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Abstract

The propagation of electromagnetic pulses in plasma is analyzed, especially in connection
with electrons accelerated by laser beams in rarefied gaseous plasmas. The interaction of
the electromagnetic field with matter is introduced by using the polarization (displacement)
field and supplementing Maxwell’s equations with the equation of motion of this displace-
ment field. This treatment amounts to using the Lorentz-Drude (plasma) model of polariz-
able (non-magnetic) matter and provides a solution of the electromagnetic field equations in
matter. The plasmon and polariton eigenmodes of electromagnetic field-matter interaction
are obtained. The extinction theorem is discussed and its implications in this context are
presented, especially in connection with propagation, diffraction and refraction of electro-
magnetic waves in matter. The construction of a wavepacket and a pulse of electromagnetic
field is described and the propagation of the polaritonic pulse in plasma is derived. The
typical characteristics of a pulsed polariton, like velocity, transported charge, intensity, elec-
tromagnetic and mechanical energy are estimated for the favourable conditions of a rarefied
plasma.

Introduction. The idea of accelerating electrons by focalizing intense laser pulses in plasma
appeared as early as 1979.[1] The laser power has increased appreciably, by several orders of
magnitude, in the 1980s and 1990s decades, following the introduction of "chirped amplification"
procedure[2] (see also Ref. [3]).! Thereafter, a series of papers appeared, reporting on electrons
accelerated in plasma by laser beams up to energies of the order of MeV's and even GeV's.[4]-[15]
The table-top laser is envisaged to provide an alternative to the costly, big particle accelerators.

The typical characteristics of a nowadays laser, which we use here for illustrative purposes, are:
radiation wavelength 1um (infrared, frequency 2 x 10°s~!, photon energy 1eV'), energy per pulse
50.J, pulse duration 7 = 50fs = 5 x 107 1s, corresponding to 105w (1Pw) power. (For a (15um)?
pulse cross-section the intensity is ~ 10%°w/cm?; repetition rate ~ 1s). In air (vacuum), such a
pulse has a length 15um (speed of light ¢ = 3 x 10'°cm), corresponding to cca 15 wavelengths. The
electric field in such a pulse is ~ 109statvolt/cm (10'°V/m, 1V /m = (1/3) x 10~ *statvolt /cm), the
magnetic field is ~ 10Gs (10?T's, 1T's = 10*G's). They are comparable with the atomic fields.?

Materials are limited to laser intensities of Guw’s/cm?. In order to increase this power, the light pulse is streched
by means of various optical devices (gratings, prisms, etc), i.e. it is made to last more in time, by taking advantage
of the optical dispersion, thus leading to a lower power, which, in turn, can be further amplified. Finally, the
pulse is compressed as highly as one desires, in principle, to get a high power. This is the basics of the chirped
amplification idea.

2As such, they may produce non-linearities, X- and gamma rays, vacuum polarization and electron-positron
pair creation, etc (see, for instance, Ref. [16] and references therein); or self-focusing, filamentation, harmonic
generation, stimulated Raman and Brillioun scattering.
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The convenient way of analyzing the laser pulses propagating in plasma is the pulsed polariton
(which may equally well be termed "polaritonic pulse").[17] It is based on the wavepacket and
dispersion concepts. Electromagnetic radiation (and fields, in general) propagating in matter
interact with matter and get polaritonic (the non-retarded quasi-static limit is the plasmon). By
means of experimental devices (collimators, apertures, etc) a wave packet of any shape can be
obtained, in principle. Usually, it is preferable to have a focalized one, in order to increase the
power.

Laser beam interacting with plasma. We asssume a homogeneous plasma of mobile (free)
charges ¢ with mass m (electrons) and concentration n in a rigid neutralizing (ionic) background
(at room temperature). We are interested in small disturbances occurring over distances much
larger than the inter-particle (inter-atomic) distance and over times much longer than the char-
acteristic atomic periods, i.e. we assume macroscopic averages (both quantum mechanical and
statistical), appropriate, as usually, for classical electromagnetism. Under the action of an exter-
nal electromagnetic field the plasma gets polarized, i.e. a small charge density p = —ngdivu and
a small current density j = ngu occur in plasma (in matter, in general), where u(r,¢) is a local
displacement field of the mobile charges, depending on the position r and the time t.*> We note
that P = nqu is the polarization (dipole moment density). We leave aside the magnetic effects,
and assume a non-magnetic plasma, since, usually, the plasma magetization is very weak.

