
1Journal of Theoreti
al Physi
sFounded and Edited by M. Apostol 210 (2012)ISSN 1453-4428 Dynami
s of laser pulses in plasmaM. ApostolDepartment of Theoreti
al Physi
s, Institute of Atomi
 Physi
s,Magurele-Bu
harest MG-6, POBox MG-35, Romaniaemail: apoma�theory.nipne.roAbstra
tThe propagation of ele
tromagneti
 pulses in plasma is analyzed, espe
ially in 
onne
tionwith ele
trons a

elerated by laser beams in rare�ed gaseous plasmas. The intera
tion ofthe ele
tromagneti
 �eld with matter is introdu
ed by using the polarization (displa
ement)�eld and supplementing Maxwell's equations with the equation of motion of this displa
e-ment �eld. This treatment amounts to using the Lorentz-Drude (plasma) model of polariz-able (non-magneti
) matter and provides a solution of the ele
tromagneti
 �eld equations inmatter. The plasmon and polariton eigenmodes of ele
tromagneti
 �eld-matter intera
tionare obtained. The extin
tion theorem is dis
ussed and its impli
ations in this 
ontext arepresented, espe
ially in 
onne
tion with propagation, di�ra
tion and refra
tion of ele
tro-magneti
 waves in matter. The 
onstru
tion of a wavepa
ket and a pulse of ele
tromagneti
�eld is des
ribed and the propagation of the polaritoni
 pulse in plasma is derived. Thetypi
al 
hara
teristi
s of a pulsed polariton, like velo
ity, transported 
harge, intensity, ele
-tromagneti
 and me
hani
al energy are estimated for the favourable 
onditions of a rare�edplasma.Introdu
tion. The idea of a

elerating ele
trons by fo
alizing intense laser pulses in plasmaappeared as early as 1979.[1℄ The laser power has in
reased appre
iably, by several orders ofmagnitude, in the 1980s and 1990s de
ades, following the introdu
tion of "
hirped ampli�
ation"pro
edure[2℄ (see also Ref. [3℄).1 Thereafter, a series of papers appeared, reporting on ele
tronsa

elerated in plasma by laser beams up to energies of the order of MeV s and even GeV s.[4℄-[15℄The table-top laser is envisaged to provide an alternative to the 
ostly, big parti
le a

elerators.The typi
al 
hara
teristi
s of a nowadays laser, whi
h we use here for illustrative purposes, are:radiation wavelength 1µm (infrared, frequen
y 2× 1015s−1, photon energy 1eV ), energy per pulse
50J , pulse duration τ = 50fs = 5×10−14s, 
orresponding to 1015w (1Pw) power. (For a (15µm)2pulse 
ross-se
tion the intensity is ≃ 1020w/cm2; repetition rate ≃ 1s). In air (va
uum), su
h apulse has a length 15µm (speed of light c = 3×1010cm), 
orresponding to 

a 15 wavelengths. Theele
tri
 �eld in su
h a pulse is ≃ 106statvolt/cm (1010V/m, 1V/m = (1/3)×10−4statvolt/cm), themagneti
 �eld is ≃ 106Gs (102Ts, 1Ts = 104Gs). They are 
omparable with the atomi
 �elds.21Materials are limited to laser intensities of Gw′s/cm2. In order to in
rease this power, the light pulse is stre
hedby means of various opti
al devi
es (gratings, prisms, et
), i.e. it is made to last more in time, by taking advantageof the opti
al dispersion, thus leading to a lower power, whi
h, in turn, 
an be further ampli�ed. Finally, thepulse is 
ompressed as highly as one desires, in prin
iple, to get a high power. This is the basi
s of the 
hirpedampli�
ation idea.2As su
h, they may produ
e non-linearities, X- and gamma rays, va
uum polarization and ele
tron-positronpair 
reation, et
 (see, for instan
e, Ref. [16℄ and referen
es therein); or self-fo
using, �lamentation, harmoni
generation, stimulated Raman and Brillioun s
attering.



2 J. Theor. Phys.The 
onvenient way of analyzing the laser pulses propagating in plasma is the pulsed polariton(whi
h may equally well be termed "polaritoni
 pulse").[17℄ It is based on the wavepa
ket anddispersion 
on
epts. Ele
tromagneti
 radiation (and �elds, in general) propagating in matterintera
t with matter and get polaritoni
 (the non-retarded quasi-stati
 limit is the plasmon). Bymeans of experimental devi
es (
ollimators, apertures, et
) a wave pa
ket of any shape 
an beobtained, in prin
iple. Usually, it is preferable to have a fo
alized one, in order to in
rease thepower.Laser beam intera
ting with plasma. We asssume a homogeneous plasma of mobile (free)
harges q with mass m (ele
trons) and 
on
entration n in a rigid neutralizing (ioni
) ba
kground(at room temperature). We are interested in small disturban
es o

urring over distan
es mu
hlarger than the inter-parti
le (inter-atomi
) distan
e and over times mu
h longer than the 
har-a
teristi
 atomi
 periods, i.e. we assume ma
ros
opi
 averages (both quantum me
hani
al andstatisti
al), appropriate, as usually, for 
lassi
al ele
tromagnetism. Under the a
tion of an exter-nal ele
tromagneti
 �eld the plasma gets polarized, i.e. a small 
harge density ρ = −nqdivu anda small 
urrent density j = nqu̇ o

ur in plasma (in matter, in general), where u(r, t) is a lo
aldispla
ement �eld of the mobile 
harges, depending on the position r and the time t.3 We notethat P = nqu is the polarization (dipole moment density). We leave aside the magneti
 e�e
ts,and assume a non-magneti
 plasma, sin
e, usually, the plasma magetization is very weak.With usual notations the internal (polarization) �eld obey the Maxwell equations
divE = −4πnqdivu , divH = 0 ,

curlE = −1
c

∂H

∂t
, curlH = 1

c
∂E

∂t
+ 4π

c
nqu̇ .

