the velo
ity v of the two modes ΩT3,4 (the slopeof the 
urves ΩT3,4 at the origin). ck is the photon frequen
y.even integer, so we set kr0 = πn, n = 0, 1, 2..... The intera
tion shifts the longitudinal modes
ωLa,b of the two bodies, the new longitudinal frequen
ies being given by

Ω2
L1,2 =

1

2

[

ω2
La + ω2

Lb ±
√

(ω2
La − ω2

Lb)
2 + 4ω2

paω
2
pb

] (36)(we note that they do not depend on the waveve
tor k); for 
ondu
tors we have only one longitudi-nal frequen
y ΩL1 =
√

ω2
pa + ω2

pb, but we keep both frequn
ies ΩL1,2 for the sake of the generality.The solution of the �rst equation (34) is given by
u1(k, ω) = 2πδ(ω − ΩL1)u

(1)
1 (k) + 2πδ(ω − ΩL2)u

(2)
1 (k) (37)for kr0 > 0 and a similar 
ontribution for negative frequen
ies and kr0 < 0. The 
oordinate v1 isobtained dire
tly from equations (34).Similarly, from the se
ond equation (34) we get four frequen
ies, in general, for the polaritoni
transverse modes, denoted by ΩT i, i = 1, 2, 3, 4. In the long-wavelengh limit they behave like

Ω2
T1,2 ≃

1

2

[

ω2
La + ω2

Lb ±
√

(ω2
La + ω2

Lb)
2 − 4ω2

caω
2
cb − 4ω2

caω
2
pb − 4ω2

cbω
2
pa

] (38)(plus a small 
ontribution of the form const · k2) and
ΩT3,4 ≃ vk , v = c

ωcaωcb
√

ω2
caω

2
cb + ω2

caω
2
pb + ω2

cbω
2
pa

; (39)for k → ∞,
Ω2

T1,2 ≃ c2k2 + ω2
pa + ω2

pb , ΩT3,4 ≃ ωca,b . (40)For small 
ouplings (ωpa,b ≪ ωca,b) these frequen
ies redu
e approximately to the two transversemodes ωca,b and two photon mode ω ≃ ck. For 
ondu
tors (ωca = ωcb = 0) we get only onepolaritoni
 bran
h ΩT =
√

ω2
pa + ω2

pb + c2k2. The eigenfrequen
ies ΩL1,2 and ΩT1,...4 of two ele
-tromagneti
ally 
oupled bodies a and b are shown s
hemati
ally in Fig. 2.The solution of the se
ond equation (34) 
an be written as
u2(k, ω) = 2π

4
∑

i=1

δ(ω − ΩT i)u
(i)
2 (k) (41)



J. Theor. Phys. 11for kr0 > 0 and a 
orresponding de
omposition for negative frequen
ies and kr0 < 0. The
oordinate v2 is obtained dire
tly from the se
ond equation (34) as a fun
tion of u2.It is worth 
omputing the Lorentz for
e a
ting on one body on behalf of the other; for instan
e,the for
e by whi
h body a a
ts upon body b. We follow the same pro
edure as that whi
h led toequation (30) and use the 
oupled equations (32) and (33) in order to eliminate the 
oordinates
v1,2 in favour of the 
oordinates u1,2. We get

fab = 1
T

∫

dtdr
(

ρbEa + 1
c
jb × Ha

)

=

== −2inanbq
2V

Tω2

pb
N

∑

k

∫

dω(ω2 − ω2
ca − ω2

pb) |u1(k, ω)|2 k−

−4inanbq2V
Tω2

pb
N

∑

k

∫

dω(ω2 − ω2
ca − ωpaλ

2F ) |u2(k, ω)|2 k =

=
inanbq

2ω2
paV

2πTω2

pb
N

∑

k

∫

dω
[

1
αa1

|u1(k, ω)|2 + 2
αa2

|u2(k, ω)|2
]

k ,

(42)
where αa1,2 are the polarizabilities of the body a, as given by equations (11). If we eliminatethe 
oordinates u1,2 in favour of the 
oordinates v1,2 (by using equations (32) and (33), we get asimilar expression for the for
e fab, with a and b inter
hanged; this 
orresponds to the for
e fbaand, sin
e the sign does not 
hange, we 
on
lude that fab = fba = 0. Indeed, when introdu
ing thede
ompositions given by equations (37) and (41), we note that for positive frequen
ies kr0 > 0,while kr0 < 0 for negative frequen
ies. Sin
e both 
ontributions are equal, we 
an write

fab = −4πinanbq2V
ω2

pb
N

∑

k

∑2
i=1(Ω

2
Li − ω2

La)
∣

∣

∣
u

(i)
1 (k)