With usual notations the internal (polarization) field obey the Maxwell equations

divE = —4mnqgdiva , divH =0 ,
(1)

__10H __10E | 4 .
curlE = =292 | curlH = 252 + “Inqu .
We can see that only two equations (1) are independent, but we have three unknowns (E, H and

u). The third equation is provided by the equation of motion for the field u
mii = q(Eo + E) —myu (2)

where E is the external electric field and v is a damping parameter. We leave aside the Lorentz
force in the above equation (and limit ourselves to the non-relativistic Newton’s equation of
motion) since the charge velocities in plasma are much smaller than the speed of light ¢ (by at
most two or three orders of magnitude).* Equation (2) gives the well-known Lorentz-Drude electric
susceptibility[18, 19]
ng? 1

X(w) = m w? + iwy (3)
(for conductors), by P(w) = x(w)[Eo(w) +E(w)]; hence, the dielectric function e(w) = 1+ 4wy (w),
where the plasma frequency w, = \/47ng?/m appears.” The equation of motion (2) provides the
missing equation (or its suitable extensions) for the solution of the Maxwell equations in (non-
magnetic) matter; it is perfectly adequate and compatible to the assumptions of the classical
electromagnetism, and defines in fact the classical model of electromagnetic matter.®

3A slight generalization for non-homogeneous plasma is p = —qdiv(nu). We note the continuity equation
Op/0t + divj = 0.

“In addition, the internal magnetic field produced by the current ngi leads to non-linear terms in the Lorentz
force, which may be neglected in view of our small disturbances. Bound charges can be included in our treatment,
by assuming a characteristic frequency w, (or several), with an equation of motion mii = q(Eq +E) —mw?2u—my.

5From equation (3) and definition j(w) = o(w)[Eo(w) + E(w)], j = P we get also the conductivity o(w) =
—iwy(w).

6Rumours say that Einstein was captivated by Drude model and intended to criticize it seriously; an intention
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Our aim now is to solve equations (1) and (2). Since we deal with infinite matter, it is convenient
to introduce Fourier decompositions of the type

1
u(r,t) = )

/ dkdwu(k, w)e kT (4)

and use local axes of coordinates denoted by 1, 2, 3, where 1 is directed along k and 2 and 3 are
transverse directions, perpendicular to k (1) and to one another. Taking the projections on these
axes in equations (1) and (2) we get easily

g E01 (k, CU)

2 2 4 5
mw* — wy + wy

uy(k,w) = — , (5)

which defines the longitudinal polarizability (P = nqu; = ay Fo;)

o) = =L o = /(AT ©)

and the fields

2
w
E1 = —47anu1 s Et(k, u)) = E01 (k, (,LJ) + El (k, u)) = w2 — wg i iwnyOI (k, w) s (7)
where E; denotes the total electric field (H; = 0).”
Similarly, we get for the transverse fields
2 _ 2/{72 Eo(k
usllew) = — L =R Pl ) ®)

m 2 (w2 —w?— c2k52) +isgnw - 0F

(which gives a transverse polarizability) and

2

Eg(k,w) = “p EQQ(k,U)) s

w2 —w2—c2k24isgnw-0F

Ei(k,w) = Wk Eo(k,w) ;

w2 —w2—c2k?4isgnw-0F

and the magnetic field

ck w?
Hs(k,w) = —Es(k,w) = z Hys(k 10
a(kw) w 2(kw) w? — w2 — 2k? +isgnw - 0F (k) (10)

never materialized, apparently. The Lorentz-Drude model, basically the equation of motion for the displacement
field, was well known in the maturity stages of the electromagnetism (about 1900); for instance, Sommerfeld used
it extensively for the theory of dispersion. Subsequently, it became obsolete, and people preferred a semi-empirical
and semi-phenomenological theory of electromagnetic field in matter. A reason for such a curious step backward lies
perhaps in the misconception that the Lorent-Drude theory is only a model, subjected to ad-hoc hypotheses. In fact,
it might be considered a model, but it is the only valid and viable model, so it may be in fact the theory of matter
polarization. Not less relevant, it brings complicated problems, while a semi-empirical and semi-phenomenological
theory provides ready and easy answers. On the other side, the model has never been used systematically; for
instance, there has never been done a Fourier analysis, nor a derivation of the eigenmodes; hence, a series of
misconceptions related to the refraction law, the region (line) of anomalous dispersion (absorption), an illegitimate
use of the dielectric function (considered a trustworthy solution), leading to velocities higher than the speed of
light in vacuum, etc, etc.

"Usually, the damping parameter v is much smaller than any relevant frequency (except, of course, for low
frequencies).
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where Hyz is the (transverse) magnetic component of the external field. We can see that the
transverse components of the fields exhibit a spatial dispersion (dependence on the wavevector k),
as expected;® it is introduced through the Green function —4mc?/(w? — 2k? + isgnw - 07) of the
Helmholtz equation.

According to equations (5)-(7), the longitudinal fields exhibit an eigenmode at the plasmon fre-
quency w, (which is dispersionless). We asssume here that the external field is transverse, as for
a radiation (wave) field, so we may leave aside the longitudinal solutions.