(1)We 
an see that only two equations (1) are independent, but we have three unknowns (E, H and
u). The third equation is provided by the equation of motion for the �eld u

mü = q(E0 + E) − mγu̇ , (2)where E0 is the external ele
tri
 �eld and γ is a damping parameter. We leave aside the Lorentzfor
e in the above equation (and limit ourselves to the non-relativisti
 Newton's equation ofmotion) sin
e the 
harge velo
ities in plasma are mu
h smaller than the speed of light c (by atmost two or three orders of magnitude).4 Equation (2) gives the well-known Lorentz-Drude ele
tri
sus
eptibility[18, 19℄
χ(ω) = −nq2

m

1

ω2 + iωγ
(3)(for 
ondu
tors), by P(ω) = χ(ω)[E0(ω)+E(ω)]; hen
e, the diele
tri
 fun
tion ε(ω) = 1+4πχ(ω),where the plasma frequen
y ωp =

√

4πnq2/m appears.5 The equation of motion (2) provides themissing equation (or its suitable extensions) for the solution of the Maxwell equations in (non-magneti
) matter; it is perfe
tly adequate and 
ompatible to the assumptions of the 
lassi
alele
tromagnetism, and de�nes in fa
t the 
lassi
al model of ele
tromagneti
 matter.63A slight generalization for non-homogeneous plasma is ρ = −qdiv(nu). We note the 
ontinuity equation
∂ρ/∂t + divj = 0.4In addition, the internal magneti
 �eld produ
ed by the 
urrent nqu̇ leads to non-linear terms in the Lorentzfor
e, whi
h may be negle
ted in view of our small disturban
es. Bound 
harges 
an be in
luded in our treatment,by assuming a 
hara
teristi
 frequen
y ωc (or several), with an equation of motion mü = q(E0 +E)−mω2

cu−mγu̇.5From equation (3) and de�nition j(ω) = σ(ω)[E0(ω) + E(ω)], j = Ṗ we get also the 
ondu
tivity σ(ω) =
−iωχ(ω).6Rumours say that Einstein was 
aptivated by Drude model and intended to 
riti
ize it seriously; an intention



J. Theor. Phys. 3Our aim now is to solve equations (1) and (2). Sin
e we deal with in�nite matter, it is 
onvenientto introdu
e Fourier de
ompositions of the type
u(r, t) =

1

(2π)4

∫

dkdωu(k, ω)e−iωt+ikr (4)and use lo
al axes of 
oordinates denoted by 1, 2, 3, where 1 is dire
ted along k and 2 and 3 aretransverse dire
tions, perpendi
ular to k (1) and to one another. Taking the proje
tions on theseaxes in equations (1) and (2) we get easily
u1(k, ω) = − q

m

E01(k, ω)

ω2 − ω2
p + iωγ

, (5)whi
h de�nes the longitudinal polarizability (P1 = nqu1 = α1E01)
α1(ω) = − q

m

1

ω2 − ω2
p + iωγ

; (α1 = χ/(1 + 4πχ)) ; (6)and the �elds
E1 = −4πnqu1 , Et(k, ω) = E01(k, ω) + E1(k, ω) =

ω2

ω2 − ω2
p + iωγ

E01(k, ω) , (7)where Et denotes the total ele
tri
 �eld (H1 = 0).7Similarly, we get for the transverse �elds
u2(k, ω) = − q

m

(ω2 − c2k2)E02(k, ω)

ω2
(

ω2 − ω2
p − c2k2

)

+ isgnω · 0+
(8)(whi
h gives a transverse polarizability) and

E2(k, ω) =
ω2

p

ω2
−ω2

p−c2k2+isgnω·0+E02(k, ω) ,

Et(k, ω) = ω2
−c2k2

ω2
−ω2

p−c2k2+isgnω·0+E02(k, ω) ;

(9)and the magneti
 �eld
H3(k, ω) =

ck

ω
E2(k, ω) =

ω2
p

ω2 − ω2
p − c2k2 + isgnω · 0+

H03(k, ω) , (10)never materialized, apparently. The Lorentz-Drude model, basi
ally the equation of motion for the displa
ement�eld, was well known in the maturity stages of the ele
tromagnetism (about 1900); for instan
e, Sommerfeld usedit extensively for the theory of dispersion. Subsequently, it be
ame obsolete, and people preferred a semi-empiri
aland semi-phenomenologi
al theory of ele
tromagneti
 �eld in matter. A reason for su
h a 
urious step ba
kward liesperhaps in the mis
on
eption that the Lorent-Drude theory is only a model, subje
ted to ad-ho
 hypotheses. In fa
t,it might be 
onsidered a model, but it is the only valid and viable model, so it may be in fa
t the theory of matterpolarization. Not less relevant, it brings 
ompli
ated problems, while a semi-empiri
al and semi-phenomenologi
altheory provides ready and easy answers. On the other side, the model has never been used systemati
ally; forinstan
e, there has never been done a Fourier analysis, nor a derivation of the eigenmodes; hen
e, a series ofmis
on
eptions related to the refra
tion law, the region (line) of anomalous dispersion (absorption), an illegitimateuse of the diele
tri
 fun
tion (
onsidered a trustworthy solution), leading to velo
ities higher than the speed oflight in va
uum, et
, et
.7Usually, the damping parameter γ is mu
h smaller than any relevant frequen
y (ex
ept, of 
ourse, for lowfrequen
ies).



