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Abstract

The eigenfrequencies are identi�ed for two electromagnetically-coupled semi-in�nite solids

with plane-parallel surfaces (two half-spaces) separated by a third, polarizable body. The

corresponding van der Waals-London and Casimir forces are calculated from the zero-point

energy (vacuum �uctuations) of the normal modes. It is shown how the results can be

extended to bodies of any shape; in particular, the force is given for a sphere interacting

with a half-space. The calculations are performed by using the well-known Drude-Lorentz

(plasma) model of (non-magnetic) polarizable matter. The polarization degrees of freedom

are explicitly introduced. It is shown that the polarization dynamical variables for the two

bodies are coupled through the electromagnetic �eld, very similar with two in�nite sets of

coupled harmonic oscillators.
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1 Introduction

The molecular forces acting between atoms (molecules), known as van der Waals-London and
Casimir forces, have been derived originally by quantum-mechanical calculations in the non-
retarded (small distance)[1]-[3] and, respectively, retarded (large distance) regime[4] (see also
Refs. [5, 6]). The force acting in the retarded regime between an atom and a semi-in�nite conduc-
tor (half-space) has also been derived by quantum-mechanical calculations,[4] while the retarded
force acting between two conducting half-spaces (Casimir force) has been originally derived by ad-
vancing arguments related to the zero-point energy (vacuum �uctuations) of the electromagnetic
�eld with suitable boundary conditions at the surfaces of the two half-spaces.[7] It was realized
that these molecular forces are related to the internal electrical polarization of matter, and the
macroscopic bodies bring their own characteristics with respect to the electrical polarization (like
plasmons, polaritons, surface e�ects, etc), in comparison with individual quantum particles.[8]-[14]

Molecular forces acting between macroscopic bodies, either conductors or dielectrics, have been
derived by the theory of the quantum-statistical electromagnetic �uctuations,[15]-[18] as well as
within the framework of the �eld source theory.[19, 20] Both theories consider, on one hand,
the polarization as an external source, and estimate the response of the electromagnetic �eld
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to this source, and, on the other hand, include polarization (via the dielectric function) in the
electromagnetic �eld, viewing the latter as a dynamical variable (coordinate). There was never
clearly grasped which are the normal modes which �uctuate and bring the zero-point energy in the
molecular forces. On the other hand, a remarkable progress is being recorded recently in a series
of publications regarding the computation of molecular forces for various geometries, especially
nanomechanical structures, using elegant scattering-matrix formalism, or path integral methods,
or boundary-element methods.[21]-[31] In particular, repulsive Casimir forces have been identi�ed
for a third body acting as a medium (instead of vacuum).

We describe here the polarization by a displacement �eld of the mobile charges in polarizable
matter and solve the coupled equations of motion of this �eld, interacting via the electromagnetic
�eld, for two semi-in�nite solids with plane-parallel surfaces (two half-spaces) separated by a third,
polarizable body. The calculations are done by using the well-known Drude-Lorentz (plasma)
model of (non-magnetic) polarizable matter. We show that the polarizations of the two bodies
interact with each other via their electromagnetic �eld, very much alike two in�nite sets of coupled
harmonic oscillators. The normal modes of the ensemble of the two bodies are identi�ed and
the eigenfrequencies are computed. The force is derived from the zero-point energy (vacuum
�uctuations) of these normal modes. We compute the van der Waals-London and Casimir forces
for two half-spaces, either conductors or dielectrics, separated, in general, by a third polarizable
body. In view of the great deal of interest developed recently for the subject,[32]-[55] we show
here how to compute such forces between bodies of any shape, and give the result for the force
acting between a sphere and a half-space.

Some particular results concerning the derivation of the molecular forces along the lines described
above have been previously published.[56, 57] The method used here has also been previously
illustrated in Refs. [58, 59].

2 Matter polarization

We adopt a generic model of matter polarization consisting of identical mobile charges q, with mass
m and density n, moving in a rigid, neutralizing background of volume V . A small displacement
�eld u(R, t) in the position R of these charges gives, at the time t, a local density imbalance
δn = −ndivu and a polarization charge density ρ = −nqdivu. We can see that P = nqu is the
polarization. Therefore, the displacement �eld u(R, t) is a representation for the polarization �eld
P(R, t). The displacement �eld obeys the Newton law of motion

mü = q(E + E0)−mω2
cu−mγu̇ , (1)

where E is the polarization electric �eld generated by the polarization charges (and currents),
ωc is a characteristic frequency, γ is a (small) damping factor and E0 is an external electric
�eld. This is the well-known Drude-Lorentz (plasma) model of polarizable matter,[60]-[62] which
assumes a homogeneous, isotropic matter, without spatial dispersion, represented by a �eld of
harmonic oscillators of frequency ωc. Taking the temporal Fourier transform of equation (1),
with Et = E + E0 the total electric �eld, we get the electric susceptibility χ(ω) = P/Et and the
dielectric function