The transverse fields given by equations (8) - (10) exhibit an eigenmode at the polaritonic frequency

Q(k) = JwZ + c2k? (11)

which is dispersive. In addition, we can see that both the charge displacement (polarization) and
the total electric field for a transverse (free) external wave are vanishing, since w = ck for such a
wave. This is the famous Ewald-Oseen extinction theorem.[20]-[22] In the region (ray) where the
external wave propagates in matter there is no field; the real field is in another ray, the polaritonic
ray, which is the refraction phenomenon.? Indeed, for the refraction and, respectively, incidence
angles we can writte (Snell’s law)

sinr K

sinr K Q 1
sini  k \/92_%% B \/€<Q) ’

(12)

where we put 0 = ¢k’ (in vacuum). We can see, by equation (12), that the polaritonic frequency
(dispersion) is given by equation Q%¢(Q) = ¢?k?; that the refraction index (n) is 1/4/¢; and waves
with low frequencies (e.g., Q@ < w,) do not propagate in matter (plasma; transparency edge); and
the incidence angle has limitations (total reflection, total polarization, etc). For high frequencies
the refraction index approaches unity.!°

8The transverse poalrizability is given by

w? — k2

2
ng X(w)
as(k,w) = ——— (W)
2( ) m 72( ,27(73702]{;2) +zwy 14 47 w2szk2x( )

9This amounts to say that free waves with the dispersion relation w = ck cannot be propagated in matter.
The external field produces an infinitesimal (vanishing) displacement field, which, in turn, since the matter has an
infinite extension, produces a non-vanishing internal field which cancels out the external field; leading thus to a
vanishing total field. (Actually, the displacement field is vanishing, while the polarization field is undetermined).
The situation is different in the presence of a surface, where the internal field has a constructive interference in
another direction (refraction direction) and produces a displacement along that direction (for normal incidence the
two directions coincide). The polarization eigenmodes of the infinite matter disappear in the presence of a surface
(which exhibits a damped, surface-localized plasmon-polariton mode). In general, the polarization eigenmodes are
different for a semi-infinite body (half-space), an external uniform magnetic field, etc.

10Tf bound charges are present (dielectrics, w. # 0 in equation (2)), the polaritonic mode given by equation (11)
is different; it corresponds to the dielectric function

Q2 _ w2
)= pr—ot -

where wy, = /w2 + w2 is the longitudinal (plasmon) frequency (though the dielectric function must be used in

the refraction law for solutions €2 of the equation £(Q)0Q? = ¢2k?); for high frequencies we have a less-than-unity
refractive index (as for X- or gamma rays), similar with conductors; for low frequencies we have the usual greater-
than-unity refractive index, coming from a second polaritonic mode, with an approximate dispersion relation
Q(k) = week/(wr, + ck), which may be termed the atomic polaritonic mode (since it goes to the atomic frequency
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The wavelike nature of light, including reflection, refraction, diffraction, interference, was estab-
lished during the 18th and 19th centuries (by Snell, Huygens, Young, Fresnel, Faraday, ...), long
before the advent of Maxwell’s equations (1861 — 62).

Extinction theorem. We focus now on the fields in plasma, as produced by an external laser
beam. We assume that the external field is purely transverse (as for radiation), and leave aside the
subscripts 2 and 3 in equations (8)-(10). We take the y, z-axes along the axes 2 and, respectively,
3, while the z-axis is taken along the k-direction (axis 1).

We can check the extinction theorem by direct calculations, starting with a monochromatic ex-
ternal field
Ey(r,t) = Eycoswy(t — z/c) (13)

with frequency wy propagating along the z-direction (and perpendicular to this direction). The
Fourier transform of this field is

Ey(k,w) = %E0(27T)45(kt)[5(w — wp)d(ky —wo/c) + (wo — —wp)] (14)

where k; = (k,, k) is the transverse wavevector and k, is the longitudinal wavevector. Using this
Fourier transform in equations (8) and (9) we get straightforwardly

u(r,t) =0, Eyr,t) =0, E(r,t) = —Ey(r,1t) , (15)

i.e. the extinction theorem. The result is obtained directly by using the properties of the d-function
in equation (14)."" Tt shows that a free electromagnetic wave cannot be propagated in matter, as
expected.

Wavepackets. A pure monochromatic free electromagnetic wave is a pure abstraction, an ideal
approximation, though one extremely useful. It comes from the wave equation

W/ — EHE(k,w) =0 (16)

for instance, whose solution can be written as E(k,w) = E(k)d(w/c — k) + E*(=k)d(w/c + k);
we note that we still have a freedom in the direction of the wavevector and the magnitude of
the frequency, for instance; this form can be recognized in the field given by equation (14). The
real situation is that the electromagnetic field is constructed in the laboratory by interaction with
external agents, which, rigourously speaking, make the field non-free. Apertures, collimators, slits,
mirrors, etc may give the electromagnetic field finite spatial and temporal extension. Usually, in
such cases the field is not free anymore, and the (dispersion) relationship w = ck does not hold any
longer, rigurously speaking. For instance, a uniform field in the transverse directions subjected to
a slit of size d; has a corresponding Fourier transform!?