∣

∣

∣

2

k

−8πinanbq
2V

ω2

pb
N

∑

k

∑4
i=1(Ω

2
T i − ω2

ca −
ω2

paΩ2

Ti

Ω2

Ti
−c2k2 )

∣

∣

∣
u

(i)
2 (k)

∣

∣

∣

2

k ,

(43)where the summation extends over the whole k-spa
e. We 
an see, indeed, that fab = 0, as longas the amplitudes u
(i)
1,2 do not depend on the dire
ion of the waveve
tor k.6 Casimir for
eEquations (32) and (33) des
ribe two pairs of 
oupled harmoni
 os
illators. One pair, say v1,2is 
ompletely determined by the motion of the pair u1,2; its energy is taken up in the modi�edfrequen
ies given by the dispersion equations (34). Therefore, we have, in fa
t, only one pair ofharmoni
 os
illators for the two 
oupled bodies a and b, of 
oordinates u1,2 and eigenfrequen
ies

ΩLi, i = 1, 2 and ΩT i, i = 1, 2, 3, 4, governed by a harmoni
-os
illator hamiltonian of the typegiven in equation (18). Its ground-state (zero-point) energy reads
E =

∑

k

(

2
∑

i=1

1

2
~ΩLi +

4
∑

i=1

~ΩT i(k)

)

, (44)where we have introdu
ed a fa
tor 2 in order to a

ount for the two transverse polarizations. Wemay 
hoose to eliminate u1,2 in favour of the 
oordinates v1,2. The energy given by equation (44)remains un
hanged. Both situations are equally valid, though they introdu
e an asymmetry, inthe sense that in ea
h 
ase one pair of 
oordinates are 
ompletely determined by the other pair.
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ies are obtained from equations (34) by requiring kr0 = πn. It is 
onvenient tointrodu
e the 
omponent κ of the waveve
tor k along the position ve
tor r0, whose magnitudeis denoted by d (r0 = d). Therefore, we have κn = πn/d and k2
n = k2

⊥ + κ2
n, where k⊥ is thetransverse waveve
tor, i.e. the 
omponent of the waveve
tor k perpendi
ular to r0. The energygiven by equation (44) 
an then be written as

E =
S

2π

∑

n=0

∫

dk⊥k⊥

(

2
∑

i=1

1

2
~ΩLi +

4
∑

i=1

~ΩT i(kn)

)

, (45)where S is the transverse area. We estimate the 
hange brought about by the �nite distan
e d inthe energy E by using the Euler-Ma
laurin formula:[47℄
∆E =

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!
f (2m−1)(0) , (46)where Bm are the Bernoulli's numbers and

f(κ) =
S

2π

∫

dk⊥k⊥

(

2
∑

i=1

1

2
~ΩLi +

4
∑

i=1

~ΩT i(
√

k2
⊥ + κ2)

)

. (47)It is easy to see that the longitudinal frequen
ies ΩLi do not 
ontribute to equation (46). Similarly,the transverse frequen
ies ΩT1,2, whi
h, a

ording to equation (38), go like ∼
√

const + κ2 in thelong-wavelength limit, do not 
ontribute to equation (46), sin
e all their odd-order derivatives arevanishing for κ = 0. We are left with the 
ontributions arising from ΩT3,4, whi
h behave like vkin the long-wavelength limit, a

ording to equation (39). Equation (46) be
omes
∆E =

~vS

2π

∑

m=1

(−1)mBm(π/d)2m−1

(2m)!