ε(ω) = 1 + 4πχ(ω) =
ω2 − ω2

c − ω2
p

ω2 − ω2
c + iωγ

=
ω2 − ω2

L

ω2 − ω2
T + iωγ

, (2)

where ωp =
√

4πnq2/m is the plasma frequency. This is also well known as the Lydane-Sachs-
Teller dielectric function,[63] with the longitudinal frequency ωL =

√
ω2
c + ω2

p and the transverse
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frequency ωT = ωc. The latter can be taken as the main absorption frequency of the substance.
The model can be generalized by including the spatial dispersion, several characteristic frequencies
ωc, or by adding an external magnetic �eld, etc. It is worth noting the absence of the magnetic
part of the Lorentz force in equation (1), according to the non-relativistic motion of the slight
displacement u. It is easy to see that, apart from relativistic contributions, it would introduce
non-linearities in equation (1), which are beyond our assumption of a small displacement u. Using
spatial Fourier transforms, this approximation can be formulated as Ku(K)� 1, where K is the
wavevector.

In general, an additional displacement u0 can be introduced in such a model, originating in external
causes, subjected to collisions and obeying a di�erent, averaged equation of motion, mu̇0 = qEtτ ,
where τ is a relaxation time; as it is well known, it gives rise to a density of "conduction" current
j0 = nqu̇0 = (nq2τ/m)Et and the conductivity σ = nq2τ/m. We can see that it implies ωc = 0
in equation (1), a condition which de�nes the conductors; for dielectrics, ωc 6= 0. We leave aside
the conduction current j0. We also leave aside the small damping parameter γ in the equation of
motion (1).

The displacement �eld u produces polarization charge and current densities given by

ρ = −divP = −nqdivu , j =
∂P

∂t
= nqu̇ , (3)

which can be used to compute the electromagnetic potentials

Φ(R, t) =
∫
dR′ ρ(R′,t−|R−R′|/c)

|R−R′| ,

A(R, t) = 1
c

∫
dR′ j(R

′,t−|R−R′|/c)
|R−R′|

(4)

(subjected to the Lorenz gauge divA + (1/c)∂Φ/∂t = 0). These potentials give rise to the electric
�eld E in equation (1), whence we can get the displacement u. This way, we can compute the
electromagnetic �elds of a polarizable body, subjected to the action of an external electromagnetic
�eld.

3 Half-space

For a half-space extending over the region z > d we take the polarization as

P = nq(u, uz)θ(z − d) , (5)

where θ(z) = 0 for z < 0 and θ(z) = 1 for z > 0 is the step function. The polarization charge and
current densities are given by

ρ = −nq(divu + ∂uz

∂z
)θ(z − d)− nquz(d)δ(z − d) ,

j = nq(u̇, u̇z)θ(z − d) .
(6)

We use Fourier decompositions of the type

u(r, z; t) =
1

2π

∑
k

∫
dωu(k, z;ω)e−iωt+ikr , (7)
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where R = (r, z), and may omit ocassionally the arguments k, ω, writing simply u(z), or u.
The electromagnetic potentials given by equations (4) includes the "retarded" Coulomb potential
ei

ω
c
|R−R′|/ |R−R′|, for which we use the well-known decomposition[64]

eiλ|R−R′|

|R−R′|
=

i

2π

∫
dk

1

κ
eik(r−r′)eiκ|z−z

′| , (8)

where λ = ω/c and κ =
√
λ2 − k2. It is more convenient to compute �rst the vector potential A

and then derive the scalar potential Φ from the gauge equation divA− iλΦ = 0. The calculations
are straightforward and we get the Fourier tranforms of the potentials

Φ(k, z;ω) == 2π
κ

∫∞
d
dz′kueiκ|z−z

′| − 2πi
κ

∂
∂z

∫∞
d
dz′uze

iκ|z−z′| ,

A(k, z;ω) = 2πλ
κ

∫∞
d
dz′(u, uz)e

iκ|z−z′|
(9)

(where we have left aside the factor nq; it is restored in the �nal formulae). In order to compute
the electric �eld (E = iλA − gradΦ) it is convenient to refer the in-plane vectors (i.e., vectors
parallel with the surface of the half-space) to the vectors k and k⊥ = ez × k, where ez is the unit
vector along the z-direction; for instance, we write

u = u1
k

k
+ u2

k⊥
k

(10)

and a similar representation for the electric �eld parallel with the surface of the half-space. In
performing the calculations, it is worth paying attention to the derivative of the modulus function,
according to the equation