, 2si 2 2si 2
/drte’kt” = Sm:ydt/ : Smlljzdt/ ) (17)
y z

w, in the short wavelength limit). The corresponding Snell law reads

sinr k' w.—Q

sini  k wr

(note that, in general, the 1/y/e-law for refraction does not work). We note that all these refractive indices are
given by the ratio of the phase velocity (£2/k) to the speed of light (which may be trespassed by the phase velocity);
and the refraction described here corresponds to the Huygens principle.

1 Gimilarly, we can use the inverse Fourier transform of the external field and perform the integrations by taking
the contributions of the Q-poles in equations (8) and (9). This route implies more cumbersome calculations, leading
to the same result.

12The dimensions along the two directions can be different from one another.



6 J. Theor. Phys.

which is a function peaked over Ak, ~ 1/d;; in the limit d; — oo this function approaches the
(k¢ )-function, as in equation (14). On the contrary, if the slit is very narrow (d; — 0), the Fourier
transform does not depend on k;, i.e. it contains any k;. In this case, we can write the function
as d?d(r;); we can check that the Fourier transform of this function is d?, i.e. precisely the limit
of equation (17) for d; — 0. This is a wavepacket.

Similarly, let us suppose a field
Ey(r,t) = Eycos(wot — ko) (18)

subjected to a finite extension d along the z-direction and a a finite duration 7 (compare with
equation (13)). In equation (18) we asssume wy = ck,o (we note that ko = 0) and d > c¢/wy,
7 > 1/wy. A factor d7d(r) may be included, or a constant transverse factor of extension d,
such as its Fourier transform be that given by equation (17). We emphasize that there are two
limiting cases of constructing a transverse wavepacket: either one allows for a large (infinite)
extension, as for a beam, ray, plane wave (and the geometrical optics holds), or one assumes a
d-type localization, i.e. a very narrow wavepacket (pulse), which is at the diffraction limit. Usally,
we consider a transverse extension of a few wavelengths, and represent it by a -function notation.
The corresponding Fourier transform in equation (18) is given by

[ dtdzEy cos(wot — kopx)e™tehat =
(19)

_ 1 2sin(w—wo)7/2  2sin(ke—kox)d/2
- 2E0 w—wp ke —kox +

(UJO — —UJO) .

The same discussion holds for the temporal and longitudinal wavepackets in equation (19). We
can say that we have an external field

Ey(r,t) = Eqcoswy(t — z/c) (20)

which extends over d; around r; = 0, over d around x = 0, and lasts a time 7 around the initial
moment ¢ = 0; it may also be represented formally as

Ey(r,t) = Eycoswy(t — x/c) - 76(t) - dd(x) - d25(x) | (21)

in the sense that the d-functions are viewed as supports of finite extensions (equally well we may
use step functions). The Fourier transform of this field is given by

1 2sin(w—wo)7/2  2sin(kz—kog)d/2
EO(k’ UJ) - §E0 w—wQ ’ ke —kox )

(22)

_2smll:5dt/2 ) 2smll::dt/2 ¥ (wo — —wp) -

It is worth noting that, although close to a free field, rigourously this is not a free field. The
(longitudinal) extension of the field is larger than its main wavelength ¢/w, and its duration is
longer than the main period 1/wy. We can view this wavepacket as consisting of a superposition
of many frequencies w, in the vicinity of wy, and many wavevectors k, in the vicinity of k.o = wp/c
and kyy = 0. In general, this field may not propagate. It is merely a representation of the
electromagnetic perturbation produced in a plasma (at the origin and at the initial moment of
time). We may call this wavepacket a (general) pulse.'3

It is worth estimating the associated magnetic field from curlE, = —(1/¢)0Hy/0t. We get
Hy(r,t) = Ey(r,t) for the transverse magnetic field perpendicular to the transverse electric field

I3Electromagnetic peturbations of the type discussed here are produced usually in (closed) resonant cavities There
inside, there exist steady waves, with different frequencies and wavelengths, according to the boundary conditions.
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(and both perpendicular to the z-axis). The density of electromagnetic energy is easily estimated
as ug = E2(r,t)/4w, and the total electromagnetic energy is Uy = E3dd?/8m. There is also an
internal flow of energy, given by the Poynting vector S, = cE3(r,t)/4m and an internal momen-
tum flow (t = 0g/0t, g = S/c?) corresponding to the stress force density ¢, = —d,up. These
flows of energy and momentum indicate that, after preparation, left free, such an electromagnetic
wavepacket (pulse) has the tendency to move.!t