(
∫

κ2

du
√

u

)(2m−1)

0

, (48)where we have introdu
ed u = k2
⊥ + κ2. The only 
ontribution to equation (48) 
omes from thethird-order derivative. We get (B2 = 1/30)

∆E = −π2
~vS

360
· 1

d3
(49)and an attra
tive for
e

F = −π2
~vS

120
· 1

d4
(50)a
ting between the two bodies. This is the Casimir for
e, arising between two polarizable bodiesfrom the polarization va
uum �u
tuations. It di�ers from the 
lassi
al formula F = −π2

~cS/240d4,derived for two 
ondu
ting half-spa
es,[2, 8℄ by a fa
tor 2, arising from the two bran
hes ΩT3,4(whi
h behave identi
ally in the long-wavelength limit), as well as by the presen
e of the renor-malized velo
ity v instead of c. The nature of the bodies is in
orporated in the polariton velo
ity
v = c

ωcaωcb
√

ω2
caω

2
cb + ω2

caω
2
pb + ω2

cbω
2
pa

(51)as given by equation (39). It is worth noting that this velo
ity v di�ers from the 
orrespondingpre-fa
tor in the formula given in Ref. 8 for two diele
tri
s. For identi
al bodies there remainsonly one vk-bran
h, with velo
ity v given by equation (51) for ωc,pa = ωc,pb. The formula (50) forthe for
e should then be modi�ed a

ordingly.
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t of the temperature T = 1/β 
an be in
orporated in equation (48) by the 
hange
∫

κ2

du
√

u →
∫

κ2

du
√

u coth

[

1

2
β~v

√
u

]

. (52)For realisti
 values of the parameters we have β~v/d ≫ 1, so we get a temperature 
orre
tionfa
tor ≃ coth(β~v/d) in the expression of the for
e. In the opposite limit (very high temperature,
β~v/d ≪ 1) the for
e is vanishing.The situation des
ribed above 
orresponds to two diele
tri
s (ωca,b 6= 0). Let us assume thatwe have a 
ondu
tor a (ωca = 0) and a diele
tri
 b (ωcb 6= 0). The two transverse modes ΩT3,4disappear in this 
ase, and the two longitudinal modes ΩL1,2 do not 
ontribute to the energy. Weare left with the two transverse modes ΩT1,2, whi
h, in the long-wavelength limit go like

Ω2
T1,2 ≃ Ω2

L1,2 + v2
1,2k

2 , (53)where
v2
1,2 =

1

2
c2



1 ±
ω2

pa + ω2
pb − ω2

cb
√

(ω2
pa + ω2

pb + ω2
cb)

2 − 4ω2
paω

2
cb



 . (54)It is worth noting that, while ΩT1 goes like ∼ ck for k → ∞, the mode ΩT2 approa
hes ωcb in thesame limit. The frequen
ies ΩT1,2 given by equation (53) 
an be written as
ΩT1,2 = v1,2

√

k2
⊥ + Ω2

L1,2/v
2
1,2 + κ2 (55)and we 
an see that k⊥ may a
quire imaginary values, su
h that k2

⊥ + Ω2
L1,2/v

2
1,2 = k

′2
⊥ behaves asthe square of a new transverse waveve
tor k

′

⊥ ranging from 0 to ΩL1,2/v1,2 (a similar situation fortwo diele
tri
s would imply imaginary frequen
ies Ω3,4 whi
h are not physi
ally a

eptable). Thetransverse k⊥-waves are damped waves in this 
ase. It is easy to see that the Casimir for
e will havethe same expression as given by equation (50) above, with the proper repla
ement of the velo
ity
v by (v1 +v2)/2. The same situation holds for two 
ondu
tors, where we have only one polaritoni
bran
h ΩT1 =

√

ω2
pa + ω2

pb + c2k2. In this 
ase, we get the 
lassi
al result F = −π2
~cS/240d4(
orresponding to two half-spa
es).7 van der Waals-London for
eIn the non-retarded regime λ = 0, whi
h 
orresponds to k = 0 for free waves. It follows that

κ = −ik⊥ a
quires purely imaginary values (the waves are damped along the r0). The se
ondequations (34) give the transverse modes ωca,b, whi
h do not depend on k⊥ and, 
onsequently donot 
ontribute to the 
hange in energy. We are left with the longitudinal modes, given by the �rstequation (34) whi
h reads now
(ω2 − ω2