∂2

∂z2
eiκ|z−z

′| = −κ2eiκ|z−z
′| + 2iκδ(z − z′) . (11)

We get the electric �eld

E1 = 2πiκ
∫∞
d
dz′u1e

iκ|z−z′| − 2πk
κ

∂
∂z

∫∞
d
dz′uze

iκ|z−z′| ,

E2 = 2πiλ2

κ

∫∞
d
dz′u2e

iκ|z−z′| ,

Ez = −2πk
κ

∂
∂z

∫∞
d
dz′u1e

iκ|z−z′| + 2πik2

κ

∫∞
d
dz′uze

iκ|z−z′| − 4πuzθ(z − d) .

(12)

Making use of equations (12), we can check easily the equalities

ikE1 +
∂Ez
∂z

= −4π

(
iku1 +

∂uz
∂z

)
θ(z − d)− 4πuz(z = d)δ(z − d) , (13)

which is an expression of Gauss's law, and

k
∂E1

∂z
+ iκ2Ez = −4πiλ2uzθ(z − d) , (14)

which re�ects Faraday's and Maxwell-Ampere's equations. From equation (13), we can check the
transversality condition divE = 0 for the electric �eld outside the half-space (z < d).

We use now the equation of motion (1) (with γ = 0) for E2 given by equation (12) and for the
combinations iku1 + ∂uz/∂z and k∂u1/∂z + iκ2uz in the region z > d. Taking into account that
divE0 = 0 and k∂E01/∂z + iκ2E0z = 0 (for a plane wave) we get

iku1 +
∂uz
∂z

= 0 , k
∂u1

∂z
+ iκ′2uz = 0 ,
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or
∂2u
∂z2

+ κ′2u = 0 , (15)

where

κ′2 = κ2 −
λ2ω2

p

ω2 − ω2
c

. (16)

The components u1,2 of the displacement �eld are given by u1,2 = A1,2e
iκ′z, where A1,2 are con-

stants, while uz = −(k/κ′)A1e
iκ′z (we restrict ourselves to outgoing waves, κ′ > 0). The total

electric �eld inside the half-space is given by the equation of motion (1):

Et = −m
q

(ω2 − ω2
c )u (17)

for z > d. We can see that the �eld propagates in the half-space with a modi�ed wavevector
κ′, according to the Ewald-Oseen extinction theorem.[65] The modi�ed wavevector κ′ given by
equation (16) can also be written as

κ′2 = ε
ω2

c2
− k2 , (18)

where ε is the dielectric function (as given by equation (2)). We can check the well-known polari-
tonic dispersion relation εω2 = c2K

′2, where K′ = (k, κ′) is the wavevector.

The amplitudes A1,2 can be derived from the original equation (1) and the �eld equations (12)
(for z > d). We get

1
2
A1ω

2
p
κκ′+k2

κ′(κ′−κ)
ei(κ

′−κ)deiκz = q
m
E01 ,

1
2
A2ω

2
p

λ2

κ(κ′−κ)
ei(κ

′−κ)deiκz = q
m
E02 .

(19)

The (polarization) electric �eld, both inside and outside the half-space, can be computed from
equations (12). We get

E1 = −4πnqA1
ω2−ω2

c

ω2
p
eiκ
′z − 2πnqA1

κκ′+k2

κ′(κ′−κ)
ei(κ

′−κ)deiκz , z > d ,

E2 = −4πnqA2
ω2−ω2

c

ω2
p
eiκ
′z − 2πnqA2

λ2

κ(κ′−κ)
ei(κ

′−κ)deiκz , z > d ,

Ez = 4πnqA1
k(ω2−ω2

c )
κ′ω2

p
eiκ
′z + 2πnqA1

k(κκ′+k2)
κκ′(κ′−κ)

ei(κ
′−κ)deiκz , z > d .

(20)

for z > d. It is worth noting that the polarization electric �eld, as given by equations (20), includes
both the external �eld ∼ eiκz (with opposite sign) and the displacement �eld u ∼ eiκ

′z. This can
be checked easily by using equations (19) and (20). The (polarization) electric �eld outside the
half-space (in the region z < d) is given by

E1 = −2πnqA1
κκ′−k2

κ′(κ′+κ)
ei(κ

′+κ)de−iκz , z < d ,

E2 = −2πnqA2
λ2

κ(κ′+κ)
ei(κ

′+κ)de−iκz , z < d

(21)

and Ez = (k/κ)E1 for z < d. We can see that it is the �eld re�ected by the half-space (κ→ −κ).
Making use of equations (19) and (21) we get the total electric �eld Et = E + E0 outside the
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half-space