4 J. Theor. Phys.where H03 is the (transverse) magneti
 
omponent of the external �eld. We 
an see that thetransverse 
omponents of the �elds exhibit a spatial dispersion (dependen
e on the waveve
tor k),as expe
ted;8 it is introdu
ed through the Green fun
tion −4πc2/(ω2 − c2k2 + isgnω · 0+) of theHelmholtz equation.A

ording to equations (5)-(7), the longitudinal �elds exhibit an eigenmode at the plasmon fre-quen
y ωp (whi
h is dispersionless). We asssume here that the external �eld is transverse, as fora radiation (wave) �eld, so we may leave aside the longitudinal solutions.The transverse �elds given by equations (8) - (10) exhibit an eigenmode at the polaritoni
 frequen
y
Ω(k) =

√

ω2
p + c2k2 , (11)whi
h is dispersive. In addition, we 
an see that both the 
harge displa
ement (polarization) andthe total ele
tri
 �eld for a transverse (free) external wave are vanishing, sin
e ω = ck for su
h awave. This is the famous Ewald-Oseen extin
tion theorem.[20℄-[22℄ In the region (ray) where theexternal wave propagates in matter there is no �eld; the real �eld is in another ray, the polaritoni
ray, whi
h is the refra
tion phenomenon.9 Indeed, for the refra
tion and, respe
tively, in
iden
eangles we 
an writte (Snell's law)

sin r

sin i
=

k′

k
=

Ω
√

Ω2 − ω2
p

=
1

√

ε(Ω)
, (12)where we put Ω = ck′ (in va
uum). We 
an see, by equation (12), that the polaritoni
 frequen
y(dispersion) is given by equation Ω2ε(Ω) = c2k2; that the refra
tion index (n) is 1/

√
ε; and waveswith low frequen
ies (e.g., Ω < ωp) do not propagate in matter (plasma; transparen
y edge); andthe in
iden
e angle has limitations (total re�e
tion, total polarization, et
). For high frequen
iesthe refra
tion index approa
hes unity.108The transverse poalrizability is given by

α2(k, ω) = −nq2

m

ω2 − c2k2

ω2
(

ω2 − ω2
p − c2k2

)

+ iωγ
=

χ(ω)

1 + 4π ω2

ω2
−c2k2 χ(ω)

.9This amounts to say that free waves with the dispersion relation ω = ck 
annot be propagated in matter.The external �eld produ
es an in�nitesimal (vanishing) displa
ement �eld, whi
h, in turn, sin
e the matter has anin�nite extension, produ
es a non-vanishing internal �eld whi
h 
an
els out the external �eld; leading thus to avanishing total �eld. (A
tually, the displa
ement �eld is vanishing, while the polarization �eld is undetermined).The situation is di�erent in the presen
e of a surfa
e, where the internal �eld has a 
onstru
tive interferen
e inanother dire
tion (refra
tion dire
tion) and produ
es a displa
ement along that dire
tion (for normal in
iden
e thetwo dire
tions 
oin
ide). The polarization eigenmodes of the in�nite matter disappear in the presen
e of a surfa
e(whi
h exhibits a damped, surfa
e-lo
alized plasmon-polariton mode). In general, the polarization eigenmodes aredi�erent for a semi-in�nite body (half-spa
e), an external uniform magneti
 �eld, et
.10If bound 
harges are present (diele
tri
s, ωc 6= 0 in equation (2)), the polaritoni
 mode given by equation (11)is di�erent; it 
orresponds to the diele
tri
 fun
tion
ε(Ω) =

Ω2 − ω2

L

Ω2 − ω2
c

,where ωL =
√

ω2
p + ω2

c is the longitudinal (plasmon) frequen
y (though the diele
tri
 fun
tion must be used inthe refra
tion law for solutions Ω of the equation ε(Ω)Ω2 = c2k2); for high frequen
ies we have a less-than-unityrefra
tive index (as for X- or gamma rays), similar with 
ondu
tors; for low frequen
ies we have the usual greater-than-unity refra
tive index, 
oming from a se
ond polaritoni
 mode, with an approximate dispersion relation
Ω(k) = ωcck/(ωL + ck), whi
h may be termed the atomi
 polaritoni
 mode (sin
e it goes to the atomi
 frequen
y



J. Theor. Phys. 5The wavelike nature of light, in
luding re�e
tion, refra
tion, di�ra
tion, interferen
e, was estab-lished during the 18th and 19th 
enturies (by Snell, Huygens, Young, Fresnel, Faraday, ...), longbefore the advent of Maxwell's equations (1861 − 62).Extin
tion theorem. We fo
us now on the �elds in plasma, as produ
ed by an external laserbeam. We assume that the external �eld is purely transverse (as for radiation), and leave aside thesubs
ripts 2 and 3 in equations (8)-(10). We take the y, z-axes along the axes 2 and, respe
tively,
3, while the x-axis is taken along the k-dire
tion (axis 1).We 
an 
he
k the extin
tion theorem by dire
t 
al
ulations, starting with a mono
hromati
 ex-ternal �eld

E0(r, t) = E0 cos ω0(t − x/c) (13)with frequen
y ω0 propagating along the x-dire
tion (and perpendi
ular to this dire
tion). TheFourier transform of this �eld is
E0(k, ω) =

1

2
E0(2π)4δ(kt)[δ(ω − ω0)δ(kx − ω0/c) + (ω0 → −ω0)] , (14)where kt = (ky, kz) is the transverse waveve
tor and kx is the longitudinal waveve
tor. Using thisFourier transform in equations (8) and (9) we get straightforwardly

u(r, t) = 0 , Et(r, t) = 0 , E(r, t) = −E0(r, t) , (15)
i.e. the extin
tion theorem. The result is obtained dire
tly by using the properties of the δ-fun
tionin equation (14).11 It shows that a free ele
tromagneti
 wave 
annot be propagated in matter, asexpe
ted.Wavepa
kets. A pure mono
hromati
 free ele
tromagneti
 wave is a pure abstra
tion, an idealapproximation, though one extremely useful. It 
omes from the wave equation