La)(ω
2 − ω2

Lb) − ω2
paω

2
pbe

−2k⊥d = 0 . (56)For realisti
 situations we may take ωLa ≃ ωLb and negle
t (ω2
La−ω2

Lb)
2 in 
omparison with ω2

paω
2
pb.Further, we may expand the solutions of equation (56) in powers of ωpaωpbe

−k⊥d, and subtra
t theenergy 
orresponding to d → ∞. We get the approximate 
hange in the ground-state (zero-point)energy
∆E ≃ − ~S

4π
√

2

ω2
paω

2
pb

(ω2
La + ω2

Lb)
3/2

∫

0

dk⊥k⊥e−2k⊥d (57)
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e
F ≃ − ~S

8π
√

2

ω2
paω

2
pb

(ω2
La + ω2

Lb)
3/2

· 1

d3
. (58)We note that the pre-fa
tor in equation (58) di�ers from the result given in Ref. 8.Comparing equations (50) and (58), we get a 
rossover distan
e of the order d1 ≃ c/ωp, whi
hseparates the ranges of the Casimir and van der Waals-London for
es (ωp being a frequen
y of theorder of the plasma frequen
ies of the two bodies).It is worth noting the solutions of equation (56) for two identi
al 
ondu
tors: Ω2 = ω2

p(1 ± e−kd).They di�er from the well-known solutions Ω2 = ω2
p(1 ± e−kd)/2 
orresponding to two half-spa
esseparated by distan
e d, whi
h exhibit the surfa
e plasmons (for instan
e, for d → ∞ we getthe well-known surfa
e plasmon ωp/

√
2). This is a parti
ular example that our approa
h does nota

ount for surfa
e e�e
ts, as we dis
ussed before. The surfa
e e�e
ts may bring signi�
ant 
hangesboth in numeri
al 
oe�
ients, as well as in the d-dependen
e of the for
es, espe
ially through thedepolarizing �elds the surfa
es generate, with 
ontributions that may di�er for identi
al, or distin
tbodies. Su
h e�e
ts are more signi�
ant for the non-retarded regime.In order to make this situation more 
lear, we resort here to another well-known de
ompositionof the spheri
al wave. Indeed, we preserve the 
oordinate z along the dire
tion between the twobodies, and use only transverse Fourier transforms. The de
omposition reads[45, 48℄

eiλR

R
=

i

2π

∫

dk
1

κ
eikreiκ|z| . (59)If we further take the Fourier transform with respe
t to the z-
oordinate we get the fun
tion

F (k, λ) used here. Now, the derivatives of the fun
tion eiκ|z| are given by
∂

∂z
eiκ|z| = iκsgn(z)eiκ|z| ,

∂2

∂z2
eiκ|z| = 2iκδ(z) − κ2eiκ|z| . (60)We 
an see easily that, while the Fourier transform reprodu
es the �rst derivative of the fun
tion

eiκ|z|, it does not reprodu
e the se
ond derivative (as a 
onsequen
e of the Gibbs phenomenon inthe Fourier transform of the fun
tion sgn(z)). Su
h se
ond-derivative-terms are responsible forthe surfa
e 
harges.8 Ele
tromagneti
 �eld energyIt is worth examining the ele
tromagneti
 �eld energy, as given by equation (21), for the total�eld generated by the two bodies. The �elds are given by E = Ea + Eb and H = Ha + Hb, where
Ea,b and Ha,b are given by equation (8) and (9). We get straightforwardly

U =
nq2

T

∑

k

∫

dω
(

|w1|2 + 2λ2F |w2|2
)

, (61)where w = (na/n)u + (nb/n)v. We 
hoose �rst to eliminate the 
oordinates v1,2 in favour of the
oordinates u1,2, by using equations (32). Introdu
ing the zero-point mean values for |u1,2|2, weget
U = π~n2

aq2

nm

∑

k

∑2
i=1

(

Ω2

Li
−ω2

ca

ω2
pa

)2
1

ΩLi
+

+2π~n2
aq2

nm

∑

k

∑4
i=1

(

Ω2

Ti
−ω2

ca

ω2
pa

)2
Ω2

Ti
−c2k2

Ω3

Ti

.

