
1Journal of Theoretial PhysisFounded and Edited by M. Apostol 210 (2012)ISSN 1453-4428 Dynamis of laser pulses in plasmaM. ApostolDepartment of Theoretial Physis, Institute of Atomi Physis,Magurele-Buharest MG-6, POBox MG-35, Romaniaemail: apoma�theory.nipne.roAbstratThe propagation of eletromagneti pulses in plasma is analyzed, espeially in onnetionwith eletrons aelerated by laser beams in rare�ed gaseous plasmas. The interation ofthe eletromagneti �eld with matter is introdued by using the polarization (displaement)�eld and supplementing Maxwell's equations with the equation of motion of this displae-ment �eld. This treatment amounts to using the Lorentz-Drude (plasma) model of polariz-able (non-magneti) matter and provides a solution of the eletromagneti �eld equations inmatter. The plasmon and polariton eigenmodes of eletromagneti �eld-matter interationare obtained. The extintion theorem is disussed and its impliations in this ontext arepresented, espeially in onnetion with propagation, di�ration and refration of eletro-magneti waves in matter. The onstrution of a wavepaket and a pulse of eletromagneti�eld is desribed and the propagation of the polaritoni pulse in plasma is derived. Thetypial harateristis of a pulsed polariton, like veloity, transported harge, intensity, ele-tromagneti and mehanial energy are estimated for the favourable onditions of a rare�edplasma.Introdution. The idea of aelerating eletrons by foalizing intense laser pulses in plasmaappeared as early as 1979.[1℄ The laser power has inreased appreiably, by several orders ofmagnitude, in the 1980s and 1990s deades, following the introdution of "hirped ampli�ation"proedure[2℄ (see also Ref. [3℄).1 Thereafter, a series of papers appeared, reporting on eletronsaelerated in plasma by laser beams up to energies of the order of MeV s and even GeV s.[4℄-[15℄The table-top laser is envisaged to provide an alternative to the ostly, big partile aelerators.The typial harateristis of a nowadays laser, whih we use here for illustrative purposes, are:radiation wavelength 1µm (infrared, frequeny 2× 1015s−1, photon energy 1eV ), energy per pulse
50J , pulse duration τ = 50fs = 5×10−14s, orresponding to 1015w (1Pw) power. (For a (15µm)2pulse ross-setion the intensity is ≃ 1020w/cm2; repetition rate ≃ 1s). In air (vauum), suh apulse has a length 15µm (speed of light c = 3×1010cm), orresponding to a 15 wavelengths. Theeletri �eld in suh a pulse is ≃ 106statvolt/cm (1010V/m, 1V/m = (1/3)×10−4statvolt/cm), themagneti �eld is ≃ 106Gs (102Ts, 1Ts = 104Gs). They are omparable with the atomi �elds.21Materials are limited to laser intensities of Gw′s/cm2. In order to inrease this power, the light pulse is strehedby means of various optial devies (gratings, prisms, et), i.e. it is made to last more in time, by taking advantageof the optial dispersion, thus leading to a lower power, whih, in turn, an be further ampli�ed. Finally, thepulse is ompressed as highly as one desires, in priniple, to get a high power. This is the basis of the hirpedampli�ation idea.2As suh, they may produe non-linearities, X- and gamma rays, vauum polarization and eletron-positronpair reation, et (see, for instane, Ref. [16℄ and referenes therein); or self-fousing, �lamentation, harmonigeneration, stimulated Raman and Brillioun sattering.



2 J. Theor. Phys.The onvenient way of analyzing the laser pulses propagating in plasma is the pulsed polariton(whih may equally well be termed "polaritoni pulse").[17℄ It is based on the wavepaket anddispersion onepts. Eletromagneti radiation (and �elds, in general) propagating in matterinterat with matter and get polaritoni (the non-retarded quasi-stati limit is the plasmon). Bymeans of experimental devies (ollimators, apertures, et) a wave paket of any shape an beobtained, in priniple. Usually, it is preferable to have a foalized one, in order to inrease thepower.Laser beam interating with plasma. We asssume a homogeneous plasma of mobile (free)harges q with mass m (eletrons) and onentration n in a rigid neutralizing (ioni) bakground(at room temperature). We are interested in small disturbanes ourring over distanes muhlarger than the inter-partile (inter-atomi) distane and over times muh longer than the har-ateristi atomi periods, i.e. we assume marosopi averages (both quantum mehanial andstatistial), appropriate, as usually, for lassial eletromagnetism. Under the ation of an exter-nal eletromagneti �eld the plasma gets polarized, i.e. a small harge density ρ = −nqdivu anda small urrent density j = nqu̇ our in plasma (in matter, in general), where u(r, t) is a loaldisplaement �eld of the mobile harges, depending on the position r and the time t.3 We notethat P = nqu is the polarization (dipole moment density). We leave aside the magneti e�ets,and assume a non-magneti plasma, sine, usually, the plasma magetization is very weak.With usual notations the internal (polarization) �eld obey the Maxwell equations
divE = −4πnqdivu , divH = 0 ,

curlE = −1
c

∂H

∂t
, curlH = 1

c
∂E

∂t
+ 4π

c
nqu̇ .