(ω2/c2 − k2)E(k, ω) = 0 (16)for instan
e, whose solution 
an be written as E(k, ω) = E(k)δ(ω/c − k) + E∗(−k)δ(ω/c + k);we note that we still have a freedom in the dire
tion of the waveve
tor and the magnitude ofthe frequen
y, for instan
e; this form 
an be re
ognized in the �eld given by equation (14). Thereal situation is that the ele
tromagneti
 �eld is 
onstru
ted in the laboratory by intera
tion withexternal agents, whi
h, rigourously speaking, make the �eld non-free. Apertures, 
ollimators, slits,mirrors, et
 may give the ele
tromagneti
 �eld �nite spatial and temporal extension. Usually, insu
h 
ases the �eld is not free anymore, and the (dispersion) relationship ω = ck does not hold anylonger, rigurously speaking. For instan
e, a uniform �eld in the transverse dire
tions subje
ted toa slit of size dt has a 
orresponding Fourier transform12
∫

drte
iktrt =

2 sin kydt/2

ky

· 2 sin kzdt/2

kz

, (17)
ωc in the short wavelength limit). The 
orresponding Snell law reads

sin r

sin i
=

k′

k
=

ωc − Ω

ωL

;(note that, in general, the 1/
√

ε-law for refra
tion does not work). We note that all these refra
tive indi
es aregiven by the ratio of the phase velo
ity (Ω/k) to the speed of light (whi
h may be trespassed by the phase velo
ity);and the refra
tion des
ribed here 
orresponds to the Huygens prin
iple.11Similarly, we 
an use the inverse Fourier transform of the external �eld and perform the integrations by takingthe 
ontributions of the Ω-poles in equations (8) and (9). This route implies more 
umbersome 
al
ulations, leadingto the same result.12The dimensions along the two dire
tions 
an be di�erent from one another.



6 J. Theor. Phys.whi
h is a fun
tion peaked over ∆kt ≃ 1/dt; in the limit dt → ∞ this fun
tion approa
hes the
δ(kt)-fun
tion, as in equation (14). On the 
ontrary, if the slit is very narrow (dt → 0), the Fouriertransform does not depend on kt, i.e. it 
ontains any kt. In this 
ase, we 
an write the fun
tionas d2

t δ(rt); we 
an 
he
k that the Fourier transform of this fun
tion is d2
t , i.e. pre
isely the limitof equation (17) for dt → 0. This is a wavepa
ket.Similarly, let us suppose a �eld

E0(r, t) = E0 cos(ω0t − k0xx) (18)subje
ted to a �nite extension d along the x-dire
tion and a a �nite duration τ (
ompare withequation (13)). In equation (18) we asssume ω0 = ckx0 (we note that kt0 = 0) and d ≫ c/ω0,
τ ≫ 1/ω0. A fa
tor d2

t δ(r) may be in
luded, or a 
onstant transverse fa
tor of extension dt,su
h as its Fourier transform be that given by equation (17). We emphasize that there are twolimiting 
ases of 
onstru
ting a transverse wavepa
ket: either one allows for a large (in�nite)extension, as for a beam, ray, plane wave (and the geometri
al opti
s holds), or one assumes a
δ-type lo
alization, i.e. a very narrow wavepa
ket (pulse), whi
h is at the di�ra
tion limit. Usally,we 
onsider a transverse extension of a few wavelengths, and represent it by a δ-fun
tion notation.The 
orresponding Fourier transform in equation (18) is given by

∫

dtdxE0 cos(ω0t − k0xx)eiωte−ikxx =

= 1
2
E0

2 sin(ω−ω0)τ/2
ω−ω0

· 2 sin(kx−k0x)d/2
kx−k0x

+ (ω0 → −ω0) .
(19)The same dis
ussion holds for the temporal and longitudinal wavepa
kets in equation (19). We
an say that we have an external �eld

E0(r, t) = E0 cos ω0(t − x/c) , (20)whi
h extends over dt around rt = 0, over d around x = 0, and lasts a time τ around the initialmoment t = 0; it may also be represented formally as
E0(r, t) = E0 cos ω0(t − x/c) · τδ(t) · dδ(x) · d2

t δ(r) , (21)in the sense that the δ-fun
tions are viewed as supports of �nite extensions (equally well we mayuse step fun
tions). The Fourier transform of this �eld is given by
E0(k, ω) = 1

2
E0

2 sin(ω−ω0)τ/2
ω−ω0

· 2 sin(kx−k0x)d/2
kx−k0x

·

·2 sinkydt/2
ky

· 2 sinkzdt/2
kz

+ (ω0 → −ω0) .

(22)It is worth noting that, although 
lose to a free �eld, rigourously this is not a free �eld. The(longitudinal) extension of the �eld is larger than its main wavelength c/ω0 and its duration islonger than the main period 1/ω0. We 
an view this wavepa
ket as 
onsisting of a superpositionof many frequen
ies ω, in the vi
inity of ω0, and many waveve
tors k, in the vi
inity of kx0 = ω0/cand kt0 = 0. In general, this �eld may not propagate. It is merely a representation of theele
tromagneti
 perturbation produ
ed in a plasma (at the origin and at the initial moment oftime). We may 
all this wavepa
ket a (general) pulse.13It is worth estimating the asso
iated magneti
 �eld from curlE0 = −(1/c)∂H0/∂t. We get
H0(r, t) = E0(r, t) for the transverse magneti
 �eld perpendi
ular to the transverse ele
tri
 �eld13Ele
tromagneti
 peturbations of the type dis
ussed here are produ
ed usually in (
losed) resonant 
avities Thereinside, there exist steady waves, with di�erent frequen
ies and wavelengths, a

ording to the boundary 
onditions.