(62)



J. Theor. Phys. 15If we eliminate u1,2 in favur of the 
oordinates v1,2, and use the zero-point mean square �u
tuationsfor |v1,2|2, we get a similar equation for U , with a and b inter
hanged. Sin
e both situations areequally valid we take the mean value, 
orresponding to a symmetrized 
ontribution arising fromthe two bodies.Let us assume that we have two diele
tri
s. It is easy to see that the 
hange in energy broughtby the �nite distan
e d 
omes from the two bran
hes ΩT3,4 = vk of "renormalized" photons. The
orresponding energy 
an be written as
U3,4 ≃ −2π~q2

nm





(

naω
2
ca

ω2
pa

)2

+

(

nbω
2
cb

ω2
pb

)2




c2 − v2

v3

∑

n=0

∑

k⊥

1
√

k2
⊥ + κ2

n

. (63)We apply the usual pro
edure of extra
ting the �nite 
hange in energy given by the Euler-Ma
laurin formula (46). The 
ontribution 
omes from the �rst-order derivative in equation (46).We get
∆U = −π~q2S

12nm





(

naω
2
ca

ω2
pa

)2

+

(

nbω
2
cb

ω2
pb

)2




c2 − v2

v3
· 1

d
. (64)We 
an see that the ele
tromagneti
 �eld generates an attra
tive for
e (v < c) whi
h goes like

−1/d2; it a
ts at long distan
e, beyond d2 ≃ a
√

mc2

q2/a
, where mc2 is the rest energy of the mobile
harges and q2/a is their Coulomb energy (a being the mean separation distan
e between the
harges). It is easy to see that d2 = c

√

a3/(q2/m) ≃ c/ωp ≃ d1, i.e. the −1/d4-Casimir for
eand the −1/d2-ele
tromagneti
 �eld for
e are 
ompetitive for moderate distan
es. A

ording toequation (52), the e�e
t of the temperature on this d2-for
e 
ould more visible, as the for
e a
tsat a longer distan
e.If body a is a 
ondu
tor (ωca = 0), then its 
ontribution to the 
hange in the ele
tromagneti
 �eldenergy goes like −1/d3 (as for a Casimir for
e). The ratio of this for
e to the Casimir for
e is ofthe order of (~2/ma2)(q2/a)/(~ωp)
2. The 
ontribution of the diele
tri
 (ωcb 6= 0) to the energygoes like −1/d; it is given by the 
orresponding term (ωcb) in equation (64). Both 
ontributionsarise from the damped ΩT1,2-modes. Finally, for two 
ondu
tors, the ele
tromagneti
 �eld energy
ontributes a Casimir for
e, given by F = −~cS/480πd4. It is mu
h smaller (by fa
tor 1/2π3)than the Casimir for
e F = −π2

~cS/240d4 arising from polarization.9 Point-like parti
lesWe spe
ialize the above 
al
ulations to point-like, δ-parti
les, sin
e su
h lo
alized parti
les exhibit
ertain important parti
ularities. Let us 
onsider a displa
ement �eld given by
u(r, t) = u(t)a3δ(r) (65)for a δ-parti
le of volume a3 pla
ed at r = 0. A

ording to equation (4), its Fourier transform is

u(k, ω) =
a3
√

N

V
u(ω) , (66)where N is the number of mobile 
harges in the parti
le (density n = N/a3). The 
harge and
urrent densities are given by

ρ = −i
nqa3

√
N

V
ku , j = −iω

nqa3
√

N

V
u . (67)
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tri
 and magneti
 �elds
E = −4πF

nqa3
√

N

V

[

λ2u− k(ku)
]

, H = −4πλF
nqa3

√
N

V
k × u (68)and the 
omponents

E1 = −4π
nqa3

√
N

V
u1 , E2 = −4πλ2F

nqa3
√

N

V
u2 . (69)The internal, polarization �eld E in the equation of motion (1) does not appear anymore in this
ase, in view of the la
k of spatial extension of the δ-parti
le. We 
an use the external �eld E0 atthe lo
ation r = 0 of the parti
le, and the equation of motion reads (with γ = 0)

(ω2 − ω2
c )u(ω) = − q

m
E0(r = 0, ω) . (70)We 
an see that there is only one polarizability, whi
h 
oin
ides with the ele
tri
 sus
eptibiity