(1)We an see that only two equations (1) are independent, but we have three unknowns (E, H and
u). The third equation is provided by the equation of motion for the �eld u

mü = q(E0 + E) − mγu̇ , (2)where E0 is the external eletri �eld and γ is a damping parameter. We leave aside the Lorentzfore in the above equation (and limit ourselves to the non-relativisti Newton's equation ofmotion) sine the harge veloities in plasma are muh smaller than the speed of light c (by atmost two or three orders of magnitude).4 Equation (2) gives the well-known Lorentz-Drude eletrisuseptibility[18, 19℄
χ(ω) = −nq2

m

1

ω2 + iωγ
(3)(for ondutors), by P(ω) = χ(ω)[E0(ω)+E(ω)]; hene, the dieletri funtion ε(ω) = 1+4πχ(ω),where the plasma frequeny ωp =

√

4πnq2/m appears.5 The equation of motion (2) provides themissing equation (or its suitable extensions) for the solution of the Maxwell equations in (non-magneti) matter; it is perfetly adequate and ompatible to the assumptions of the lassialeletromagnetism, and de�nes in fat the lassial model of eletromagneti matter.63A slight generalization for non-homogeneous plasma is ρ = −qdiv(nu). We note the ontinuity equation
∂ρ/∂t + divj = 0.4In addition, the internal magneti �eld produed by the urrent nqu̇ leads to non-linear terms in the Lorentzfore, whih may be negleted in view of our small disturbanes. Bound harges an be inluded in our treatment,by assuming a harateristi frequeny ωc (or several), with an equation of motion mü = q(E0 +E)−mω2

cu−mγu̇.5From equation (3) and de�nition j(ω) = σ(ω)[E0(ω) + E(ω)], j = Ṗ we get also the ondutivity σ(ω) =
−iωχ(ω).6Rumours say that Einstein was aptivated by Drude model and intended to ritiize it seriously; an intention



J. Theor. Phys. 3Our aim now is to solve equations (1) and (2). Sine we deal with in�nite matter, it is onvenientto introdue Fourier deompositions of the type
u(r, t) =

1

(2π)4

∫

dkdωu(k, ω)e−iωt+ikr (4)and use loal axes of oordinates denoted by 1, 2, 3, where 1 is direted along k and 2 and 3 aretransverse diretions, perpendiular to k (1) and to one another. Taking the projetions on theseaxes in equations (1) and (2) we get easily
u1(k, ω) = − q

m

E01(k, ω)

ω2 − ω2
p + iωγ

, (5)whih de�nes the longitudinal polarizability (P1 = nqu1 = α1E01)
α1(ω) = − q

m

1

ω2 − ω2
p + iωγ

; (α1 = χ/(1 + 4πχ)) ; (6)and the �elds
E1 = −4πnqu1 , Et(k, ω) = E01(k, ω) + E1(k, ω) =

ω2

ω2 − ω2
p + iωγ

E01(k, ω) , (7)where Et denotes the total eletri �eld (H1 = 0).7Similarly, we get for the transverse �elds
u2(k, ω) = − q

m

(ω2 − c2k2)E02(k, ω)

ω2
(

ω2 − ω2
p − c2k2

)

+ isgnω · 0+
(8)(whih gives a transverse polarizability) and

E2(k, ω) =
ω2

p

ω2
−ω2

p−c2k2+isgnω·0+E02(k, ω) ,

Et(k, ω) = ω2
−c2k2

ω2
−ω2

p−c2k2+isgnω·0+E02(k, ω) ;

(9)and the magneti �eld
H3(k, ω) =

ck

ω
E2(k, ω) =

ω2
p

ω2 − ω2
p − c2k2 + isgnω · 0+

H03(k, ω) , (10)never materialized, apparently. The Lorentz-Drude model, basially the equation of motion for the displaement�eld, was well known in the maturity stages of the eletromagnetism (about 1900); for instane, Sommerfeld usedit extensively for the theory of dispersion. Subsequently, it beame obsolete, and people preferred a semi-empirialand semi-phenomenologial theory of eletromagneti �eld in matter. A reason for suh a urious step bakward liesperhaps in the misoneption that the Lorent-Drude theory is only a model, subjeted to ad-ho hypotheses. In fat,it might be onsidered a model, but it is the only valid and viable model, so it may be in fat the theory of matterpolarization. Not less relevant, it brings ompliated problems, while a semi-empirial and semi-phenomenologialtheory provides ready and easy answers. On the other side, the model has never been used systematially; forinstane, there has never been done a Fourier analysis, nor a derivation of the eigenmodes; hene, a series ofmisoneptions related to the refration law, the region (line) of anomalous dispersion (absorption), an illegitimateuse of the dieletri funtion (onsidered a trustworthy solution), leading to veloities higher than the speed oflight in vauum, et, et.7Usually, the damping parameter γ is muh smaller than any relevant frequeny (exept, of ourse, for lowfrequenies).