J. Theor. Phys. 7(and both perpendi
ular to the x-axis). The density of ele
tromagneti
 energy is easily estimatedas u0 = E2
0(r, t)/4π, and the total ele
tromagneti
 energy is U0 = E2

0dd2
t/8π. There is also aninternal �ow of energy, given by the Poynting ve
tor Sx = cE2

0(r, t)/4π and an internal momen-tum �ow (t = ∂g/∂t, g = S/c2) 
orresponding to the stress for
e density tx = −∂xu0. These�ows of energy and momentum indi
ate that, after preparation, left free, su
h an ele
tromagneti
wavepa
ket (pulse) has the tenden
y to move.14We 
an 
he
k by dire
t 
al
ulations that the external pulse given by equation (22), introdu
edinto equations (8) and (9), where the 
ontributions of the Ω-(polaritoni
) poles are taken intoa

ount, leads to vanishing quantities, like the displa
ement �eld, et
. This is due to the fa
tthat, although the pulse has the tenden
y to move, it does not in fa
t, sin
e it does not satisfy(in general) a real dispersion equation (relationships like ω = ck, or ω = Ω(k)). A pulse as thatgiven by equation (22) is simply an external ele
tromagneti
 perturbation produ
ed by external
auses (it is not a free wave), whi
h does not propagate. It is interesting to estimate in this
ontext the admittan
e (or impedan
e) of the plasma for su
h an external perturbation. A realele
tromagneti
 external �eld is a free wave (even with a �nite extension) whi
h would propagatein plasma (to a 
ertain extent as given by a transmission 
oe�
ient). The full des
ription of su
h areal situation would imply the taking into a

ount the plasma-va
uum interfa
e and the re�e
tionand transmission 
oe�
ients. Sin
e su
h matters are well known, we leave them aside here andturn to the des
ription of the polaritoni
 pulse in plasma. In addition, we do not use generalpulses as the ones des
ribed above.Polaritoni
 pulse. Sin
e, in a

ordan
e with the extin
tion theorem, a free ele
tromagneti
 �eld
annot be propagated in plasma, we put E0 = 0 in equations (8)-(10) and rewrite them as
[ω2 − Ω2(k)]u(k, ω) = 0 , E(k, ω) = −m

q
ω2u(k, ω) , H(k, ω) =

ck

ω
E(k, ω) ; (23)the solution is

u(k, ω) = 2πu(k)[δ(ω − Ω(k)) + δ(ω + Ω(k)] (24)(where u∗(−k) = u(k)).15 We get
u(r, t) =

1

(2π)3

∫

dku(k)e−iΩ(k)t+ikr + c.c. (25)and
E(r, t) = −m

q
1

(2π)3

∫

dkΩ2(k)u(k)e−iΩ(k)t+ikr + c.c. ,

H(r, t) = −m
q

1
(2π)3

∫

dkckΩ(k)u(k)e−iΩ(k)t+ikr + c.c. .
(26)Su
h a steady wave 
onsists of two superposed waves travelling in opposite dire
tions. On opening an end of the
avity, part of these waves travel outside, the other part re�e
t on the opposite end of the 
avity and travel outsidetoo. Therefore, we have outside travelling waves with di�erent frequen
ies (and 
orresponding waveve
tors). Forusual boundary 
onditions they satisfy the dispersion relation of free waves in va
uum. Entering matter (plasma),their waveve
tors 
hange a

ording to the polaritoni
 dispersion relation (the frequen
ies remain un
hanged),leading thus to a polaritoni
 pulse. We emphasize that a pulse of a �nite duration implies a superposition offrequen
ies.14The pulse 
onstru
ted here 
orresponds rather to a 
ollimator; usually, it is fo
alized in plasma, whi
h meansthat dt is smaller in the fo
us than at the origin.15These are the polaritoni
 eigenmodes of the plasma. It is worth noting that they imply a "resonan
e"; whilean os
illator at resonan
e is disrupted, a wave transfers the motion in spa
e and is not disrupted lo
ally.



8 J. Theor. Phys.These integrals are performed by the method of the stationary phase (method of the saddle pointor steepest des
ent).[23℄-[27℄ The phase −iΩ(k)t + ikr is developed in powers of q = k − k0,
−iΩ(k)t + ikr = −iΩ(k0)t + ik0r + (− i

∂Ω

∂k

∣

∣

∣

∣

∣

k0

t + ir)q − it

2

∂2Ω

∂ki∂kj

∣

∣

∣

∣

∣

k0

qiqj + .., (27)around a waveve
tor k0, whi
h is 
hosen su
h as to vanish the linear term in the expansion; whi
hmeans that the main 
ontribution to the integrals move with the group velo
ity
v =

∂Ω

∂k

∣

∣

∣

∣

∣

k0

; (28)indeed, around this point the phases add 
onstru
tively.In order to simplify the dis
ussion we 
hoose k0 = (k0x, k0y = 0, k0z = 0); the integration over
qt = (qy, qz) 
an be approximated by a transverse wavepa
ket of extension dt,

∫

dqte
iqtrt =

2 sin y/2dt

y
· 2 sin z/2dt

z
, (29)where the range of integration is ∆qx = ∆qy ≃ 1/dt; for su�
iently small values of dt we mayapproximate this wavepa
ket by (2π)2δ(rt), where rt = (y, z). We are left, for instan
e, with

E(r, t) ≃ −m

q
Ω2

0u0δ(rt) · e−iΩ0t+ik0xx 1

2π

∫

dqxe
−i(vt−x)qx−

it
2
Ω

′′

0 q2
x + c.c. , (30)where u0 = u(k0) and

v =
cω0

Ω0
, Ω

′′

0 =
c2ω2

p

Ω3
0

, ω0 = ckx0 , Ω0 =
√

ω2
p + ω2

0 . (31)The integral appearing in equation (30) is given by16
1

2π

∫

dqxe
−i(vt−x)qx−

it
2

Ω
′′

0 q2
x ≃ 1

√

2πitΩ
′′

0

e
i
(x−vt)2

2tΩ
′′

0 →tΩ
′′

0 →0 δ(x − vt) , (32)whi
h is a representation of the δ-fun
tion in the limit tΩ
′′

0 → 0 (it looks like an "imaginary"di�usion).17 This representation gives an estimation of the extension of the pulse and its lifetime:at t = 0 the pulse is δ(x) (equation (32)), we 
an take it as δ(x) ≃ 1/d; after time ∆t the pulse hasa height ≃ 1/
√

