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Abstract

A simple model of coupled plasmons arising in two neighbouring nano-particles is pre-

sented. The coupled oscillations and the corresponding eigenfrequencies are computed. It is

shown that the plasmons may be periodically trasferred between the two particles. For larger

separation distances between the two particles the retardation is included. The oscillation

eigenmodes are called polaritons in this case. There are distances for which the particles do

not couple to each other in this case, i.e. the polaritonic coupling gets damped. The van

der Waals-London-Casimir force is estimated for the two particles; it is shown that for large

distances the force is repulsive.

Plasmons is an old and fundamental concept in condensed matter physics:1 they are long-
wavelength longitudinal oscillations of the charge density in matter. In a simple model, which
is usually called the Drude-Lorentz model, matter can be represented as a plasma, consisting of
identical mobile charges q of mass m and concentration (density) n (e.g., electrons) moving uni-
formly and collectively against a quasi-rigid background of neutralizing charges−q (e.g., ions). The
practical realization of long wavelength limit implies �nite-size polarizable bodies, which entail, in
turn, boundary conditions. Consequently, we may have many branches of plasmons: for instance,
in a homogeneous conducting sphere the plasmon spectrum is given by Ωl = ωp

√
l/(2l + 1), where

ωp =
√

4πnq2/m is called the plasma frequency and l = 1, 2... is the azymuthal quantum number.
A much more convenient representation simpli�es the things to point particles, which may be a
reasonably useful model for the nowadays nano-plasmonics.

As it is well known, the Maxwell equations in matter imply four unknowns: E (electric �eld), D
(electric displacement), H (magnetic �eld) and B (magnetic induction); and only two indepen-
dent equations (Faraday and Maxwell-Ampere equations, which contain the curl and the time
derivatives). In order to solve them, we introduce constitutive relations between these unknowns
through the semi-phenomenological and quasi-empirical dielectric function ε and magnetic per-
meability µ. A large class of matter is quasi-non-magnetic, such that we may equal H and B and
put µ = 1; still, we have three unknowns (E, D and H) and two equations.

On the other hand, the motion of the mobile charges in polarizable matter can be described by
a displacement �eld u(t, r), which is a function of the time t and position r. In the classical
limit of small and slow variations (corresponding to classical electromagnetism), this displacement
�eld generates a polarization charge density ρ = −nqdivu and a corresponding current density

1There is an enormous and ubiquituos plasmon literature, which makes a formal list of references both impossible
and useless.
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j = nqu̇. These charge and current densities generate in matter an electric �eld E and a magnetic
�eld H; but we still have two independent equations and three unknowns: E, H and u. However,
the displacement �eld obeys an equation of motion, which, in this classical limit, is the Newton
equation of motion

mü = q(E + E0)−mω2
cu−mγu̇ ; (1)

E is the internal (polarization) electric �eld, E0 is an external electric �eld, ωc is a characteristic
frequency and γ is a damping coe�cient (much smaller than any relevant frequency). The magnetic
part of the Lorentz force is absent in equation (1) because the velocities of the charges in matter
are much smaller than the speed of light; the internal magnetic �eld is also absent, in accordance
with our assumption of small u and non-magnetic matter. Equation (1) is the missing equation
(the third equation), which helps solving the Maxwell equations.

Obviously, P = nqu is the polarization (density of dipole moments); equation (1) leads immedi-
ately to the well-known Drude-Lorentz (plasma) dielectric function ε(ω) = (ω2 − ω2

c − ω2
p)/(ω

2 −
ω2
c + iωγ), where only the optical dispersion is included (through the dependence on the frequency
ω). As it is well known, ωc = 0 corresponds to conductors, while ωc 6= 0 describes dielectrics. The
model and equation (1) can be generalized in multiple ways. We limit ourselves here to use equa-
tion (1) in conjunction with Maxwell equations, in order to describe a simple situation regarding
coupled nano-plasmons.