4 J. Theor. Phys.where H03 is the (transverse) magneti omponent of the external �eld. We an see that thetransverse omponents of the �elds exhibit a spatial dispersion (dependene on the wavevetor k),as expeted;8 it is introdued through the Green funtion −4πc2/(ω2 − c2k2 + isgnω · 0+) of theHelmholtz equation.Aording to equations (5)-(7), the longitudinal �elds exhibit an eigenmode at the plasmon fre-queny ωp (whih is dispersionless). We asssume here that the external �eld is transverse, as fora radiation (wave) �eld, so we may leave aside the longitudinal solutions.The transverse �elds given by equations (8) - (10) exhibit an eigenmode at the polaritoni frequeny
Ω(k) =

√

ω2
p + c2k2 , (11)whih is dispersive. In addition, we an see that both the harge displaement (polarization) andthe total eletri �eld for a transverse (free) external wave are vanishing, sine ω = ck for suh awave. This is the famous Ewald-Oseen extintion theorem.[20℄-[22℄ In the region (ray) where theexternal wave propagates in matter there is no �eld; the real �eld is in another ray, the polaritoniray, whih is the refration phenomenon.9 Indeed, for the refration and, respetively, inideneangles we an writte (Snell's law)

sin r

sin i
=

k′

k
=

Ω
√

Ω2 − ω2
p

=
1

√

ε(Ω)
, (12)where we put Ω = ck′ (in vauum). We an see, by equation (12), that the polaritoni frequeny(dispersion) is given by equation Ω2ε(Ω) = c2k2; that the refration index (n) is 1/

√
ε; and waveswith low frequenies (e.g., Ω < ωp) do not propagate in matter (plasma; transpareny edge); andthe inidene angle has limitations (total re�etion, total polarization, et). For high frequeniesthe refration index approahes unity.108The transverse poalrizability is given by

α2(k, ω) = −nq2

m

ω2 − c2k2

ω2
(

ω2 − ω2
p − c2k2

)

+ iωγ
=

χ(ω)

1 + 4π ω2

ω2
−c2k2 χ(ω)

.9This amounts to say that free waves with the dispersion relation ω = ck annot be propagated in matter.The external �eld produes an in�nitesimal (vanishing) displaement �eld, whih, in turn, sine the matter has anin�nite extension, produes a non-vanishing internal �eld whih anels out the external �eld; leading thus to avanishing total �eld. (Atually, the displaement �eld is vanishing, while the polarization �eld is undetermined).The situation is di�erent in the presene of a surfae, where the internal �eld has a onstrutive interferene inanother diretion (refration diretion) and produes a displaement along that diretion (for normal inidene thetwo diretions oinide). The polarization eigenmodes of the in�nite matter disappear in the presene of a surfae(whih exhibits a damped, surfae-loalized plasmon-polariton mode). In general, the polarization eigenmodes aredi�erent for a semi-in�nite body (half-spae), an external uniform magneti �eld, et.10If bound harges are present (dieletris, ωc 6= 0 in equation (2)), the polaritoni mode given by equation (11)is di�erent; it orresponds to the dieletri funtion
ε(Ω) =

Ω2 − ω2

L

Ω2 − ω2
c

,where ωL =
√

ω2
p + ω2

c is the longitudinal (plasmon) frequeny (though the dieletri funtion must be used inthe refration law for solutions Ω of the equation ε(Ω)Ω2 = c2k2); for high frequenies we have a less-than-unityrefrative index (as for X- or gamma rays), similar with ondutors; for low frequenies we have the usual greater-than-unity refrative index, oming from a seond polaritoni mode, with an approximate dispersion relation
Ω(k) = ωcck/(ωL + ck), whih may be termed the atomi polaritoni mode (sine it goes to the atomi frequeny



J. Theor. Phys. 5The wavelike nature of light, inluding re�etion, refration, di�ration, interferene, was estab-lished during the 18th and 19th enturies (by Snell, Huygens, Young, Fresnel, Faraday, ...), longbefore the advent of Maxwell's equations (1861 − 62).Extintion theorem. We fous now on the �elds in plasma, as produed by an external laserbeam. We assume that the external �eld is purely transverse (as for radiation), and leave aside thesubsripts 2 and 3 in equations (8)-(10). We take the y, z-axes along the axes 2 and, respetively,
3, while the x-axis is taken along the k-diretion (axis 1).We an hek the extintion theorem by diret alulations, starting with a monohromati ex-ternal �eld

E0(r, t) = E0 cos ω0(t − x/c) (13)with frequeny ω0 propagating along the x-diretion (and perpendiular to this diretion). TheFourier transform of this �eld is
E0(k, ω) =

1

2
E0(2π)4δ(kt)[δ(ω − ω0)δ(kx − ω0/c) + (ω0 → −ω0)] , (14)where kt = (ky, kz) is the transverse wavevetor and kx is the longitudinal wavevetor. Using thisFourier transform in equations (8) and (9) we get straightforwardly

u(r, t) = 0 , Et(r, t) = 0 , E(r, t) = −E0(r, t) , (15)
i.e. the extintion theorem. The result is obtained diretly by using the properties of the δ-funtionin equation (14).11 It shows that a free eletromagneti wave annot be propagated in matter, asexpeted.Wavepakets. A pure monohromati free eletromagneti wave is a pure abstration, an idealapproximation, though one extremely useful. It omes from the wave equation