α(ω) = χ(ω) = − 1

4π

ω2
p

ω2 − ω2
c

. (71)In the absen
e of an external �eld equation (70) has harmoni
-os
illator solutions
u(ω) = 2πδ(ω − ωc)u , (72)where u are now 
onstant amplitudes, 
orresponding to u(t) = ue−iωct. Their dynami
s is governedby the hamiltonian
H =

1

2m
p2 +

1

2
mω2

cu
2 , (73)where p is the momentum. The zero-point mean square �u
tuations are ~/2mωc for ea
h 
ompo-nent.Following the 
al
ulations whi
h led to equation (23), the energy of the ele
tromagneti
 �eld 
anbe written as

U = 4π
(nqa3)2

V

∑

k

(

|u1|2 +
2ω2

c

ω2
c − c2k2

|u2|2
)

, (74)where, for zero-point �u
tuations |u1,2|2 are repla
ed by ~/2mωc. Similarly, we 
an have a repre-sentation in terms of the u-
oordinates for the Poynting ve
tor, the "self-Lorentz for
e" and the
harge-�eld "self-intera
tion", though, the latter two quantities are in fa
t meaningless, sin
e the�eld a
ts only outside the parti
le.We 
onsider another point-like parti
le of volume b3 pla
ed at r0, with the displa
ement �eld
v(t)b3δ(r − r0), and follow the treatment given in the pre
eding se
tions. The 
oupled equations(32) and (33) be
ome

(ω2 − ω2
ca)a

3u1 = ω2
pbb

3v1e
−ikr0 ,

(ω2 − ω2
ca)a

3u2 = ω2
pbb

3λ2Fv2e
−ikr0

(75)and
(ω2 − ω2

cb)b
3v1 = ω2

paa
3u1e

−ikr0 ,

(ω2 − ω2
cb)b

3v2 = ω2
paa

3λ2Fu2e
−ikr0 .

(76)



J. Theor. Phys. 17From the dispersion equations we get two longitudinal modes
Ω2

L1,2 =
1

2

[

ω2
ca + ω2

cb ±
√

(ω2
ca − ω2

cb)
2 + 4ω2

paω
2
pb

] (77)
orresponding to the os
illator 
oordinates
u1(ω) = 2πδ(ω − ΩL1)u

(1)
1 + 2πδ(ω − ΩL2)u

(2)
1 (78)and, in general, four bran
hes of transverse modes ΩT i, i = 1, ...4. In the long-wavelength limitthey go like

Ω2
T1,2 ≃ Ω2

L1,2 + const · k2 , ΩT3,4 ≃ vk , (79)where the velo
ity v is given by
v = c

√

ωcaωcb

ωcaωcb + ωpaωpb
. (80)We 
an see that all these transverse modes depend on the magnitude of the waveve
tor k, while ourmodel, given by equation (65), for δ-parti
les does not allow for a k-dependen
e of the displa
ement�eld. Therefore, all these "transverse" solutions of the dispersion equations are not a

eptable,and we are left with the longitudinal modes only. We 
on
lude that there is not a Casimir for
e(nor an ele
tromagneti
 �eld for
e) for two δ-parti
les (the longitudinal modes do not give su
hfor
es). This is an expe
ted result, be
ause the transverse modes are spatially-dispersive andthe δ-parti
les, in view of their la
k of spatial extension, 
annot a

omodate them. The same
on
lusion holds for the intera
tion of a δ-parti
le and a spatially-extended body.Similarly, in the non-retarded regime, the dispersion equation (56) (with ωLa,b → ωca,b) givesdamped modes whi
h 
annot be sustained by the δ-lo
alized parti
les. Therefore, we 
on
ludethat our approa
h gives not a van der Waals-London for
e for two δ-parti
les.The δ-parti
les o�er the opportunity of a dire
t-spa
e approa
h. Indeed, the displa
ement �eldgiven by equation (65) gives a 
urrent density j(r, ω) = −iωnqa3u(ω)δ(r) (and a 
harge density

