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Abstrat

Eletroni edge ("surfae") states are investigated in semi-in�nite graphene sheets and

graphene ribbons (monolayers) with armhair, zig-zag or horseshoe edges within the nearest-

neighbor tight-binding approximation. The problem is generalized to inlude edge elements of

the hoping (transfer) matrix distint from the in�nite-sheet ("bulk") ones. Within this model

the semi-in�nite graphene sheets with zig-zag or horseshow edges exhibit edge states, while

the semi-in�nite graphene sheet with armhair edge does not. Similarly, symmetri graphene

ribbons with zig-zag or horseshoe edges have edges states, while ribbons with asymmetri

edges (zig-zag and horseshoe) have not. It is also shown how to onstrut the "re�eted"

solution for the intervening equations with �nite diferenes both for semi-in�nite sheets and

ribbons, either with modi�ed elements of the hoping matrix at the edges, or with uniform

matrix elements. It is also indiated how to extend the method to retangular, �nite-size

piees of graphene sheets.
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Graphene sheets (monolayers), desribed as early as 1947,[1℄-[3℄ have been eventually isolated and

identi�ed in 2004-2005.[4℄-[7℄ They are two-dimensional piees of arbon (graphite) solids with

honeyomb lattie. As it is well known, (free) two-dimensional solids annot exist, beause of

atomi �utuations.[8℄-[12℄ In the ase of graphene (as well as other two-dimensional rystals that

may exist), several, more or less unknown, fators may onspire to make free-standing sheets stable,

most likely their non-thermodinami, small sizes (in this respet, independent, small-size graphene

sheets an be viewed as instanes of genuine quantum solids). Graphene sheets exhibit a linear

spetrum of eletroni exitations (Dira massless fermions), arising from arbon �-eletrons,

whih attrated muh interest, espeially due to their long lifetime (and mean free path). In

partiular, the eletroni transport along well-de�ned sheet edges enjoys a speial attention.[13℄-

[20℄ As it is well known, the identi�ation of the edge ("surfae") states requires well-de�ned

boundary onditions. Within the tight-binding approximation, the hoping matrix elements at

the edges are modi�ed with respet to the matrix elements of the in�nite sheet (`bulk").[21℄-[26℄

In this respet, the edge states of graphene sheets have been takled by using the tight-binding

approximation within limited asumptions (see, for instane, Ref. [19℄). On the other hand, using

the Dira equation for identifying edge states in graphene sheets implies the ontinuum limit of

the solid, whih is di�erent from �nite-diferene equations of the tight-binding approah.[27℄ We

give here a more advaned desription of eletroni edge states in graphene sheets, by using the

nereast-neighbour tight-binding approximation with generalized boundary onditions. As it is
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well known, this is an old tehnique, employed extensively in the past in the ferromagnetism of

thin �lms[28℄-[30℄ and derived from previous studies of eletron dynamis in rystal latties.[31℄

The edge states are the ounterpart in two dimensions of the Tamm or Shokley surfae states in

three-dimensional rystals.[21℄-[23℄

First we onsider an in�nite sheet of arbon hexagons as shown in Figs. 1-3. The position of an

atom is identi�ed by the vetors (m;n) and v

1;2;3

. For instane, the vetors v

1;2;3

in Fig. 1 are

given by v

1

= (1; 0), v

2

= (�1=2;

p

3=2) and v

3

= (�1=2; -

p

3=2) (the hexagon side is taken equal

to unity). It is easy to see that we get the hexagonal periodiity of the lattie by applying twie the

vetors v

1;2;3

. The wavefuntion oe�ients of the tight-binding approximation (the annihilation

operators of the on-site fermioni states) are denoted by a

mn

and b

v

mn

, where v denotes one of

the vetors v

1;2;3

; oe�ients like a

v

1

�v

2

mn

, et are oe�ients of the type a

m

0

n

0

, due to the latiial

periodiity. The equations of motion for a

mn

and b

v

mn

within the nearest-neighbour tight-binding

aproximation are given by

"a

mn

= t(b

v

1

mn

+ b

v

2

mn

+ b

v

3

mn

) ;

"b

v

1

mn

= t

�

(a

mn

+ a

v

1

�v

2

mn

+ a

v

1

�v

3

mn

) ;

"b

v

2

mn

= t

�

(a

mn

+ a

v

2

�v

1

mn

+ a

v

2

�v

3

mn

) ;

"b

v

3

mn

= t

�

(a

mn

+ a

v

3

�v

2

mn

+ a

v

3

�v

1

mn

) ;

(1)

where " is the energy (on-site energy inluded) and t is the transfer (hoping) matrix element.