We can check by direct calculations that the external pulse given by equation (22), introduced
into equations (8) and (9), where the contributions of the {2-(polaritonic) poles are taken into
account, leads to vanishing quantities, like the displacement field, etc. This is due to the fact
that, although the pulse has the tendency to move, it does not in fact, since it does not satisfy
(in general) a real dispersion equation (relationships like w = ck, or w = Q(k)). A pulse as that
given by equation (22) is simply an external electromagnetic perturbation produced by external
causes (it is not a free wave), which does not propagate. It is interesting to estimate in this
context the admittance (or impedance) of the plasma for such an external perturbation. A real
electromagnetic external field is a free wave (even with a finite extension) which would propagate
in plasma (to a certain extent as given by a transmission coefficient). The full description of such a
real situation would imply the taking into account the plasma-vacuum interface and the reflection
and transmission coefficients. Since such matters are well known, we leave them aside here and
turn to the description of the polaritonic pulse in plasma. In addition, we do not use general
pulses as the ones described above.

Polaritonic pulse. Since, in accordance with the extinction theorem, a free electromagnetic field
cannot be propagated in plasma, we put Fy = 0 in equations (8)-(10) and rewrite them as

w? — Q2(k)u(k,w) =0, Ek,w) = —%wQu(k,w) , H(k,w) = %E(k,w) : (23)
the solution is
(e, w) = 2ru(K)[6(w — k) + 6(w + Q)] (24)
(where u*(—k) = u(k))."> We get
1 —iQ2(k)t+ikr
u(r,t) = ok /dku(k)e (Ri+ike 4 ¢ e, (25)

and
E(r,t) = —%(2# [ dkQ2(k)u(k)e " kttke e

(26)
H(r,t) = —%ﬁ [ dkckQ(k)u(k)eSHRHkr 4o

Such a steady wave consists of two superposed waves travelling in opposite directions. On opening an end of the
cavity, part of these waves travel outside, the other part reflect on the opposite end of the cavity and travel outside
too. Therefore, we have outside travelling waves with different frequencies (and corresponding wavevectors). For
usual boundary conditions they satisfy the dispersion relation of free waves in vacuum. Entering matter (plasma),
their wavevectors change according to the polaritonic dispersion relation (the frequencies remain unchanged),
leading thus to a polaritonic pulse. We emphasize that a pulse of a finite duration implies a superposition of
frequencies.

14The pulse constructed here corresponds rather to a collimator; usually, it is focalized in plasma, which means
that d; is smaller in the focus than at the origin.

15These are the polaritonic eigenmodes of the plasma. It is worth noting that they imply a "resonance"; while
an oscillator at resonance is disrupted, a wave transfers the motion in space and is not disrupted locally.
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These integrals are performed by the method of the stationary phase (method of the saddle point
or steepest descent).[23]-[27] The phase —iQ(k)t + ikr is developed in powers of q = k — ko,

: : : : .00 it 9°9
—1Q(k)t + ikr = —iQ(ko)t + ikor + (— i =2 Ohok, . Gq; + -

Ik (27)

t+ir)q
ko

around a wavevector kg, which is chosen such as to vanish the linear term in the expansion; which
means that the main contribution to the integrals move with the group velocity

0

= @ ) (28)

A%

ko
indeed, around this point the phases add constructively.

In order to simplify the discussion we choose kg = (koz, koy = 0, ko, = 0); the integration over
¢t = (qy, g-) can be approximated by a transverse wavepacket of extension d;,

e 25iny/2d; 2sinz/2d
[ et - Sms/ ‘. Smj/ £, (29)

where the range of integration is Ag,

= Agq, ~ 1/d;; for sufficiently small values of d, we may
approximate this wavepacket by (27)20(r;),

where r; = (y, z). We are left, for instance, with

. . 1 . it
E(r,t) ~ —%quoé(rt) : e_m“t“’“’”%/dqgge_l(vt—w)%—%ﬂo % 4 e, (30)

where uy = u(kg) and

2,,2

CWy 1 cw
UZQ—O’Qo:(l—gp’WOZCkacoaQOZ\/wz%+wg' (31)

The integral appearing in equation (30) is given by!'®

Tr—7v 2
1 jle—vh”

1 . it/
o / dgee D=5 RNGE ~ o 205 =g 0(z —vt) (32)

\/ 2mit€Y,

which is a representation of the -function in the limit ¢Q; — 0 (it looks like an "imaginary"
diffusion).!” This representation gives an estimation of the extension of the pulse and its lifetime:
at t = 0 the pulse is 6(x) (equation (32)), we can take it as d(z) ~ 1/d; after time At the pulse has

a height ~ 1/,/AtQq ,which should be compared with 1/d, and a width Az ~ |/ AtQg(equation
(32)). It follows that we may define a lifetime by

1 1
= — | Az =AY = fd | (33)
JAawr df °

16The contour of integration is deformed in such a way as to ensure a "maximum" for the quadratic form
appearing in equation (30): ¢, + (vt — z)/tQ" = \/2/itQ"z (steepest descent around a (general) saddle point).