(ω2/c2 − k2)E(k, ω) = 0 (16)for instane, whose solution an be written as E(k, ω) = E(k)δ(ω/c − k) + E∗(−k)δ(ω/c + k);we note that we still have a freedom in the diretion of the wavevetor and the magnitude ofthe frequeny, for instane; this form an be reognized in the �eld given by equation (14). Thereal situation is that the eletromagneti �eld is onstruted in the laboratory by interation withexternal agents, whih, rigourously speaking, make the �eld non-free. Apertures, ollimators, slits,mirrors, et may give the eletromagneti �eld �nite spatial and temporal extension. Usually, insuh ases the �eld is not free anymore, and the (dispersion) relationship ω = ck does not hold anylonger, rigurously speaking. For instane, a uniform �eld in the transverse diretions subjeted toa slit of size dt has a orresponding Fourier transform12
∫

drte
iktrt =

2 sin kydt/2

ky

· 2 sin kzdt/2

kz

, (17)
ωc in the short wavelength limit). The orresponding Snell law reads

sin r

sin i
=

k′

k
=

ωc − Ω

ωL

;(note that, in general, the 1/
√

ε-law for refration does not work). We note that all these refrative indies aregiven by the ratio of the phase veloity (Ω/k) to the speed of light (whih may be trespassed by the phase veloity);and the refration desribed here orresponds to the Huygens priniple.11Similarly, we an use the inverse Fourier transform of the external �eld and perform the integrations by takingthe ontributions of the Ω-poles in equations (8) and (9). This route implies more umbersome alulations, leadingto the same result.12The dimensions along the two diretions an be di�erent from one another.



6 J. Theor. Phys.whih is a funtion peaked over ∆kt ≃ 1/dt; in the limit dt → ∞ this funtion approahes the
δ(kt)-funtion, as in equation (14). On the ontrary, if the slit is very narrow (dt → 0), the Fouriertransform does not depend on kt, i.e. it ontains any kt. In this ase, we an write the funtionas d2

t δ(rt); we an hek that the Fourier transform of this funtion is d2
t , i.e. preisely the limitof equation (17) for dt → 0. This is a wavepaket.Similarly, let us suppose a �eld

E0(r, t) = E0 cos(ω0t − k0xx) (18)subjeted to a �nite extension d along the x-diretion and a a �nite duration τ (ompare withequation (13)). In equation (18) we asssume ω0 = ckx0 (we note that kt0 = 0) and d ≫ c/ω0,
τ ≫ 1/ω0. A fator d2

t δ(r) may be inluded, or a onstant transverse fator of extension dt,suh as its Fourier transform be that given by equation (17). We emphasize that there are twolimiting ases of onstruting a transverse wavepaket: either one allows for a large (in�nite)extension, as for a beam, ray, plane wave (and the geometrial optis holds), or one assumes a
δ-type loalization, i.e. a very narrow wavepaket (pulse), whih is at the di�ration limit. Usally,we onsider a transverse extension of a few wavelengths, and represent it by a δ-funtion notation.The orresponding Fourier transform in equation (18) is given by

∫

dtdxE0 cos(ω0t − k0xx)eiωte−ikxx =

= 1
2
E0

2 sin(ω−ω0)τ/2
ω−ω0

· 2 sin(kx−k0x)d/2
kx−k0x

+ (ω0 → −ω0) .
(19)The same disussion holds for the temporal and longitudinal wavepakets in equation (19). Wean say that we have an external �eld

E0(r, t) = E0 cos ω0(t − x/c) , (20)whih extends over dt around rt = 0, over d around x = 0, and lasts a time τ around the initialmoment t = 0; it may also be represented formally as
E0(r, t) = E0 cos ω0(t − x/c) · τδ(t) · dδ(x) · d2

t δ(r) , (21)in the sense that the δ-funtions are viewed as supports of �nite extensions (equally well we mayuse step funtions). The Fourier transform of this �eld is given by
E0(k, ω) = 1

2
E0

2 sin(ω−ω0)τ/2
ω−ω0

· 2 sin(kx−k0x)d/2
kx−k0x

·

·2 sinkydt/2
ky

· 2 sinkzdt/2
kz

+ (ω0 → −ω0) .

(22)It is worth noting that, although lose to a free �eld, rigourously this is not a free �eld. The(longitudinal) extension of the �eld is larger than its main wavelength c/ω0 and its duration islonger than the main period 1/ω0. We an view this wavepaket as onsisting of a superpositionof many frequenies ω, in the viinity of ω0, and many wavevetors k, in the viinity of kx0 = ω0/cand kt0 = 0. In general, this �eld may not propagate. It is merely a representation of theeletromagneti perturbation produed in a plasma (at the origin and at the initial moment oftime). We may all this wavepaket a (general) pulse.13It is worth estimating the assoiated magneti �eld from curlE0 = −(1/c)∂H0/∂t. We get
H0(r, t) = E0(r, t) for the transverse magneti �eld perpendiular to the transverse eletri �eld13Eletromagneti peturbations of the type disussed here are produed usually in (losed) resonant avities Thereinside, there exist steady waves, with di�erent frequenies and wavelengths, aording to the boundary onditions.