We get periodi solutions of this system of equations of the form a

v

mn

� A(K)e

iK[((m;n)+v℄

, b

v

mn

�

B(K)e

iK[((m;n)+v℄

, where the wavevetor K has the omponents K = (k; q), for energies given by

j�j

2

= 3 + 2 osK(v

1

� v

2

) + 2 osK(v

1

� v

3

) + 2 osK(v

2

� v

3

) ;

(2)

where � = "=t; we get from equation (2)

j�j

2

= "

2

= jtj

2

= 1 + 4 os

3k

2

os

p

3q

2

+ 4 os

2

p

3q

2

: (3)

We have also the representation

�A = B(e

iKv

1

+ e

iKv

2

+ e

iKv

3

) ; �

�

B = A(e

�iKv

1

+ e

�iKv

2

+ e

�iKv

3

) ; (4)

whih implies A = B

�

; under these irumstanes we may take t (and �) real and equations (4)

beome

�A = B(e

ik

+ 2e

�ik=2

os

p

3q

2

) ; �B = A(e

�ik

+ 2e

ik=2

os

p

3q

2

) : (5)

The energy " given by equation (3) is a well-known result;[1, 32℄ we an write " = �t

p

S, where

S = 1 + 4 os

3k

2

os

p

3q

2

+ 4 os

2

p

3q

2

; (6)

the funtion S is positive over the Brillouin zone de�ned by the hexagon 3k=2 = ��,

p

3q=2 =

��=3 and k = 0,

p

3q=2 = �2�=3; it ranges from S = 9 at the entre of the Brillouin zone to S = 0

at the hexagon orners; at these points the energy goes like " = �(3t=2)K, where K = (k; q) is

the wavevetor referred to the hexagon's orners. This is a gapless Dira-like eletroni spetrum.
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Figure 1: Semi-in�nite graphene sheet with "armhair" edge.
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Figure 2: Semi-in�nite graphene sheet with zig-zag edge.

Graphene sheets are zero-gap semiondutors (or zero-overlap semimetals). The linear eletroni

spetrum is similar with the eletron exitations in a normal Fermi liquid (Landau quasi-partiles).

Of ourse, the degeneray at the gapless points in the Brillouin zone may be removed by distortions

of the Jahn-Teller type, if other onstraints are not present.

We turn now to a semi-in�nite graphene sheet with armhair edge, as shown in Fig. 1. We take

the site denoted by m; 0 as a referene site for the edge sites; the elements of the transfer matrix

are modi�ed at the edge, as shown in Fig. 1; in addition, the oe�ients orresponding to the sites

lying on the edge line are modi�ed into a

0

v

3

�v

2

m0

and b

0

v

1

�v

2

+v

3

m0

. The relevant equations of motion

are

"b

v

3

m0

= t(a

m0

+ a

v

3

�v

1

m0

) + t

0

a

0

v

3

�v

2

m0

;

"a

v

1

�v

2

m0

= t(b

v

1

m0

+ b

2v

1

�v

2

m0

) + t

0

b

0

v

1

�v

2

+v

3

m0

;

"a

0

v

3

�v

2

m0

= t

0

b

v

3

m0

+ t

00

b

0

v

3

�v

2

+v

1

m0

;

"b

0

v

1

�v

2

+v

3

m0

= t

0

a

v

1

�v

2

m0

+ t

00

a

0

v

3

�v

2

m0

;