17This is a Fresnel integral. Fresnel diffraction gives interference fringes and a vanishing shadow. Our approx-
imation here of passing to a d-function is equivalent with a Fraunhofer diffraction: it gives fringes in the shadow
region. On the pulse wavefront in equation (32) additional contributions occur; we have therefore propagating
"precursors" ("forerunners"), which point out the wave non-locality. They are produced by our selection of a main
plane wave (denoted by the subscript 0), which, by its nature, is non-local.
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where f is an arbitrary, small, higher-than-unity number. For the limiting case f = 1, we get
At ~ d?/Qy, or, since d = vT, we have At = v>72/Qy; i.e.

2
2wy {lo

At =T R (34)
p
hence we get a limiting value for the duration of the pulse
2
w
=At=—2 35
T Qou)g ( )
and a limiting value of the pulse extension
2
w
d:vT:cQgZO. (36)

We can see that these limitations depend on the plasma frequency and the frequency wy; they can
also be written as

w? w?
d=XM=2 <1 =to—2— <t 37
098 , T OQowo 0 > ( )

where \g = ¢/wy is the main wavelength and ¢y = 1/wj is the period of the main radiation. During
its lifetime At given by equation (34) the pulse flies the distance [ = vAt = ¢r’wj /w?, which is a
pretty long distance for w, < wo (I ~ drwj/w?).

It follows that we can write the polaritonic pulse as

u(r,t) ~ 2ug cos(wit/Qo)d(z — vt)d(ry)
E(r,t) =~ =22 OFuq cos(wyt/Qo)d(x — vt)d(ry) (38)

H(r,t) =~ =22 Qowyug cos(wpt/Qo)d(x — vt)d(r,) -

First, according to the discussion above, we note that such a pulse makes sense only for w, <
Qo ~ wy (otherwise it is too flat and too slow). According to its construction, it consists of a
superposition of frequencies Q(k) and wavevetors k around Qy = Q(ky) and ko. For instance, the
range of ¢, around kg, for a pulse of extension d is Ag, ~ 1/d. It follows that the main frequency
Qo (practically wy) is the laser frequency, the superposition arising by the effect of the external
agents (collimators, lenses, etc) as well as by the finite duration 7 ~ d/v ~ 1/vAq, ~ 1/AQ. At
t = 0 we have E(r,t = 0) ~ —(2m/q)Q%ud(z — vt)d(r;), which we may write as F(r,t = 0) ~
Eo - dé(x — vt) - d?6(r;), where FEy may be viewed as the magnitude of the external electric field.
It is then more convenient to express the pulse as

m

u(r,t) ~ ==L Ey - do(x — vt) - d7d(ry)
(39)
E(r,t) ~ H(r,t) ~ Ey - d§(x — vt) - d26(ry) ;

it has an electromagnetic energy U = FE2dd? /4w, which is transported with velocity v = cwy/$
during a lifetime At ~ d*Qf /c>w? over a distance [ ~ vAt ~ d*Qf /cw?. We can see that the pulse
exhibits a small pulsation with frequency w?/€p, which may be neglected."®

18The energy conservation from Maxwell’s equations (1) and equation of motion (2) reads:

0, o 9 0,1 9 c .. B
8t<E +H )/87T+8t(2nmu )+47rdw(E><H)_0
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There are a few situations of electromagnetic waves propagating in matter. First, we may imagine
a plane wave propagating in an infinite body: if free, it cannot be propagated, according to the
extinction theorem; it can only be propagating if it satisfies the polaritonic dispersion relation.
This situation is equivalent with creating an electromagnetic disturbance in a body with a sufficient
spatial extension; then the propagation of the disturbance can be analyzed in terms of polaritonic
plane waves. This situation corresponds to the case presented in this paper, with special emphasis
on a disturbance centered on a main frequency, i.e. generating a main frequency for a finite
(sufficiently long) duration, and localized in a certain spatial region (preferrably small). Under
such circumstances we get the pulsed polariton described here. In practice, one sends usually a
plane wave (usually from the vacuum) on a body with a definite surface. In this case, the plane
wave penetrates the body as a polaritonic wave propagating along a refraction direction. We
emphasize that the conditions of geometric optics can be fulfilled in such a case. Perhaps, it is more
suitable in this case to talk of a propagating beam or ray. Moreover, an optical system of focusing
can be used in this case (a lens), and the rays can be focalized (through the surface) somewhere
in the body. In the focus region we can create then a pulsed polariton. Once created, under
favourable conditions (sufficiently localized), the pulsed polariton may become an autonomous
entity, obeying not anylonger the laws of geometrical optics, and propagating as a well-defined
entity, sometimes over pretty long distances. Finally, there could be another situation, where a
very narrow pulse is created in vacuum, 7.e. a highly localized spatial region of electromagnetic
field, usually with a main frequency, and send through the surface of a body (either at normal or
oblique incidence). In this case, the pulse may retain its individuality to an appreciable extent,
propagating in the body almost as in vacuum (in particular with the speed of light), although it
may create a polaritonic response of the body both inside (transmitted field) and outside (reflected
field) over large distances.