∆tΩ
′′

0 ,whi
h should be 
ompared with 1/d, and a width ∆x ≃
√

∆tΩ
′′

0(equation(32)). It follows that we may de�ne a lifetime by
1

√

∆tΩ
′′

0

=
1

df
, ∆x =

√

∆tΩ
′′

0 = fd , (33)16The 
ontour of integration is deformed in su
h a way as to ensure a "maximum" for the quadrati
 formappearing in equation (30): qx + (vt − x)/tΩ
′′

=
√

2/itΩ′′z (steepest des
ent around a (general) saddle point).17This is a Fresnel integral. Fresnel di�ra
tion gives interferen
e fringes and a vanishing shadow. Our approx-imation here of passing to a δ-fun
tion is equivalent with a Fraunhofer di�ra
tion: it gives fringes in the shadowregion. On the pulse wavefront in equation (32) additional 
ontributions o

ur; we have therefore propagating"pre
ursors" ("forerunners"), whi
h point out the wave non-lo
ality. They are produ
ed by our sele
tion of a mainplane wave (denoted by the subs
ript 0), whi
h, by its nature, is non-lo
al.



J. Theor. Phys. 9where f is an arbitrary, small, higher-than-unity number. For the limiting 
ase f = 1, we get
∆t ≃ d2/Ω

′′

0 , or, sin
e d = vτ , we have ∆t = v2τ 2/Ω
′′

0 ; i.e.
∆t = τ 2 ω2

0Ω0

ω2
p

; (34)hen
e we get a limiting value for the duration of the pulse
τ = ∆t =

ω2
p

Ω0ω2
0

(35)and a limiting value of the pulse extension
d = vτ = c

ω2
p

Ω2
0ω0

. (36)We 
an see that these limitations depend on the plasma frequen
y and the frequen
y ω0; they 
analso be written as
d = λ0

ω2
p

Ω2
0

< 1 , τ = t0
ω2

p

Ω0ω0
< t0 , (37)where λ0 = c/ω0 is the main wavelength and t0 = 1/ω0 is the period of the main radiation. Duringits lifetime ∆t given by equation (34) the pulse �ies the distan
e l = v∆t = cτ 2ω3

0/ω
2
p, whi
h is apretty long distan
e for ωp ≪ ω0 (l ≃ dτω3

0/ω
2
p).It follows that we 
an write the polaritoni
 pulse as

u(r, t) ≃ 2u0 cos(ω2
pt/Ω0)δ(x − vt)δ(rt) ,

E(r, t) ≃ −2m
q

Ω2
0u0 cos(ω2

pt/Ω0)δ(x − vt)δ(rt) ,

H(r, t) ≃ −2m
q

Ω0ω0u0 cos(ω2
pt/Ω0)δ(x − vt)δ(rt) .

(38)First, a

ording to the dis
ussion above, we note that su
h a pulse makes sense only for ωp ≪
Ω0 ≃ ω0 (otherwise it is too �at and too slow). A

ording to its 
onstru
tion, it 
onsists of asuperposition of frequen
ies Ω(k) and wavevetors k around Ω0 = Ω(k0) and k0. For instan
e, therange of qx around k0x for a pulse of extension d is ∆qx ≃ 1/d. It follows that the main frequen
y
Ω0 (pra
ti
ally ω0) is the laser frequen
y, the superposition arising by the e�e
t of the externalagents (
ollimators, lenses, et
) as well as by the �nite duration τ ≃ d/v ≃ 1/v∆qx ≃ 1/∆Ω. At
t = 0 we have E(r, t = 0) ≃ −(2m/q)Ω2

0u0δ(x − vt)δ(rt), whi
h we may write as E(r, t = 0) ≃
E0 · dδ(x − vt) · d2

t δ(rt), where E0 may be viewed as the magnitude of the external ele
tri
 �eld.It is then more 
onvenient to express the pulse as
u(r, t) ≃ − q

mΩ2
0
E0 · dδ(x − vt) · d2

t δ(rt) ,

E(r, t) ≃ H(r, t) ≃ E0 · dδ(x − vt) · d2
t δ(rt) ;

(39)it has an ele
tromagneti
 energy U = E2
0dd2

t/4π, whi
h is transported with velo
ity v = cω0/Ω0during a lifetime ∆t ≃ d2Ω3
0/c

2ω2
p over a distan
e l ≃ v∆t ≃ d2Ω3

0/cω
2
p. We 
an see that the pulseexhibits a small pulsation with frequen
y ω2

p/Ω0, whi
h may be negle
ted.1818The energy 
onservation from Maxwell's equations (1) and equation of motion (2) reads:
∂

∂t
(E2 + H2)/8π +

∂

∂t
(
1

2
nmu̇2) +

c

4π
div(E × H) = 0



10 J. Theor. Phys.There are a few situations of ele
tromagneti
 waves propagating in matter. First, we may imaginea plane wave propagating in an in�nite body: if free, it 
annot be propagated, a