(7)

or, introduing the notations � = "=t, t

0

= t(1 + �) and t

00

= t(1 + �),
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�B = A(e

�iKv

3

+ e

�iKv

1

) + (1 + �)A

0

e

�iKv

2

;

�A = B(e

iKv

2

+ e

iKv

1

) + (1 + �)B

0

e

iKv

3

;

�A

0

= (1 + �)Be

iKv

2

+ (1 + �)B

0

e

iKv

1

;

�B

0

= (1 + �)Ae

�iKv

3

+ (1 + �)A

0

e

�iKv

1

:

(8)

Making use of equations (4) we get A = (1+�)A

0

, B = (1+�)B

0

from the �rst two equations (8)

and

e

iKv

3

= �(2 + �)e

iKv

2

+ �e

iKv

1

; e

�iKv

2

= �(2 + �)e

�iKv

3

+ �e

�iKv

1

(9)

from the last two equations (8). We look for damped solutions of the form K = (k; q) ! (k; iq),

orresponding to edge states (q > 0); equations (9) beome

�e

i

3k

2

+ �(2 + �)e

�

p

3q

2

� e

p

3q

2

= 0 ; (10)

whih has no solution (exept for a few isolated points in the Brillouin zone). We onlude that

the semi-in�nite graphene sheet with armhair edge has no edge state (within the approximation

used here). Similar results have been obtained reently in Ref. [33℄.

We note that the ideal ase of a semi-in�nite sheet without edge distortion (� = 0, � = 0, A

0

= A,

B

0

= B) has the well-known "re�eted" solution

Ae

iK[(m;n)+v℄

! A

1

e

iK[(m;n)+v℄

+ A

2

e

iK

0

[(m;n)+v℄

;

Be

iK[(m;n)+v℄

! B

1

e

iK[(m;n)+v℄

+B

2

e

iK

0

[(m;n)+v℄

;

(11)

where K = (k; q) and K

0

= (k;�q). Indeed, the �rst two equations (8) are satis�ed automatially

(by virtue of equations (4)), while from the last two equations (8) we get

B

1

e

iKv

3

+B

2

e

iK

0

v

3

= 0 ;

A

1

e

iKv

2

+ A

2

e

iK

0

v

2

= 0

(12)

whih gives A

1

; B

2

� e

�i

p

3q=2

and A

2

B

1

� �e

i

p

3q=2

. The solutions are produts of plane waves

along the x-diretion (oordinate m) and sin-waves along the y-diretion (oordinate n),

Ae

ik(m+v

x

)

sin q(n�

p

3=2 + v

y

) ; Be

ik(m+v

x

)

sin q(n+

p

3=2 + v

y

) ; (13)

exhibiting nodes on the sites along the diretions perpendiular to the edge (A and B in equation

(13) are undetermined onstants).

We disuss now two other semi-in�nite graphene sheets, one with a zig-zag edge and another with

a horseshoe edge, as shown in Fig. 2 and, respetively, Fig. 3. The sheet with zig-zag edge is

the sheet with armhair edge rotated by the angle ��=2. Equations (4) for the amplitudes are

preserved, while the energy is given by

�

2

= 1 + 4 os

3q

2

os

p

3k

2

+ 4 os

2

p

3k

2

: (14)
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Figure 3: Semi-in�nite graphene sheet with horseshoe edge.

(ompare with equation (3)). The equations for the relevant edge sites in this ase are given by

"a

�v

2

m0

= tb

m0

+ t

0

b

0

�v

2

+v

1

m0

+ t

0

b

0

�v

2

+v

3

m0

;

"b

0

�v

2

+v

1

m0

= t

0

a

�v

2

m0

+ t

0

a

�v

2

+v

1

�v

3

m0

;

"b

0

�v

2

+v

3

m0

= t

0

a

�v

2

m0

+ t

0

a

�v

2

�v

1

+v

3

m0

;

(15)

or

�A = Be

iKv

2

+ (1 + �)B

0

e

iKv

1

+ (1 + �)B

0

e

iKv

3

;

�B

0

= (1 + �)A(e

�iKv

1

+ e

�iKv

3

) :