Et1 = −2πnqA1
κκ′−k2

κ′(κ′+κ)
ei(κ

′+κ)de−iκz + 2πnqA1
κκ′+k2

κ′(κ′−κ)
ei(κ

′−κ)deiκz ,

Et2 = −2πnqA2
λ2

κ(κ′+κ)
ei(κ

′+κ)de−iκz + 2πnqA2
λ2

κ(κ′−κ)
ei(κ

′−κ)deiκz ,

Etz = −2πnqA1
k(κκ′−k2)
κκ′(κ′+κ)

ei(κ
′+κ)de−iκz − 2πnqA1

k(κκ′+k2)
κκ′(κ′−κ)

ei(κ
′−κ)deiκz

(22)

for z < d.

The magnetic �eld, given by H = curlA, can be obtained from equation (9) for the vector
potential. It is given by

H1 = 4πnqA2
κ′(ω2−ω2

c )
λω2

p
eiκ
′z + 2πnqA2

λ
κ′−κe

i(κ′−κ)deiκz , z > d ,

H2 = −4πnqA1
λ(ω2−ω2

p−ω2
c )

κ′ω2
p

eiκ
′z − 2πnqA1

λ(κκ′+k2)
κκ′(κ′−κ)

ei(κ
′−κ)deiκz , z > d ,

Hz = −4πnqA2
k(ω2−ω2

c )
λω2

p
eiκ
′z − 2πnqA2

λk
κ(κ′−κ)

ei(κ
′−κ)deiκz , z > d

(23)

for z > d and
H1 = −2πnqA2

λ
κ′+κ

ei(κ
′+κ)de−iκz , z < d ,

H2 = 2πnqA1
λ(κκ′−k2)
κκ′(κ′+κ)

ei(κ
′+κ)de−iκz , z < d ,

Hz = −2πnqA2
λk

κ(κ′+κ)
ei(κ

′+κ)de−iκz , z < d

(24)

for z < d. We can check the Maxwell equation curlE = iλH. Making use of equations (19) and
(23), from curlE0 = iλH0 we get the total magnetic �eld Ht = H + H0 inside the half-space

Ht1 = 4πnqA2
κ′(ω2−ω2

c )
λω2

p
eiκ
′z , Ht2 = −4πnqA1

λ(ω2−ω2
p−ω2

c )

κ′ω2
p

eiκ
′z ,

Htz = −4πnqA2
k(ω2−ω2

c )
λω2

p
eiκ
′z

(25)

for z > d and the total magnetic �eld outside the half-space

Ht1 = −2πnqA2
λ

κ′+κ
ei(κ

′+κ)de−iκz − 2πnqA2
λ

κ′−κe
i(κ′−κ)deiκz ,

Ht2 = 2πnqA1
λ(κκ′−k2)
κκ′(κ′+κ)

ei(κ
′+κ)de−iκz + 2πnqA1

λ(κκ′+k2)
κκ′(κ′−κ)

ei(κ
′−κ)deiκz ,

Htz = −2πnqA2
λk

κ(κ′+κ)
ei(κ

′+κ)de−iκz + 2πnqA2
λk

κ(κ′−κ)
ei(κ

′−κ)deiκz

(26)

for z < d.

The amplitudes A1,2 can be viewed either as being determined by the external �eld E0 (and H0)
through equations (19), or as free parameters. In the latter case equations (19) are not valid
anymore, but the (polarization) electric and magnetic �elds given by equations (20), (21), (23)
and (24) hold. We can check also that all the �elds are continuous at the surface z = d, except
for Ez and Etz, which exhibit a discontinuity (Etz(z = d−) = εEtz(z = d+)), as expected.
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4 Two half-spaces

For a half-space extending in the region z < −d we can repeat the calculations done in the previous
Section. The displacement �eld in this case is written as (v, vz)θ(−z − d). It is easy to see that
we can get the results for the half space extending in the region z < −d from those pertaining to
the half-space extending in the region z > d by changing z into −z. For instance, the displacement
�eld is given by v1,2 = B1,2e