J. Theor. Phys. 7(and both perpendiular to the x-axis). The density of eletromagneti energy is easily estimatedas u0 = E2
0(r, t)/4π, and the total eletromagneti energy is U0 = E2

0dd2
t/8π. There is also aninternal �ow of energy, given by the Poynting vetor Sx = cE2

0(r, t)/4π and an internal momen-tum �ow (t = ∂g/∂t, g = S/c2) orresponding to the stress fore density tx = −∂xu0. These�ows of energy and momentum indiate that, after preparation, left free, suh an eletromagnetiwavepaket (pulse) has the tendeny to move.14We an hek by diret alulations that the external pulse given by equation (22), introduedinto equations (8) and (9), where the ontributions of the Ω-(polaritoni) poles are taken intoaount, leads to vanishing quantities, like the displaement �eld, et. This is due to the fatthat, although the pulse has the tendeny to move, it does not in fat, sine it does not satisfy(in general) a real dispersion equation (relationships like ω = ck, or ω = Ω(k)). A pulse as thatgiven by equation (22) is simply an external eletromagneti perturbation produed by externalauses (it is not a free wave), whih does not propagate. It is interesting to estimate in thisontext the admittane (or impedane) of the plasma for suh an external perturbation. A realeletromagneti external �eld is a free wave (even with a �nite extension) whih would propagatein plasma (to a ertain extent as given by a transmission oe�ient). The full desription of suh areal situation would imply the taking into aount the plasma-vauum interfae and the re�etionand transmission oe�ients. Sine suh matters are well known, we leave them aside here andturn to the desription of the polaritoni pulse in plasma. In addition, we do not use generalpulses as the ones desribed above.Polaritoni pulse. Sine, in aordane with the extintion theorem, a free eletromagneti �eldannot be propagated in plasma, we put E0 = 0 in equations (8)-(10) and rewrite them as
[ω2 − Ω2(k)]u(k, ω) = 0 , E(k, ω) = −m

q
ω2u(k, ω) , H(k, ω) =

ck

ω
E(k, ω) ; (23)the solution is

u(k, ω) = 2πu(k)[δ(ω − Ω(k)) + δ(ω + Ω(k)] (24)(where u∗(−k) = u(k)).15 We get
u(r, t) =

1

(2π)3

∫

dku(k)e−iΩ(k)t+ikr + c.c. (25)and
E(r, t) = −m

q
1

(2π)3

∫

dkΩ2(k)u(k)e−iΩ(k)t+ikr + c.c. ,

H(r, t) = −m
q

1
(2π)3

∫

dkckΩ(k)u(k)e−iΩ(k)t+ikr + c.c. .
(26)Suh a steady wave onsists of two superposed waves travelling in opposite diretions. On opening an end of theavity, part of these waves travel outside, the other part re�et on the opposite end of the avity and travel outsidetoo. Therefore, we have outside travelling waves with di�erent frequenies (and orresponding wavevetors). Forusual boundary onditions they satisfy the dispersion relation of free waves in vauum. Entering matter (plasma),their wavevetors hange aording to the polaritoni dispersion relation (the frequenies remain unhanged),leading thus to a polaritoni pulse. We emphasize that a pulse of a �nite duration implies a superposition offrequenies.14The pulse onstruted here orresponds rather to a ollimator; usually, it is foalized in plasma, whih meansthat dt is smaller in the fous than at the origin.15These are the polaritoni eigenmodes of the plasma. It is worth noting that they imply a "resonane"; whilean osillator at resonane is disrupted, a wave transfers the motion in spae and is not disrupted loally.



8 J. Theor. Phys.These integrals are performed by the method of the stationary phase (method of the saddle pointor steepest desent).[23℄-[27℄ The phase −iΩ(k)t + ikr is developed in powers of q = k − k0,
−iΩ(k)t + ikr = −iΩ(k0)t + ik0r + (− i

∂Ω

∂k

∣

∣

∣

∣

∣

k0

t + ir)q − it

2

∂2Ω

∂ki∂kj

∣

∣

∣

∣

∣

k0

qiqj + .., (27)around a wavevetor k0, whih is hosen suh as to vanish the linear term in the expansion; whihmeans that the main ontribution to the integrals move with the group veloity
v =

∂Ω

∂k

∣

∣

∣

∣

∣

k0

; (28)indeed, around this point the phases add onstrutively.In order to simplify the disussion we hoose k0 = (k0x, k0y = 0, k0z = 0); the integration over
qt = (qy, qz) an be approximated by a transverse wavepaket of extension dt,

∫

dqte
iqtrt =

2 sin y/2dt

y
· 2 sin z/2dt

z
, (29)where the range of integration is ∆qx = ∆qy ≃ 1/dt; for su�iently small values of dt we mayapproximate this wavepaket by (2π)2δ(rt), where rt = (y, z). We are left, for instane, with

E(r, t) ≃ −m

q
Ω2

0u0δ(rt) · e−iΩ0t+ik0xx 1

2π

∫

dqxe
−i(vt−x)qx−

it
2
Ω

′′

0 q2
x + c.c. , (30)where u0 = u(k0) and

v =
cω0

Ω0
, Ω

′′

0 =
c2ω2

p

Ω3
0

, ω0 = ckx0 , Ω0 =
√

ω2
p + ω2

0 . (31)The integral appearing in equation (30) is given by16
1

2π

∫

dqxe
−i(vt−x)qx−

it
2

Ω
′′

0 q2
x ≃ 1

√

2πitΩ
′′

0

e
i
(x−vt)2

2tΩ
′′

0 →tΩ
′′

0 →0 δ(x − vt) , (32)whih is a representation of the δ-funtion in the limit tΩ
′′