It is worth looking for a refraction law for pulses. While the pulse which retains its individuality
is not likely to be refracted, the polaritonic pulse formed inside a body may suffer refraction, in
principle, though experimental conditions for such a situation are difficult to be realized. It is
likely that the Snell law in this case is sinr/sini = ¢/v, where v is the group velocity. This is to
be contrasted with the previous formulae, where sinr/sini = v/c, where v is the phase velocity
(92/k). For conductors the two formuale are the same (and the product of the two velocities is ¢?).
For dielectrics (bound charges) the situation is more complex. The regular dielectric function gives
a less-than-unity refractive index for high frequencies, which increases with increasing frequency.
Similarly, the atomic-polaritons give a less-than-unity refractive index, which is limited to w.. In
general, on increasing the energy we may have a cross-over from a phase-velocity driven refractive
index to a group-velocity refractive index, a situation which might be encountered in the refraction
of the gamma rays in Si, as reported recently.[28§]

Rest frame. In the rest frame of the polaritonic pulse, i.e. the frame moving (along the z-
direction) with velocity v with respect to the laboratory frame, the coordinate is 2/ = ~(x — vt)
and time is ¢’ = y(t — vz /c?), where v = (1 —v?/c?)™Y? (x = y(a' + vt') and t = y(t' + va'/c?)).
Since z —vt = 2’/7, we have §(x —vt)dx = ~vo(2')dx, i.e. dx’ = ~ydx, which is Lorentz contraction,
as expected. It follows that the size of the pulse in the rest frame is d’ = vd, much longer than d;

(it includes the mechanical energy of the charges); it is identically satisfied everywhere except for the pulse bound-
aries, where the transport is governed by

0 0
—t+v—)5(x —vt) =0
(57 T v5,)9( )
for the density of any energy (electromagnetic, mechanical). The same holds for the Poynting vector, stress
forces, electromagnetic momentum, etc. We can see that for a polaritonic pulse the electromagnetic or mecahnical
conservation laws become irrelevant, in the sense that they are satisfied identically.
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indeed, it is difficult to construct a wavepacket in the rest frame, since time is very slow, lengths
are very long and dispersion is very efficient. We note that v = (1 —v?/c?)™1/2 = Qg /w, > 1 (and
the transverse coordinates are not affected by the change of the reference frame).

Let us apply the Lorentz transformations to the fields £, = F and H, = H given by equations
(39):
Ey = ”Y(Ey - %HZ> ) Ez = f)/(EZ + %Hy) )

(40)
H,=~(Hy+E.), H =~(H. - {E)) ;

here it is important to use the exact magnetic field as given by equations (38) H, = (wo/$2)E =
BE, where 3 = v/c. We get H, = 0 and E;/ = E/v = (wp/Q)E ~ (w,/S)Ey, in accordance with
the fact that we have a static situation in the rest frame (a vanishing magnetic field).

We note that in the rest frame there is a weak electric field E;/ = (wp/)E. We have also a
transverse displacement u (along the y-axis), as given by equation (39), which produces a polar-
ization P = nqu = —(w§/47rQ%)E according to equation (39) and, consequently, a longitudinal
field Ey, = 4nP = —(w?/Qf)E; now, on passing to the rest frame we note that the plasma fre-
quency does not change, it is a material constant, so the density n in these formulae does not
change; actually, for a body in motion the definition of the polarization is changed, such as the
relativistic invariance be satisfied;[29, 30] this implies the polarization be changed according to the
transformation of the fields (and a magnetization also occurs, which actually is the magnetic field
in the laboratory frame); therefore, we have P° = P in the rest frame and a longitudinal field
E, = —v(w2/Q3)E = —(w,/Q%)E which cancels out exactly the field E,. Therefore, the pulsed
polariton is at equilibrium due to the fact that the plasma polarization compensates the action of
the external field."