−iκ′z and vz = (k/κ′)B1e
−iκ′z, where B1,2 are constant amplitudes; the

electric �eld is given by

E1 = −4πnqB1
ω2−ω2

c

ω2
p
e−iκ

′z − 2πnqB1
κκ′+k2

κ′(κ′−κ)
ei(κ

′−κ)de−iκz , z < −d ,

E2 = −4πnqB2
ω2−ω2

c

ω2
p
e−iκ

′z − 2πnqB2
λ2

κ(κ′−κ)
ei(κ

′−κ)de−iκz , z < −d ,

Ez = −4πnqB1
k(ω2−ω2

c )
κ′ω2

p
e−iκ

′z − 2πnqB1
k(κκ′+k2)
κκ′(κ′−κ)

ei(κ
′−κ)de−iκz , z < −d

(27)

for z < −d and
E1 = −2πnqB1

κκ′−k2

κ′(κ′+κ)
ei(κ

′+κ)deiκz , z > −d ,

E2 = −2πnqB2
λ2

κ(κ′+κ)
ei(κ

′+κ)deiκz , z > −d
(28)

and Ez = −(k/κ)E1 for z > −d; and the amplitudes B1,2 are given by

1
2
B1ω

2
p
κκ′+k2

κ′(κ′−κ)
ei(κ

′−κ)de−iκz = q
m
E01 ,

1
2
B2ω

2
p

λ2

κ(κ′−κ)
ei(κ

′−κ)de−iκz = q
m
E02 .

(29)

We consider now two half-spaces, one, denoted by 1, extending in the region z > d/2, another,
denoted by 2, occupying the region z < −d/2. The �eld pertaining to these half-spaces is given
here and in the previous Section, with d replaced by d/2. We focus on the amplitudes equations
(19) and (29). The external �eld for the half-space 2 (equations (29)) is the �eld given by equations
(21), produced by half-space 1 in the region z < d/2; similarly, the external �eld for the half-space
1 (equations (19)) is the �eld given by equation (28), produced by half-space 2 in the region
z > −d/2. All the quantities pertaining to half-spaces 1, 2 will get a su�x 1 or, respectively, 2.
Introducing these �elds in equations (19) and (29) we get the dispersion equations

κ′1−κ
κ′1+κ

· κ
′
2−κ
κ′2+κ

e2iκd = 1 ,

κ′1−κ
κ′1+κ

· κ
′
2−κ
κ′2+κ

· κκ
′
1−k2

κκ′1+k2 · κκ
′
2−k2

κκ′2+k2 e
2iκd = 1 .

(30)

The solutions of these equations give the eigenfrequencies of the two electromagnetically-coupled
half-spaces. Since

(κ′ ± κ)(κκ′ ± k2) = λ2(εκ± κ′) , (31)

according to equation (18), the second dispersion equation (30) can also be written as

κ′1 − ε1κ

κ′1 + ε1κ
· κ
′
2 − ε2κ

κ′2 + ε2κ
e2iκd = 1 , (32)

where ε1,2(ω) are the dielectric functions of the two half-spaces. These dispersion equations have
been established in Refs. [8], [10, 11], by using continuity conditions for the electromagnetic �eld
at the surfaces of the two half-spaces.
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5 Casimir force

In general, the dispersion equations (30) have not solutions. However, there exist particular
conditions, corresponding precisely to physically interesting cases, which ensure solutions for the
dispersion equations (30). For instance, conductors are characterized by ωc = 0 and large values
of ωp. In this case, the z-component κ′ of the wavevector is purely imaginary and its magnitude
acquires large values in comparison with κ (i.e., λ). Purely imaginary wavevectors κ′ correspond
to damped surface plasmon-polariton modes in conductors (see, for instance, Refs. [56, 58]),
in agreement with the original Casimir's assumption concerning the boundary conditions at the
surfaces of two semi-in�nite metals. In this retarded regime of interaction the electromagnetic �eld
is propagating between the two half-spaces (κ real), but it is damped along the z-direction inside
the conducting half-spaces. Good dielectrics are characterized by ω � ωc � ωp, so that κ

′ (which
is real) acquires again large values. This condition is usually referred to as the condition of long
wavelengths in comparison with the main (characteristic) absorption wavelength of the substance
(see, for instance, Ref. [18]). It is easy to see that equations (30) have solutions κd = πn, n
any integer, for

∣∣κ′1,2∣∣ � κ1,2, |ε1,2|κ1,2. Solutions κd = πn can be easily understood. In the

in-between region there is a �eld produced by the half-space 1, which goes like E(1), H(1) ∼ e−iκz

and a �eld produced by the half-space 2, which goes like E(2), H(2) ∼ eiκz. Cross-terms of the
form E(1)∗E(2), integrated over z from −d/2 to d/2, in the energy of the electromagnetic �eld in
this region give rise to the factor sinκd. The condition κd = πn ensures the vanishing of this
interaction energy. There is also an interaction electromagnetic energy inside the two half-spaces
(involving cross-terms), which cannot, in general, be removed, except in those cases where it is
practically negligible. This condition correspond to

∣∣κ′1,2∣∣� κ1,2, |ε1,2|κ1,2.