0 → 0 (it looks like an "imaginary"di�usion).17 This representation gives an estimation of the extension of the pulse and its lifetime:at t = 0 the pulse is δ(x) (equation (32)), we an take it as δ(x) ≃ 1/d; after time ∆t the pulse hasa height ≃ 1/
√

∆tΩ
′′

0 ,whih should be ompared with 1/d, and a width ∆x ≃
√

∆tΩ
′′

0(equation(32)). It follows that we may de�ne a lifetime by
1

√

∆tΩ
′′

0

=
1

df
, ∆x =

√

∆tΩ
′′

0 = fd , (33)16The ontour of integration is deformed in suh a way as to ensure a "maximum" for the quadrati formappearing in equation (30): qx + (vt − x)/tΩ
′′

=
√

2/itΩ′′z (steepest desent around a (general) saddle point).17This is a Fresnel integral. Fresnel di�ration gives interferene fringes and a vanishing shadow. Our approx-imation here of passing to a δ-funtion is equivalent with a Fraunhofer di�ration: it gives fringes in the shadowregion. On the pulse wavefront in equation (32) additional ontributions our; we have therefore propagating"preursors" ("forerunners"), whih point out the wave non-loality. They are produed by our seletion of a mainplane wave (denoted by the subsript 0), whih, by its nature, is non-loal.



J. Theor. Phys. 9where f is an arbitrary, small, higher-than-unity number. For the limiting ase f = 1, we get
∆t ≃ d2/Ω

′′

0 , or, sine d = vτ , we have ∆t = v2τ 2/Ω
′′

0 ; i.e.
∆t = τ 2 ω2

0Ω0

ω2
p

; (34)hene we get a limiting value for the duration of the pulse
τ = ∆t =

ω2
p

Ω0ω2
0

(35)and a limiting value of the pulse extension
d = vτ = c

ω2
p

Ω2
0ω0

. (36)We an see that these limitations depend on the plasma frequeny and the frequeny ω0; they analso be written as
d = λ0

ω2
p

Ω2
0

< 1 , τ = t0
ω2

p

Ω0ω0
< t0 , (37)where λ0 = c/ω0 is the main wavelength and t0 = 1/ω0 is the period of the main radiation. Duringits lifetime ∆t given by equation (34) the pulse �ies the distane l = v∆t = cτ 2ω3

0/ω
2
p, whih is apretty long distane for ωp ≪ ω0 (l ≃ dτω3

0/ω
2
p).It follows that we an write the polaritoni pulse as

u(r, t) ≃ 2u0 cos(ω2
pt/Ω0)δ(x − vt)δ(rt) ,

E(r, t) ≃ −2m
q

Ω2
0u0 cos(ω2

pt/Ω0)δ(x − vt)δ(rt) ,

H(r, t) ≃ −2m
q

Ω0ω0u0 cos(ω2
pt/Ω0)δ(x − vt)δ(rt) .

(38)First, aording to the disussion above, we note that suh a pulse makes sense only for ωp ≪
Ω0 ≃ ω0 (otherwise it is too �at and too slow). Aording to its onstrution, it onsists of asuperposition of frequenies Ω(k) and wavevetors k around Ω0 = Ω(k0) and k0. For instane, therange of qx around k0x for a pulse of extension d is ∆qx ≃ 1/d. It follows that the main frequeny
Ω0 (pratially ω0) is the laser frequeny, the superposition arising by the e�et of the externalagents (ollimators, lenses, et) as well as by the �nite duration τ ≃ d/v ≃ 1/v∆qx ≃ 1/∆Ω. At
t = 0 we have E(r, t = 0) ≃ −(2m/q)Ω2

0u0δ(x − vt)δ(rt), whih we may write as E(r, t = 0) ≃
E0 · dδ(x − vt) · d2

t δ(rt), where E0 may be viewed as the magnitude of the external eletri �eld.It is then more onvenient to express the pulse as
u(r, t) ≃ − q

mΩ2
0
E0 · dδ(x − vt) · d2

t δ(rt) ,

E(r, t) ≃ H(r, t) ≃ E0 · dδ(x − vt) · d2
t δ(rt) ;

(39)it has an eletromagneti energy U = E2
0dd2

t/4π, whih is transported with veloity v = cω0/Ω0during a lifetime ∆t ≃ d2Ω3
0/c

2ω2
p over a distane l ≃ v∆t ≃ d2Ω3

0/cω
2
p. We an see that the pulseexhibits a small pulsation with frequeny ω2

p/Ω0, whih may be negleted.1818The energy onservation from Maxwell's equations (1) and equation of motion (2) reads:
∂