The longitudinal internal (polarization) electric �eld in Gauss equation divE = −4πnqdivu is
given by E = −4πnqu (i.e., E = −4πP). In the long-wavelength limit, the �nite size of the
body is usually taken into account by a (de-) polarizing factor f , such as the �eld is given by
E = −4πnqfu; for instance, for a sphere f = 1/3. Introducing this polarization �eld in equation
(1), taking the Fourier transform and leaving aside the coe�cient γ, we get

(ω2 − ω2
c − fω2

p)u = − q

m
E0 ; (2)

we can see that we have a plasmon resonance at frequency
√
ω2
c + fω2

p; for a conducting sphere

with ωc = 0 and f = 1/3, we get the plasmon frequency ωp/
√

3, in accordance with the frequencies
Ωl given above for l = 1.

We consider two point particles, denoted by 1 and 2, each with its own plasmon frequency ω1,2,
separated by the position vector d. We describe the motion of the mobile charges in each particle
by a displacement vector u1,2; equation (2) becomes

(ω2 − ω2
1,2)u1,2 = − q

m
E02,1 , (3)

where E01,2 is the electric �eld generated by particle 1 (2) at the position of the particle 2 (1). In
the long wavelength limit this is the �eld generated by a point dipole

E01,2 = v1,2n1,2q
3(u1,2d)d− u1,2d

2

d5
, (4)

where v1,2 are the volumes of the two particles and n1,2 are the concentration of the mobile charges
in the particles; equation (4) is valid in the near-�eld region c/ω � d, where c is the speed of

light. Since the particles are considered point-like, we have also v
1/3
1,2 � d. Introducing this �eld in

equations (3) we get two coupled equations for the displacement vectors. It is convenient to use
the projection of the displacement vectors on the vector d and on a direction perpendicular to the
vector d; we call the former the longitudinal displacements and denote them by ul1,2, while the
latter, denoted by ut1,2, are called transverse displacements. The equations for the longitudinal
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displacements are decoupled from those corresponding to the transverse displacements; both sets
of equations have the same structure. We limit ourselves here to the longitudinal displacements

(ω2 − ω2
1,2)ul1,2 = −

ω2
p2,1v2,1

2πd3
ul2,1 . (5)

The solution of these coupled-oscillators equations is straightforward. The factor v1,2/d
3 plays the

role of a weak-coupling constant. The eigenfrequencies of equations (5) are close to the plasmon
frequencies ω1,2, which should satisfy the condition c/ω1,2 � d; c/ω1,2 is usually called the plasma
wavelength. For typical values ω1,2 ' 1015s−1 we get a critical distance of the order d ' 0.1µm;
the treament given here holds for smaller distances, while for larger distances we need to take into
account the retardation in estimating the polarization �eld.

An interesting situation occurs for two identical conducting particles ωc1 = ωc2 = 0, ωp1 = ωp2 = ωp
and v1 = v2 = v. In this case the eigenfrequencies are given by

Ω1,2 = ωp

(
1± v

2πd3

)1/2

' ωp

(
1± v

4πd3

)
. (6)

The displacement vectors for the initial condition ul2(t = 0) = 0 is given by

ul1(t) = 2Aeiωpt cos v
4πd3

t ,

ul2(t) = −2iAeiωpt sin v
4πd3

t ;
(7)

we can see that the two coupled oscillations exhibit "beats", and the plasmons can be transferred
periodically between the two particles, as expected. A similar situation holds for the transverse
oscillations, with the factor 2π replaced by 4π in the above formulae.

A polarizable point-like particle can be approximated by a dipole, with the current density j =
vnqu̇δ(r) and charge density ρ = −vnq(ugrad)δ(r), where v is the volume of the particle placed at
the origin. For these charge and current distributions we can compute easily the electromagnetic
potentials (Fourier transforms):

A = −iλvnque
iλr

r
, Φ = −vnqur

r

∂

∂r

eiλr

r
, (8)

where λ = ω/c. The polarization electric �eld is given by E = −(1/c)∂A/∂t− gradΦ, so that we
can include the retardation in the equation of motion (1). For the longitudinal oscillations of two
identical conducting particles we get

(ω2 − ω2
p)ul1,2 = −

ω2
pv

2πd3
(1− iλd)eiλdul2,1 (9)