The solutions κd = πn (κ =
√
λ2 − k2) imply the eigenfrequencies

Ωn(k) = c

√
k2 +

π2n2

d2
; (33)

according to equations (19) and (29); the corresponding amplitudes can be written as

A1,2,n = 2πa1,2,nδ(ω − Ωn(k)) , (34)

where u1,2,n(k, z; t) = a1,2,ne
iΩn(k)teiκ

′
1,2z. We can see that a1,2,n are displacements, according to

equation (7), and they correspond to the coordinates of harmonic-oscillators with frequencies
Ωn(k). According to equations (29), a similar representation holds for the amplitudes B1,2 of
the displacement �eld in the half-space 2, as well as for the associated electromagnetic �elds. In
e�ect, the coordinates of the a1,2,n-type are the coordinates of the normal modes (labelled by k
and n) of the two electromagnetically-coupled half-spaces. The motion of the normal modes can
be quantized, according to standard rules, so that the ground-state energy is given by

E =
∞∑
n=0

∑
k

~Ωn(k) =
S~c
2π

∑
n=0

∫
0

dk · k
√
k2 +

π2n2

d2
, (35)

where S denotes the area of the surface and a factor 2 has been introduced in order to account
for the two labels 1 and 2.

We estimate the change brought about by the �nite distance d in the energy E by using the
Euler-Maclaurin formula:[66]

∆E =
∑
m=1

(−1)mBm(π/d)2m−1

(2m)!
f (2m−1)(0) , (36)
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where Bm are the Bernoulli's numbers and

f(κ) =
S~c
2π

∫
dkk
√
k2 + κ2 ; (37)

introducing u = k2 + κ2, equation (36) becomes

∆E =
~cS
4π

∑
m=1

(−1)mBm(π/d)2m−1

(2m)!

(∫
κ2

du
√
u

)(2m−1)

0

, (38)

The only contribution to equation (38) comes from the third-order derivative. We get (B2 = 1/30)

∆E = −π
2~cS
720

· 1

d3
(39)

and an attractive force

F = −π
2~cS
240

· 1

d4
, (40)

which is the well-known Casimir force, acting between two half-spaces with parallel surfaces sep-
arated by distance d. We can see that it is the same for dielectrics and conductors (under the
conditions given before), including the pair conductor-dielectric, does not depend on the nature
of the two semi-in�nite bodies and arises from the zero-point (vacuum) �uctuations of the motion
of the charge carriers in the two polarizable bodies. We may say that it has a universal character.

The e�ect of the temperature T = 1/β can be incorporated in equation (38) by the change∫
κ2

du
√
u→

∫
κ2

du
√
u coth

[
1

2
β~c
√
u

]
. (41)

For realistic values of the parameters we have β~c/d� 1, so we get a small temperature correction
factor ' coth(β~c/d) in the expression of the force.

6 van der Waals-London force

For shorter distances d, the electromagnetic �eld acquires the non-retarded regime corresponding
to λ → 0; it follows that κ ' ik, i.e. the electromagnetic �eld is damped along the z -direction,
both inside and ouside the half-spaces. In this limit we have

κ′ ' κ−
λ2ω2

p

2κ(ω2 − ω2
c )
, κκ′ + k2 ' λ2

[
1−

ω2
p

2(ω2 − ω2
c )

]
(42)

and κκ′ − k2 ' −2k2. Making use of these approximations, the second equation (30) leads to

(ω2 − ω2
c1 −

1

2
ω2
p1)((ω2 − ω2

c2 −
1

2
ω2
p2) =

1

4
ω2
p1ω

2
p2e
−2kd . (43)

We solve this equation for large values of the kd, which bring the main contribution to integrals over
k. Within this approximation, the rhs of equation (43) may be treated as a small perturbation.
From the zero-point energy, we get the van der Waals-London force (per unit area) for distinct
bodies

F = − ~ωp1ωp2
16π
√

2C1C2(ωp1C1 + ωp2C2)
· 1

d3
, (44)
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where

C1,2 =

√
ε01,2 + 1

ε01,2 − 1
, (45)

ε01,2 being the static dielectric constants (for conductors, C1,2 → 1). For identical bodies, the
force becomes

F = − ~ωp
32π
√

2

(
ε0 − 1

ε0 + 1

)3/2

· 1

d3
(46)

(for conductors |ε0| → ∞).