Emergent physics. An electromagnetic pulse of finite spatial extension and temporal duration
can be formed in plasma by exciting the polaritonic eigenmodes. It arises by a local constructive
interference of phases, which may arise over a finite distance and a finite lifetime, propagates with
the group velocity and transports electromagnetic fields and matter.?° Due to its localization such
a wave superposition can be viewed as a particle, of approximate identity and finite existence, a
quasi-stable, localized, autonomous entity, which we call pulse polariton (or polaritonic pulse). It
may give rise to an emergent physics.?!

The displacement u given by equation (39) generates a density imbalance

, n
on = —ndivu = mQ%dt 0 (41)
and a number ng

of mobile charges distributed over surface along the y-transverse direction; and a corresponding

charge
2

5Q = —2_dd,E (43)
BT o

Using the total number of mobile particles N = ndd? included in the pulse volume, equation (42)
can also be writte as N/N = qFEyd;/muv?, where vy = Qyd; may stand for a velocity; it follows

9The relativistic equation of motion in the laboratory frame preserves the equilibrium in these circumstances.

200f course, such pulses can be formed in vacuum too, where the dispersion is absent and they may last forever
as perfectly localized entities.

21 The transverse longitudinal field derived above is a manifestation of emergent physics.
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that the fraction of the particles displaced by the pulse is the ratio of the work ¢Fyd; done by the
field to the kinetic energy of the particles, which is a small quantity.

These particles (charges) move with velocity v = cwy/0, and each acquires an energy

= —F——==mc"— , (44)

which may attain high values. We have also a flow of particles

nqwo

by =vin = chgdt 0 (45)
and a flow of energy
nqwo
d=0oyE=¢ 46
N c Q%u)pdt (V) ( )

which should be compared with the energy flow ®y ~ vE? /4 (intensity); we get

<@ _ 2" Amewy . (47)
(I)O u}pQth QQ‘PQ

We can see that it is favourable, in order to accelerate electrons, to have a rarefied plasma (w, <
), which gives rise to a well-defined pulse (with low dispersion); at the same time, an increase
in accelerating energy is possible only at the expense of the charge flow.

For illustrative purposes we take here the plasma density n = 10®¥cm ™2 (electrons, ¢ = 4.8 x
10~ Pesu, m ~ 1072"g), which corresponds to a plasma frequency w, = 3x1072eV (~ 5x10"s71),
and a main frequency €y = leV (2 x 10%s™!, wavelength 1um). We get an ultra-relativistic
velocity of the pulse and a particle energy £ ~ 20MeV .

We take also a typical size of the pulse d = d; = 15um (corresponding to a pulse duration
7 ="50fs=5x10""s) and an energy 50.J, corresponding to an electric field Ey ~ 10%statvolt/cm
(1statvolt/em = 3 x 10*V/m); the intensity of the pulse is &y = 4 x 102°w/em?. This pulse
transports 0N ~ 3 x 105 particles (electrons) (i.e. 6TeV), which means ~ 10%* particles per
em? - s and a large amount of energy, ® ~ 102 MeV/cm? - s. The magnitude of the displacement

in the pulse is gEy/mQ2 ~ 10A.2

Finally, we note that the polaritonic pulse may also be viewed as a localized negative electronic
charge and a neutralizing positive ionic charge, both moving with a high velocity; as such, they
generate (almost compensating) transverse fields; in addition, neutralizing currents which com-
pensate for the static ionic charge backflow, producing disturbances (turbulence) in plasma and
contributing to the charge neutralization.??

Concluding remarks. The theory of the electromagnetic field in (polarizable) matter is based on
the displacement field of the mobile charges.[31| This theory supplements the Maxwell equations
with an equation of motion for the displacement field, which allows a solution of the problem.
Basically, this amounts to the well-known Lorentz-Drude (plasma) model of polarizable matter.
This theory was applied here (and in Ref. [17]) to the dynamics of the laser beams focalized
in (rarefied) plasma. First, it was recognized the essential role played by polaritons (polaritonic

22This is to be compared with nuclear polarization, where distances are 5 — 6 orders of magnitude smaller; this
is why macroscopic (or quantum macroscopic) laser induced nuclear effects are extremely small.

23 Another example of emergent physics related to the pulsed polariton is the production of coherent X- or gamma
rays by Compton (Thomson) backscattering.[17]
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eigenmodes) in propagation of the electromagnetic field in matter. Then, it was shown that,
by external agents, we can form electromagnetic fields of a finite spatial extension and a finite
temporal duration. A constructive interference may appear in such wave superpositions, leading,
through the mechanism of the stationary phase, to a quasi-localized, quasi-stable pulse of a finite
duration, subjected to the destroying effect of the dispersion. The duration (lifetime) and spatial
extension of such pulses have been determined. It was shown that such a pulse, termed pulsed
polariton or polaritonic pulse) moves with the group velocity and transport electromagnetic field,
mobile charges, electromagnetic and mechanical energy, and may serve to accelerate electrons in
rarefied plasma (which provides favourable conditions).
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