ρ(r, ω) = −nqa3[u(ω)grad]δ(r)). By equations (7) we get immediately the ve
tor potential
A = −iλnqa3uf(r) , (81)where f(r) = eiλr/r is the (outgoing) spheri
al wave. From the Lorenz gauge we get the s
alarpotential
Φ = −nqa3ur

r
f

′

(r) , (82)so we have straightforwardly the ele
tri
 �eld
E = nqa3

[

λ2fu +
f

′

r
u − (ru)f

′

r3
r +

(ru)f
′′

r2
r

]

. (83)We estimate this �eld, produ
ed by parti
le a, at the lo
ation r = r0 = (0, 0, d) of the parti
le b. Itis 
onvenient to use the longitudinal proje
tion ‖ on the z-dire
tion and the transverse proje
tion
⊥ on the (x, y)-plane. We get

Ea‖ = naqa
3(λ2f + f

′′

)u‖ , Ea⊥ = naqa
3(λ2f +

1

d
f

′

)u⊥ , (84)



18 J. Theor. Phys.where f = eiλd/d. The equations of motion for the displa
ement �eld v(t)b3δ(r−r0) of the parti
le
b reads

(ω2 − ω2
cb)v‖ = −ω2

pa

4π
a3(λ2f + f

′′

)u‖ ,

(ω2 − ω2
cb)v⊥ = −ω2

pa

4π
a3(λ2f + 1

d
f

′

)u⊥ .

(85)Similarly, we 
ompute the �eld produ
ed by parti
le b at the lo
ation r = 0 of the parti
le a (inequation (83) r is repla
ed by r − r0), and get the equations of motion
(ω2 − ω2

ca)u‖ = −ω2

pb

4π
b3(λ2f + f

′′

)v‖ ,

(ω2 − ω2
ca)u⊥ = −ω2

pb

4π
b3(λ2f + 1

d
f

′

)v⊥ .

(86)From equations (85) and (86) we get the dispersion equations
(ω2 − ω2

ca)(ω
2 − ω2

cb) =
ω2

paω2

pb

(4π)2
a3b3(λ2f + f

′′

)2 ,

(ω2 − ω2
ca)(ω

2 − ω2
cb) =

ω2
paω2

pb

(4π)2
a3b3(λ2f + 1

d
f

′

)2 .

(87)It is easy to see that the two equations (87) ae not 
ompatible with one another, so we set either
u‖ = v‖ = 0, or u⊥ = v⊥ = 0. Let us take u⊥ = v⊥ = 0, so we have the �rst equation (87), whi
h
an be 
ast in the form

(ω2 − ω2
ca)(ω

2 − ω2
cb) = 4

ω2
paω

2
pb

(4π)2
a3b3 e2i(λd+ϕ)

d6
, (88)where tanϕ = λd. This equation implies λd + ϕ = πn, where n is any integer, and

(ω2 − ω2
ca)(ω

2 − ω2
cb) = 4

ω2
paω

2
pb

(4π)2

a3b3

d6
. (89)It is easy to see that these two 
onditions 
annot be satis�ed simultaneously. The same resultholds for the other dispersion equation, 
orresponding to u‖ = v‖ = 0. We 
on
lude that thedispersion equations have not solutions, and, therefore, the energy is not 
hanged by the presen
eof the �nite distan
e d, i.e. there is not a Casimir for
e.In the non-retarded regime λ = 0 and the dispersion equations (87) be
ome

(ω2 − ω2
ca)(ω

2 − ω2
cb) =

4ω2
paω

2
pb

(4π)2

a3b3

d6
(90)for the longitudinal 
omponents and

(ω2 − ω2
ca)(ω

2 − ω2
cb) =

ω2
paω

2
pb

(4π)2

a3b3

d6
(91)for the transverse 
omponents. The two equations (90) and (91) di�er by a fa
tor 4. For realisti
situations we may take ωca ≃ ωcb = ωc, as for identi
al parti
les; we take also ωpa = ωpb = ωp.We may 
onsider the rhs term of these equations as a small perturbation. The �rst equation (90)gives

ω = ωc

[

1 ±
ω2

p

4πω2
c

(

a3b3

d6

)1/2

−
ω4

p

32πω4
c

a3b3

d6
+ ...