7 A third body

We assume now that a slab of thickness d and parameters ωp3, ωc3 (body 3) is inserted in the gap
between the two half-spaces. All the calculations given in Sections 2 and 3 are repeated for this
body, which brings its own component κ′3 of the wavevevector along the z-axis, given by

κ
′2
3 = κ2 −

λ2ω2
p3

ω2 − ω2
c3

= ε3λ
2 − k2 , (47)

ε3 being the dielectric function of this body. The �rst dispersion equation (30) becomes now(
κ′1+κ

κ′1−κ
· 1
κ′3+κ

− 1
κ′3−κ

)(
κ′2+κ

κ′2−κ
· 1
κ′3+κ

− 1
κ′3−κ

)
e2iκ′3d =

(
κ′1+κ

κ′1−κ
· 1
κ′3−κ

− 1
κ′3+κ

)(
κ′2+κ

κ′2−κ
· 1
κ′3−κ

− 1
κ′3+κ

)
,

(48)

while the second dispersion equation (30) can be written as

(a1b− − b+)(a2b− − b+)e2iκ′3d = (a1b+ − b−)(a2b+ − b−) , (49)

where

ai =
κκ′i + k2

κκ′i − k2
· κ
′
i + κ

κ′i − κ
=
εiκ+ κ′i
εiκ− κ′i

, i = 1, 2 (50)

and

b± =
κκ′3 ± k2

κ′3 ∓ κ
. (51)

We can see that the dispersion equations (30) can be retrieved from equations (48) and (49) by
putting formally κ′3 = κ, as for vacuum.

For large values of
∣∣κ′1,2∣∣ (either conductors or dielectrics), equations (48) and (49) have solution

κ′3d = πn, n integer, which implies ε3(ω)λ2 = c2K ′23 , where K′3 = (k, πn/d). This equation has

two solution branches, one starting at
√
ω2
p3 + ω2

c3 with an asymptote ' cK ′3, and another starting

as vK ′3 and asymptote ωc3, where

v = c
ωc3√

ω2
p3 + ω2

c3

=
c
√
ε30

, (52)

ε30 being the (static) dielectric constant of the body 3. These are the well-known polariton
branches in a polarizable body. It follows that the Casimir force is given by the same equation
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(40) with the renormalized light velocity (polariton velocity) v, as expected. For a conducting
body inserted in the gap (κ′3 purely imginary), the force is vanishing.

In the non-retarded regime κ ' ik the situation is more complicated. Equation (49) leads to[
4(ω2 −D1)(ω2 −D3)− ω2

p1ω
2
p3

] [
4(ω2 −D2)(ω2 −D3)− ω2

p2ω
2
p3

]
=

= 4
[
ω2
p1(ω2 −D3)− ω2

p3(ω2 −D1)
] [
ω2
p2(ω2 −D3)− ω2

p3(ω2 −D2)
]
e−2kd ,

(53)

where

Di =
1

2
ω2
pi

ε0i + 1

ε0i − 1
, i = 1, 2, 3. (54)

The zero-point energy associated with the solutions of this equation leads to the van der Waals-
London force. It is easy to see that for large values of D3 (weak dielectric in-between), equation
(53) becomes equation (43),which means that the e�ect of a weak dielectric introduced in the gap
between the two half-spaces is a second-order correction. For two identical conductors 1 and 2
and a distinct conductor 3 in-between the force is given by

F = − ~
32π
√

2

ω2
p − ω2

p3

(ω2
p + ω2

p3)3/2
· 1

d3
. (55)

More complicated situations can be treated by solving equation (53).

8 Formulae of the theory of the electromagnetic �uctuations

We give here a formal deduction of the formulae obtained within the framework of the theory of
the electromagnetic �uctuations, following Refs. [8], [10, 11]

Suppose that the eigenvalues Ωn(k) are given by the roots of an equation written as G(ω, k) = 0,
like one of equations (30). Then, the zero-point energy can be written as

E =
1

2
~
∑
nk

Ωn(k) =
~

4πi

∑
nk

∫
dω

ω

ω − Ωn(k)
, (56)

or

E =
~
2i

∫
dkk

∫
dωω

∂

∂ω
lnG (57)

(per unit area), where the integration with respect to ω is performed around the positive ω-axis
(we assume that function G has no poles). We pass from the variables (ω, k) to the variables
(ξ, p) de�ned by

ω = iξ , p =
√

1 + c2k2/ξ2sgn(ξ) . (58)

The jacobian of this transformation is

∂(ω, k)

∂(ξ, p)
=

iξp

c(p2 − 1)1/2
(59)

and the integration is represented as∫ −1

−∞
dp

∫ 0

−∞
dξ −

∫ ∞
1

dp

∫ ∞
0

dξ (60)
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We take for G = 0 equations (30), which, with the new variables, become

G1 = (s1+p)(s2+p)
(s1−p)(s2−p)e

2ξpd/c − 1 = 0 ,

G2 = (s1+ε1p)(s2+ε2p)
(s1−ε1p)(s2−ε2p)e

2ξpd/c − 1 = 0 ,

(61)

where si = (εi − 1 + p2)1/2, i = 1, 2 and κ is replaced by κ = −iξp/c. The derivative with respect
to ω in equation (57) becomes