ording to theextin
tion theorem; it 
an only be propagating if it satis�es the polaritoni
 dispersion relation.This situation is equivalent with 
reating an ele
tromagneti
 disturban
e in a body with a su�
ientspatial extension; then the propagation of the disturban
e 
an be analyzed in terms of polaritoni
plane waves. This situation 
orresponds to the 
ase presented in this paper, with spe
ial emphasison a disturban
e 
entered on a main frequen
y, i.e. generating a main frequen
y for a �nite(su�
iently long) duration, and lo
alized in a 
ertain spatial region (preferrably small). Undersu
h 
ir
umstan
es we get the pulsed polariton des
ribed here. In pra
ti
e, one sends usually aplane wave (usually from the va
uum) on a body with a de�nite surfa
e. In this 
ase, the planewave penetrates the body as a polaritoni
 wave propagating along a refra
tion dire
tion. Weemphasize that the 
onditions of geometri
 opti
s 
an be ful�lled in su
h a 
ase. Perhaps, it is moresuitable in this 
ase to talk of a propagating beam or ray. Moreover, an opti
al system of fo
using
an be used in this 
ase (a lens), and the rays 
an be fo
alized (through the surfa
e) somewherein the body. In the fo
us region we 
an 
reate then a pulsed polariton. On
e 
reated, underfavourable 
onditions (su�
iently lo
alized), the pulsed polariton may be
ome an autonomousentity, obeying not anylonger the laws of geometri
al opti
s, and propagating as a well-de�nedentity, sometimes over pretty long distan
es. Finally, there 
ould be another situation, where avery narrow pulse is 
reated in va
uum, i.e. a highly lo
alized spatial region of ele
tromagneti
�eld, usually with a main frequen
y, and send through the surfa
e of a body (either at normal oroblique in
iden
e). In this 
ase, the pulse may retain its individuality to an appre
iable extent,propagating in the body almost as in va
uum (in parti
ular with the speed of light), although itmay 
reate a polaritoni
 response of the body both inside (transmitted �eld) and outside (re�e
ted�eld) over large distan
es.It is worth looking for a refra
tion law for pulses. While the pulse whi
h retains its individualityis not likely to be refra
ted, the polaritoni
 pulse formed inside a body may su�er refra
tion, inprin
iple, though experimental 
onditions for su
h a situation are di�
ult to be realized. It islikely that the Snell law in this 
ase is sin r/ sin i = c/v, where v is the group velo
ity. This is tobe 
ontrasted with the previous formulae, where sin r/ sin i = v/c, where v is the phase velo
ity(Ω/k). For 
ondu
tors the two formuale are the same (and the produ
t of the two velo
ities is c2).For diele
tri
s (bound 
harges) the situation is more 
omplex. The regular diele
tri
 fun
tion givesa less-than-unity refra
tive index for high frequen
ies, whi
h in
reases with in
reasing frequen
y.Similarly, the atomi
-polaritons give a less-than-unity refra
tive index, whi
h is limited to ωc. Ingeneral, on in
reasing the energy we may have a 
ross-over from a phase-velo
ity driven refra
tiveindex to a group-velo
ity refra
tive index, a situation whi
h might be en
ountered in the refra
tionof the gamma rays in Si, as reported re
ently.[28℄Rest frame. In the rest frame of the polaritoni
 pulse, i.e. the frame moving (along the x-dire
tion) with velo
ity v with respe
t to the laboratory frame, the 
oordinate is x′ = γ(x − vt)and time is t′ = γ(t − vx/c2), where γ = (1 − v2/c2)−1/2 (x = γ(x′ + vt′) and t = γ(t′ + vx′/c2)).Sin
e x−vt = x′/γ, we have δ(x−vt)dx = γδ(x′)dx, i.e. dx′ = γdx, whi
h is Lorentz 
ontra
tion,as expe
ted. It follows that the size of the pulse in the rest frame is d′ = γd, mu
h longer than d;(it in
ludes the me
hani
al energy of the 
harges); it is identi
ally satis�ed everywhere ex
ept for the pulse bound-aries, where the transport is governed by
(

∂

∂t
+ v

∂

∂x
)δ(x − vt) = 0for the density of any energy (ele
tromagneti
, me
hani
al). The same holds for the Poynting ve
tor, stressfor
es, ele
tromagneti
 momentum, et
. We 
an see that for a polaritoni
 pulse the ele
tromagneti
 or me
ahni
al
onservation laws be
ome irrelevant, in the sense that they are satis�ed identi
ally.



J. Theor. Phys. 11indeed, it is di�
ult to 
onstru
t a wavepa
ket in the rest frame, sin
e time is very slow, lengthsare very long and dispersion is very e�
ient. We note that γ = (1− v2/c2)−1/2 = Ω0/ωp ≫ 1 (andthe transverse 
oordinates are not a�e
ted by the 
hange of the referen
e frame).Let us apply the Lorentz transformations to the �elds Ey = E and Hz = H given by equations(39):
E

′

y = γ(Ey − v
c
Hz) , E

′

z = γ(Ez + v
c
Hy) ,

H
′

y = γ(Hy + v
c
Ez) , H

′

z = γ(Hz − v
c
Ey) ;

(40)here it is important to use the exa
t magneti
 �eld as given by equations (38) Hz = (ω0/Ω0)E =
βE, where β = v/c. We get H

′

z = 0 and E
′

y = E/γ = (ωp/Ω0)E ≃ (ωp/Ω0)E0, in a

ordan
e withthe fa
t that we have a stati
 situation in the rest frame (a vanishing magneti
 �eld).We note that in the rest frame there is a weak ele
tri
 �eld E
′

y = (ωp/Ω0)E. We have also atransverse displa
ement u (along the y-axis), as given by equation (39), whi
h produ
es a polar-ization P = nqu = −(ω2
p/4πΩ2

0)E a

ording to equation (39) and, 
onsequently, a longitudinal�eld Ely = 4πP = −(ω2
p/Ω2

0)E; now, on passing to the rest frame we note that the plasma fre-quen
y does not 
hange, it is a material 
onstant, so the density n in these formulae does not
hange; a
tually, for a body in motion the de�nition of the polarization is 
hanged, su
h as therelativisti
 invarian
e be satis�ed;[29, 30℄ this implies the polarization be 
hanged a

ording to thetransformation of the �elds (and a magnetization also o

urs, whi
h a
tually is the magneti
 �eldin the laboratory frame); therefore, we have P
′