∂t
(E2 + H2)/8π +

∂

∂t
(
1

2
nmu̇2) +

c

4π
div(E × H) = 0



10 J. Theor. Phys.There are a few situations of eletromagneti waves propagating in matter. First, we may imaginea plane wave propagating in an in�nite body: if free, it annot be propagated, aording to theextintion theorem; it an only be propagating if it satis�es the polaritoni dispersion relation.This situation is equivalent with reating an eletromagneti disturbane in a body with a su�ientspatial extension; then the propagation of the disturbane an be analyzed in terms of polaritoniplane waves. This situation orresponds to the ase presented in this paper, with speial emphasison a disturbane entered on a main frequeny, i.e. generating a main frequeny for a �nite(su�iently long) duration, and loalized in a ertain spatial region (preferrably small). Undersuh irumstanes we get the pulsed polariton desribed here. In pratie, one sends usually aplane wave (usually from the vauum) on a body with a de�nite surfae. In this ase, the planewave penetrates the body as a polaritoni wave propagating along a refration diretion. Weemphasize that the onditions of geometri optis an be ful�lled in suh a ase. Perhaps, it is moresuitable in this ase to talk of a propagating beam or ray. Moreover, an optial system of fousingan be used in this ase (a lens), and the rays an be foalized (through the surfae) somewherein the body. In the fous region we an reate then a pulsed polariton. One reated, underfavourable onditions (su�iently loalized), the pulsed polariton may beome an autonomousentity, obeying not anylonger the laws of geometrial optis, and propagating as a well-de�nedentity, sometimes over pretty long distanes. Finally, there ould be another situation, where avery narrow pulse is reated in vauum, i.e. a highly loalized spatial region of eletromagneti�eld, usually with a main frequeny, and send through the surfae of a body (either at normal oroblique inidene). In this ase, the pulse may retain its individuality to an appreiable extent,propagating in the body almost as in vauum (in partiular with the speed of light), although itmay reate a polaritoni response of the body both inside (transmitted �eld) and outside (re�eted�eld) over large distanes.It is worth looking for a refration law for pulses. While the pulse whih retains its individualityis not likely to be refrated, the polaritoni pulse formed inside a body may su�er refration, inpriniple, though experimental onditions for suh a situation are di�ult to be realized. It islikely that the Snell law in this ase is sin r/ sin i = c/v, where v is the group veloity. This is tobe ontrasted with the previous formulae, where sin r/ sin i = v/c, where v is the phase veloity(Ω/k). For ondutors the two formuale are the same (and the produt of the two veloities is c2).For dieletris (bound harges) the situation is more omplex. The regular dieletri funtion givesa less-than-unity refrative index for high frequenies, whih inreases with inreasing frequeny.Similarly, the atomi-polaritons give a less-than-unity refrative index, whih is limited to ωc. Ingeneral, on inreasing the energy we may have a ross-over from a phase-veloity driven refrativeindex to a group-veloity refrative index, a situation whih might be enountered in the refrationof the gamma rays in Si, as reported reently.[28℄Rest frame. In the rest frame of the polaritoni pulse, i.e. the frame moving (along the x-diretion) with veloity v with respet to the laboratory frame, the oordinate is x′ = γ(x − vt)and time is t′ = γ(t − vx/c2), where γ = (1 − v2/c2)−1/2 (x = γ(x′ + vt′) and t = γ(t′ + vx′/c2)).Sine x−vt = x′/γ, we have δ(x−vt)dx = γδ(x′)dx, i.e. dx′ = γdx, whih is Lorentz ontration,as expeted. It follows that the size of the pulse in the rest frame is d′ = γd, muh longer than d;(it inludes the mehanial energy of the harges); it is identially satis�ed everywhere exept for the pulse bound-aries, where the transport is governed by
(

∂

∂t
+ v

∂

∂x
)δ(x − vt) = 0for the density of any energy (eletromagneti, mehanial). The same holds for the Poynting vetor, stressfores, eletromagneti momentum, et. We an see that for a polaritoni pulse the eletromagneti or meahnialonservation laws beome irrelevant, in the sense that they are satis�ed identially.



J. Theor. Phys. 11indeed, it is di�ult to onstrut a wavepaket in the rest frame, sine time is very slow, lengthsare very long and dispersion is very e�ient. We note that γ = (1− v2/c2)−1/2 = Ω0/ωp ≫ 1 (andthe transverse oordinates are not a�eted by the hange of the referene frame).Let us apply the Lorentz transformations to the �elds Ey = E and Hz = H given by equations(39):
E

′

y = γ(Ey − v
c
Hz) , E

′

z = γ(Ez + v
c
Hy) ,

H
′

y = γ(Hy + v
c
Ez) , H

′

z = γ(Hz − v
c
Ey) ;

(40)here it is important to use the exat magneti �eld as given by equations (38) Hz = (ω0/Ω0)E =
βE, where β = v/c. We get H

′

z = 0 and E
′

y = E/γ = (ωp/Ω0)E ≃ (ωp/Ω0)E0, in aordane withthe fat that we have a stati situation in the rest frame (a vanishing magneti �eld).We note that in the rest frame there is a weak eletri �eld E
′

y = (ωp/Ω0)E. We have also atransverse displaement u (along the y-axis), as given by equation (39), whih produes a polar-ization P = nqu = −(ω2
p/4πΩ2

0)E aording to equation (39) and, onsequently, a longitudinal�eld Ely = 4πP = −(ω2
p/Ω2

0)E; now, on passing to the rest frame we note that the plasma fre-queny does not hange, it is a material onstant, so the density n in these formulae does nothange; atually, for a body in motion the de�nition of the polarization is hanged, suh as therelativisti invariane be satis�ed;[29, 30℄ this implies the polarization be hanged aording to thetransformation of the �elds (and a magnetization also ours, whih atually is the magneti �eldin the laboratory frame); therefore, we have P
′