] (92)
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hange in the zero-point energy
∆E = −

~ω4
p

32π2ω3
c

· a3b3

d6
. (93)This energy gives a −1/d7-for
e, whi
h is the 
lassi
al van der Waals-London for
e a
ting betweentwo point-like parti
les. A similar result is obtined from the se
ond dispersion equation, 
orre-sponding to the transverse modes. Statisti
ally, the latter for
e appears with a weight fa
tor 2 in
omparison with the former, due to the two transverse polarizations of the displa
ement �eld. Itis easy to see that the average energy 
ontains a fa
tor 1/2 whi
h multplies equation (93).The di�eren
e between the result obtained here regarding the van der Waals-London for
e for

δ-parti
les and the (null) result obtained by using the Fourier-transform approa
h is an extremeinstan
e of the inadequa
y of the Fourier-transform approa
h to problems 
on
erning the matterpolarization and the intera
tion of ele
tromagneti
ally-
oupled bodies. In general, the Fourier-transform approa
h to su
h problems is valid for bodies of a su�
ient spatial extension, su
hthat the surfa
e e�e
ts 
an be negle
ted in 
omparison with the bulk 
ontribution. However, for�nite-size bodies, espe
ially in the long-wavelength limit, this requirement is never a
hieved, dueto the long-range 
hara
ter of the Coulomb intera
tion. Therefore, we expe
t deviations from ourresults presented here, whenever �nite-size bodies are involved.10 Con
luding remarksThe matter polarization 
an be represented by a displa
ement �eld of the mobile 
harges, withinthe well-known Lorentz-Drude model. By Maxwell's equations, the ele
tromagneti
 �eld generatedby the polarization a
quires a 
orresponding me
hani
al representation in terms of the displa
e-ment �eld. The 
olle
tive motion of the polarization (re�e
ted in the polarization ele
tromagneti
�eld) is an example of emergent dynami
s. In general, it 
onsists of three in�nite sets of har-moni
 os
illators, 
orresponding to longitudinal (plasmons, one set) and transverse (polaritons,two sets), whi
h 
an be quantized. The ele
tromagneti
 �eld energy, Poynting ve
tor, Lorentzfor
e and 
harge-�eld intera
tion energy are represented in terms of these three types of eigen-modes. It is shown that the polarizable matter stores a large amount of ele
tromagneti
 energy,arising from the zero-point (va
uum) �u
tuations of the displa
ement (polarization) �eld.Two ele
tromagneti
ally-
oupled bodies are treated within this framework, and their polarizationeigenmodes are identi�ed. The Casimir and van der Waals-London for
es are derived, as arisingfrom the zero-point �u
tuations of the displa
ement (polarization) �eld. These for
es in
orpo-rate the nature of the two bodies (by their individual longitudinal and transverse frequen
ies).The ele
tromagneti
 �eld (generated by the polarization �u
tuations) brings its own 
ontribu-tion to the for
es a
ting bewteen two polarizable bodies. If a diele
tri
, at least, is present, theele
tromagneti
-�eld for
e goes like ∼ −1/d2, where d is the separation distan
e between the twobodies (it is a long-range for
e). If a 
ondu
tor, at least, is present, the ele
tromagneti
 �eld addsits own 
ontribution to the Casimir for
e (∼ −1/d4). The magnitude and their range of a
tionhave been estimated here for all these for
es.The Fourier de
omposition employed throughout as a general tool does not allow for in
ludingsurfa
e (or shape) e�e
ts. In general, the Fourier de
omposition 
an be repla
ed by expansions ineigenmodes of the lapla
ian for spe
i�
, �nite-size bodies (with outgoing-waves boundary 
onditionat in�nity), preserving the dire
t-spa
e 
oordinae perpendi
ular to the surfa
e. Su
h expansions



20 J. Theor. Phys.may 
hange, in general, the density of modes, whi
h enters summations over states. In the long-wavelength limit, whi
h gives usually the relevant 
ontributions, this 
hange is not signi�
ant; butthe sharpness of the surfa
es may bring important e�e
ts, through the depolarizing �elds. Su
he�e
ts are more evident for the van der Waals�London for
es. The parti
ular 
ase of point-like, δ-parti
les was analyzed in this 
ontext, as a limiting 
ase of inadequa
y of the Fourier-de
ompositionapproa
h.A
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