= γP in the rest frame and a longitudinal �eld
E

′

ly = −γ(ω2
p/Ω2

0)E = −(ωp/Ω0)E whi
h 
an
els out exa
tly the �eld E
′

y. Therefore, the pulsedpolariton is at equilibrium due to the fa
t that the plasma polarization 
ompensates the a
tion ofthe external �eld.19Emergent physi
s. An ele
tromagneti
 pulse of �nite spatial extension and temporal duration
an be formed in plasma by ex
iting the polaritoni
 eigenmodes. It arises by a lo
al 
onstru
tiveinterferen
e of phases, whi
h may arise over a �nite distan
e and a �nite lifetime, propagates withthe group velo
ity and transports ele
tromagneti
 �elds and matter.20 Due to its lo
alization su
ha wave superposition 
an be viewed as a parti
le, of approximate identity and �nite existen
e, aquasi-stable, lo
alized, autonomous entity, whi
h we 
all pulse polariton (or polaritoni
 pulse). Itmay give rise to an emergent physi
s.21The displa
ement u given by equation (39) generates a density imbalan
e
δn = −ndivu =

nq

mΩ2
0dt

E0 (41)and a number
δN =

nq

mΩ2
0

ddtE0 (42)of mobile 
harges distributed over surfa
e along the y-transverse dire
tion; and a 
orresponding
harge
δQ =

ω2
p

4πΩ2
0

ddtE0 . (43)Using the total number of mobile parti
les N = ndd2
t in
luded in the pulse volume, equation (42)
an also be writte as δN/N = qE0dt/mv2

0, where v0 = Ω0dt may stand for a velo
ity; it follows19The relativisti
 equation of motion in the laboratory frame preserves the equilibrium in these 
ir
umstan
es.20Of 
ourse, su
h pulses 
an be formed in va
uum too, where the dispersion is absent and they may last foreveras perfe
tly lo
alized entities.21The transverse longitudinal �eld derived above is a manifestation of emergent physi
s.
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tion of the parti
les displa
ed by the pulse is the ratio of the work qE0dt done by the�eld to the kineti
 energy of the parti
les, whi
h is a small quantity.These parti
les (
harges) move with velo
ity v = cω0/Ω0, and ea
h a
quires an energy
E =

mc2

√

1 − v2/c2
= mc2 Ω0

ωp
, (44)whi
h may attain high values. We have also a �ow of parti
les

ΦN = vδn = c
nqω0

mΩ3
0dt

E0 (45)and a �ow of energy
Φ = ΦNE = c3 nqω0

Ω2
0ωpdt

E0 , (46)whi
h should be 
ompared with the energy �ow Φ0 ≃ vE2
0/4π(intensity); we get

Φ

Φ0
= c2 nq

ωpΩ0dt

√

4πcω0

Ω0Φ0
. (47)We 
an see that it is favourable, in order to a

elerate ele
trons, to have a rare�ed plasma (ωp ≪

Ω0), whi
h gives rise to a well-de�ned pulse (with low dispersion); at the same time, an in
reasein a

elerating energy is possible only at the expense of the 
harge �ow.For illustrative purposes we take here the plasma density n = 1018cm−3 (ele
trons, q = 4.8 ×
10−10esu, m ≃ 10−27g), whi
h 
orresponds to a plasma frequen
y ωp = 3×10−2eV (≃ 5×1013s−1),and a main frequen
y Ω0 = 1eV (2 × 1015s−1, wavelength 1µm). We get an ultra-relativisti
velo
ity of the pulse and a parti
le energy E ≃ 20MeV .We take also a typi
al size of the pulse d = dt = 15µm (
orresponding to a pulse duration
τ = 50fs = 5×10−14s) and an energy 50J , 
orresponding to an ele
tri
 �eld E0 ≃ 106statvolt/cm(1statvolt/cm = 3 × 104V/m); the intensity of the pulse is Φ0 = 4 × 1020w/cm2. This pulsetransports δN ≃ 3 × 105 parti
les (ele
trons) (i.e. 6TeV ), whi
h means ≃ 1024 parti
les per
cm2 · s and a large amount of energy, Φ ≃ 1025MeV/cm2 · s. The magnitude of the displa
ementin the pulse is qE0/mΩ2

0 ≃ 10Å.22Finally, we note that the polaritoni
 pulse may also be viewed as a lo
alized negative ele
troni

harge and a neutralizing positive ioni
 
harge, both moving with a high velo
ity; as su
h, theygenerate (almost 
ompensating) transverse �elds; in addition, neutralizing 
urrents whi
h 
om-pensate for the stati
 ioni
 
harge ba
k�ow, produ
ing disturban
es (turbulen
e) in plasma and
ontributing to the 
harge neutralization.23Con
luding remarks. The theory of the ele
tromagneti
 �eld in (polarizable) matter is based onthe displa
ement �eld of the mobile 
harges.[31℄ This theory supplements the Maxwell equationswith an equation of motion for the displa
ement �eld, whi
h allows a solution of the problem.Basi
ally, this amounts to the well-known Lorentz-Drude (plasma) model of polarizable matter.This theory was applied here (and in Ref. [17℄) to the dynami
s of the laser beams fo
alizedin (rare�ed) plasma. First, it was re
ognized the essential role played by polaritons (polaritoni
22This is to be 
ompared with nu
lear polarization, where distan
es are 5 − 6 orders of magnitude smaller; thisis why ma
ros
opi
 (or quantum ma
ros
opi
) laser indu
ed nu
lear e�e
ts are extremely small.23Another example of emergent physi
s related to the pulsed polariton is the produ
tion of 
oherent X- or gammarays by Compton (Thomson) ba
ks
attering.[17℄



J. Theor. Phys. 13eigenmodes) in propagation of the ele
tromagneti
 �eld in matter. Then, it was shown that,by external agents, we 
an form ele
tromagneti
 �elds of a �nite spatial extension and a �nitetemporal duration. A 
onstru
tive interferen
e may appear in su
h wave superpositions, leading,through the me
hanism of the stationary phase, to a quasi-lo
alized, quasi-stable pulse of a �niteduration, subje
ted to the destroying e�e
t of the dispersion. The duration (lifetime) and spatialextension of su
h pulses have been determined. It was shown that su
h a pulse, termed pulsedpolariton or polaritoni
 pulse) moves with the group velo
ity and transport ele
tromagneti
 �eld,mobile 
harges, ele
tromagneti
 and me
hani
al energy, and may serve to a

elerate ele
trons inrare�ed plasma (whi
h provides favourable 
onditions).A
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