(and a similar set of equations for the transverse oscillations). We can see that in the non-retarded
limit λd � 1 equations (9) go into equations (5) derived above. We are interested now in the
wave-zone limit λd� 1. The eigenfrequencies of equations (9) are given by

(ω2 − ω2
p)

2 =
ω4
pv

2

(2πd3)2
(1− iλd)2e2iλd , (10)

or

tanλd = λd , (ω2 − ω2
p)

2 =
ω4
pv

2

(2πd3)2
(1 + λ2d2) . (11)
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It is convenient to introduce the notations g = v/2πd3 � 1 and ωpd/c = A; the solution can be
found as a series of powers of g:

Ω = ωp

[
1± 1

2
g(1 + A2)1/2 +

1

8
g2(A2 − 1) + ...

]
; (12)

it should satisfy the equation tan(Ωd/c) = Ωd/c, which, in the limit g � 1 becomes tanA ' A
(Ω ' ωp); for large values of A we get A = ωpd/c ' nπ. We can see that there are real solutions for
the eigenfrequencies only for certain values of the distance dn ' nπc/ωp, which are approximate
multiples of the plasma wavelength (in this limit). The corresponding oscillations are usually
called polaritons. For intermediate values of d the eigenfrequencies are complex, i.e. the coupling
between the two particles is damped (the damping parameter γ in the equation of motion (1)
should be retained in this case). We can equally well say that the two particles are not coupled
in this case.

The zero-point (vacuum �uctuations) energy can be estimated as E =
∑

~Ω/2, where the sum-
mation extends over all the eigenfrequencies. The motion of the transverse degrees of freedom
leads to the eigenfrequencies equation

tanλd =
λd

1− λ2d2
, (ω2 − ω2

p)
2 =

ω4
pv

2

(4πd3)2
(1 + 3λ2d2 + λ4d4) . (13)

The solution is given by

Ω = ωp

[
1± 1

4
g(1 + 3A2 + A4)1/2 +

1

32
g2(3A4 + 3A2 − 1) + ...

]
. (14)

Now we can compute the zero-point energy (the transverse degrees of fredom have a double
multiplicity):

E = ~ωp
[
3 +

g2

16
(3A4 + 5A2 − 3)

]
(15)

and the corresponding force

F =
~ωpv2

32π2

(
3ω4

p

c4d3
+

10ω2
p

c2d5
− 9

d7

)
. (16)

We can see that in the non-retarded limit (ωpd/c� 1) the force is attractive and goes like −1/d7;
this is the van der Waals-London force; it comes from the longitudinal degrees of freedom. In
the opposite, retarded limit ωpd/c � 1 the force is repulsive and goes like 1/d3; this is the limit
of the Casimir force, coming entirely from the transverse oscillations. The force changes sign
around ωpd/c � 1 and has a maximum for ωdd/c � 1. For intermediate distances the numerical
coe�cients in equation (16) are not reliable, since the transverse oscillations do not occur at the
same distances dn as the longitudinal ones; increasing the distance, the longitudinal and transverse
oscillations contribute alternately to the repulsive force.

We have analyzed here the electromagnetic coupling between two polarizable point-like particles,
modelled as point dipoles. This may be a reasonably useful model of coupled nano-plasmons and
nano-polaritons. For small separation distances between the two particles (smaller than the plasma
wavelength), where the non-retarded coupling regime dominates, the two particles exhibit coupled
plasmons, which can be transferred from one particle to other. The zero-point �uctuations give
the attractive van der Waals-London force in this case, acting between particles and behaving like
−1/d7, where d is the separation distance. For distances larger than the plasma wavelength the
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retardation comes into play and the coupling is realized through polaritons. This may happens
only for certain discrete sets of separation distances (di�erent for longitudinal and transverse
oscillations of the charge density, with respect to the separation vector), in between the coupling
being damped (non-coupling); it is realized either by longitudinal or transverse oscillations of
the charge density, in turn. Immediateley after distances of the order of the plasma wavelength,
the zero-point energy force acting between particles becomes repulsive, arising from transverse
oscillations (polaritons) and going at in�nity like 1/d3.
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