= γP in the rest frame and a longitudinal �eld
E

′

ly = −γ(ω2
p/Ω2

0)E = −(ωp/Ω0)E whih anels out exatly the �eld E
′

y. Therefore, the pulsedpolariton is at equilibrium due to the fat that the plasma polarization ompensates the ation ofthe external �eld.19Emergent physis. An eletromagneti pulse of �nite spatial extension and temporal durationan be formed in plasma by exiting the polaritoni eigenmodes. It arises by a loal onstrutiveinterferene of phases, whih may arise over a �nite distane and a �nite lifetime, propagates withthe group veloity and transports eletromagneti �elds and matter.20 Due to its loalization suha wave superposition an be viewed as a partile, of approximate identity and �nite existene, aquasi-stable, loalized, autonomous entity, whih we all pulse polariton (or polaritoni pulse). Itmay give rise to an emergent physis.21The displaement u given by equation (39) generates a density imbalane
δn = −ndivu =

nq

mΩ2
0dt

E0 (41)and a number
δN =

nq

mΩ2
0

ddtE0 (42)of mobile harges distributed over surfae along the y-transverse diretion; and a orrespondingharge
δQ =

ω2
p

4πΩ2
0

ddtE0 . (43)Using the total number of mobile partiles N = ndd2
t inluded in the pulse volume, equation (42)an also be writte as δN/N = qE0dt/mv2

0, where v0 = Ω0dt may stand for a veloity; it follows19The relativisti equation of motion in the laboratory frame preserves the equilibrium in these irumstanes.20Of ourse, suh pulses an be formed in vauum too, where the dispersion is absent and they may last foreveras perfetly loalized entities.21The transverse longitudinal �eld derived above is a manifestation of emergent physis.



12 J. Theor. Phys.that the fration of the partiles displaed by the pulse is the ratio of the work qE0dt done by the�eld to the kineti energy of the partiles, whih is a small quantity.These partiles (harges) move with veloity v = cω0/Ω0, and eah aquires an energy
E =

mc2

√

1 − v2/c2
= mc2 Ω0

ωp
, (44)whih may attain high values. We have also a �ow of partiles

ΦN = vδn = c
nqω0

mΩ3
0dt

E0 (45)and a �ow of energy
Φ = ΦNE = c3 nqω0

Ω2
0ωpdt

E0 , (46)whih should be ompared with the energy �ow Φ0 ≃ vE2
0/4π(intensity); we get

Φ

Φ0
= c2 nq

ωpΩ0dt

√

4πcω0

Ω0Φ0
. (47)We an see that it is favourable, in order to aelerate eletrons, to have a rare�ed plasma (ωp ≪

Ω0), whih gives rise to a well-de�ned pulse (with low dispersion); at the same time, an inreasein aelerating energy is possible only at the expense of the harge �ow.For illustrative purposes we take here the plasma density n = 1018cm−3 (eletrons, q = 4.8 ×
10−10esu, m ≃ 10−27g), whih orresponds to a plasma frequeny ωp = 3×10−2eV (≃ 5×1013s−1),and a main frequeny Ω0 = 1eV (2 × 1015s−1, wavelength 1µm). We get an ultra-relativistiveloity of the pulse and a partile energy E ≃ 20MeV .We take also a typial size of the pulse d = dt = 15µm (orresponding to a pulse duration
τ = 50fs = 5×10−14s) and an energy 50J , orresponding to an eletri �eld E0 ≃ 106statvolt/cm(1statvolt/cm = 3 × 104V/m); the intensity of the pulse is Φ0 = 4 × 1020w/cm2. This pulsetransports δN ≃ 3 × 105 partiles (eletrons) (i.e. 6TeV ), whih means ≃ 1024 partiles per
cm2 · s and a large amount of energy, Φ ≃ 1025MeV/cm2 · s. The magnitude of the displaementin the pulse is qE0/mΩ2

0 ≃ 10Å.22Finally, we note that the polaritoni pulse may also be viewed as a loalized negative eletroniharge and a neutralizing positive ioni harge, both moving with a high veloity; as suh, theygenerate (almost ompensating) transverse �elds; in addition, neutralizing urrents whih om-pensate for the stati ioni harge bak�ow, produing disturbanes (turbulene) in plasma andontributing to the harge neutralization.23Conluding remarks. The theory of the eletromagneti �eld in (polarizable) matter is based onthe displaement �eld of the mobile harges.[31℄ This theory supplements the Maxwell equationswith an equation of motion for the displaement �eld, whih allows a solution of the problem.Basially, this amounts to the well-known Lorentz-Drude (plasma) model of polarizable matter.This theory was applied here (and in Ref. [17℄) to the dynamis of the laser beams foalizedin (rare�ed) plasma. First, it was reognized the essential role played by polaritons (polaritoni22This is to be ompared with nulear polarization, where distanes are 5 − 6 orders of magnitude smaller; thisis why marosopi (or quantum marosopi) laser indued nulear e�ets are extremely small.23Another example of emergent physis related to the pulsed polariton is the prodution of oherent X- or gammarays by Compton (Thomson) baksattering.[17℄
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