∂G

∂ω
= −i∂G

∂ξ
+ i

p2 − 1

pξ

∂G

∂p
. (62)

In order to get the force, we take the (minus) derivative with respect to d in equation (57) and
make use of

∂G

∂d
=

2ξp

c
(G+ 1) . (63)

Combining equations (62) and (63), we get easily

∂

∂d

(
1

G

∂G

∂ω

)
=

2

ic

(
1

p
+

1

pG
− ξp

G2

∂G

∂ξ
+
p2 − 1

G2

∂G

∂p

)
. (64)

An integration by parts in F = ∂E/∂d leads to the force

F = − ~
2π2c3

∫ ∞
1

dpp2

∫ ∞
0

dξξ3

(
1

G1

+
1

G2

)
, (65)

which is the well-known formula given in Refs. [15]-[20]. The formal equivalence given here can
be found entirely in Ref. [10]. For �nite temperatures the integration over ξ is replaced by a
summation over the integers n, such as β~ξn = 2πn, where β = 1/T is the reciprocal of the
temperature T .

For conductors, in the retarded limit, equation (65) leads to the Casimir force given by equation
(40). For poor dielectrics, or combinations of poor dielectrics with conductors, equation (65) brings
a small correction factor to the Casimir force (see, for instance, equation (82.6) in Ref. [18]), which
indicates, in fact, that the force is vanishing in this case. In the limit of good dielectrics, equation
(65) leads to the same universal Casimir force given by equation (40).

In the non-retarded limit ω → 0 (ξ → 0), the most important contribution to the p-integral in
equation (65) comes from p � 1, due to the presence of the exponential in the denominator.
Consequently, we may take s1,2 ' p, which leads to

F ' − ~
16π2d3

∫ ∞
0

dxx2

∫ ∞
0

dξ

[
(1 + ε1)(1 + ε2)

(1− ε1)(1− ε2)
ex − 1

]−1

, (66)

which is the well-known formula given in Refs. [15]-[20] for the van der Waals-London force. The
evaluation of the ξ-integral is di�cult, so we cannot compare the result with equation (44).

Both equations (65) and (66) can be extended to very rare�ed bodies, leading to well-known forces
computed quantum-mechanicaly for two interacting atoms (molecules).[18] In general, equations
(65) and (66) are valid provided equation G(ω, k) = 0 has solutions (i.e. equations (30) have
solutions). Unfortunately, equations (65) and (66) may also indicate false solutions (as for poor
dielectrics).
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9 Concluding remarks. Sphere and half-space

Let us denote by F1/2 = CS/dn the van der Waals-London or Casimir force acting between two
half-spaces separated by distance d, where C is a constant, S is the transverse area of the two
half-spaces, n = 3 for the van der Waals-London force and n = 4 for the Casimir force. We look
for a force df = C1/ |z|n1 dV , acting between the half-space and a "macroscopically in�nitesimal"
element of volume dV placed at distance |z| from the half-space, such as∫

df = F1/2 , (67)

where the integration is performed over the other half-space. We �nd easily C1 = Cn and n1 =
n+ 1. Now we compute the force

Fs =

∫
df = Cn

∫
dV

1

(R + d− r cos θ)n+1
(68)

acting between the half-space and a sphere of radius R placed at distance d from the half-space
(the distance between the half-space and the surface of the sphere); the integration in equation
(68) is performed over the volume of the sphere. The integration in equation (68) is elementary,
and, for R� d, we get the force

Fs '
2πCR

(n− 1)dn−1
. (69)

The force acting between a half-space and a spherical shell of radius R is 2πCR2/dn. In a similar
way we can derive the force acting between two bodies of any shape. The force acting between
two macroscopic particles is given by

f =
n(n+ 1)(n+ 2)C

2πdn+4
v1v2 , (70)

where v1,2 are the volumes of the two particles.

In conclusion we may say that the van der Waals-London and Casimir forces are calculated here
explicitly for two semi-in�nite solids (half-spaces) separated by a third, polarizable body inserted
in the gap between the two half-spaces. In contrast with previous, well-known treatments of the
problem, the polarization degreees of freedom are introduced here explicitly, and their dynamics is
included, beside the Maxwell equations of the electromagnetic �eld. The equations of motion are
solved (both for polarization and the electromagnetic �eld) for these electromagnetically-coupled
bodies, the normal modes are identi�ed as harmonic-oscillators modes, and the corresponding
eigenfrequencies are computed. The force is calculated frm the zero-point energy of the vacuum
�uctuations of the polarization. The extension of the results to bodies of any shape is done, and
the force acting between a sphere and a half-space is calculated explicitly.
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