(16)

Making use of equations (4) we get B = (1 + �)B

0

from the �rst equations (16) and

�(2 + �)(e

�iKv

1

++e

�iKv

3

) = e

�iKv

2

(17)

from the seond equations (16). Equation (17) an also be written as

2�(2 + �) os

p

3k

2

= e

�i

3q

2

: (18)

For q ! iq (damped solutions along the diretion perpendiular to the edge) this equation beomes

2�(2 + �) os

p

3k

2

= e

3q

2

; (19)

it admits solutions for �1 �

p

2=2 < � < �1 +

p

2=2 or � < �1 �

p

6=2, � > �1 +

p

6=2.

We onlude that the semi-in�nite graphene sheet with zig-zag edge has eletroni edge states,

whih are propagating, plane waves along the diretion parallel with the edge (wavevetor k) and

damped waves along the diretion perpendiular to the edge (� e

�q(n+v

y

)

), for values of (k; q)

given by equation (19). The energy of these edge states is given by

�

2

= 1 + 4 osh

3q

2

os

p

3k

2

+ 4 os

2

p

3k

2

=

"

1 +

1

�(2 + �)

# "

1 +

1

�(2 + �)

e

3q

#

(20)
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for 0 < q <

2

3

ln j2�(2 + �)j; for eah value of q there exist two values of k in the Brillouin zone

whih satisfy equation (19). The energy given by equation (20) lies in the band gap. The usual

ase treated previously (see, for instane, Ref. [19℄) orresponds to � = �1(t

0

= 0 and vanishing

energy from equation (20)).

Similarly, equations (4) and (14) hold for the semi-in�nite sheet with a horseshoe edge (Fig. 3)

(this is a rather unrealisti situation, sine the dangling bonds terminate usually with hydrogen

whih does not ontribute to eletroni states[20℄). The equations for the edge sites in this ase

are given by

"b

v

1

m0

= t(a

m0

+ a

v

1

�v

3

m0

) + t

0

a

0

v

1

�v

2

m0

;

"a

0

v

1

�v

2

m0

= t

0

b

v

1

m0

:

(21)

Using the same tehnique as for the preeding ase we get the equation

1

2

�(2 + �)e

�

3q

2

= os

p

3k

2

(22)

for the edge states. Equation (22) has two solutions for k for eah value of q in the interval

0 < q <

2

3

ln

�

�

�

1

2

�(+�)

�

�

�, provided � < �1 �

p

3 or � > �1 +

p

3. The energy (equation (14)) is

given by

�

2

= 1 + 4 osh

3q

2

os

p

3k

2

+ 4 os

2

p

3k

2

= (1 + �)

2

h

1 + �(2 + �)e

�3q

i

: (23)

A graphene ribbon an be treated in a similar way. Let us assume suh a ribbon with n-rows

running from n = 0 to n = N and with both zig-zag edges. We note that a-type unknown

funtions pertain to one edge, while b-type unknown funtions pertain to the other edge. The

solutions onsist of "re�eted" waves of the form (11), whih are superpositions of diret waves

of the form (A

1

; B

1

)e

�qn

and re�eted waves of the form (A

2

; B

2

)e

qn

(i.e., q ! iq in K and K

0

in

equations (11)). The desired behaviour of the re�eted solutions is ensured by the fator e

�qN

,

i.e. we set (A

2

; B

2

)e

�q(N�n)

. The relevant equations for the N -edge are given by

"b

v

2

2mN

= ta

2mN

+ t

0

a

0

v

2

�v

1

2mN

+ t

0

a

0

v

2

�v

3

2mN

;

"a

0

v

2

�v

1

2mN

= t

0

b

v

2

2mN

+ t

0

b

v

2

�v

1

+v

3

2mN

;

"a

0

v

2

�v

3

2mN

= t

0

b

v

2

2mN

+ t

0

b

v

2

+v

1

�v

3

2mN

(24)

(ompare with equations (15)); the energy given by equation (14) remains the same, as do the

equations (4) for bulk amplitudes. Equations (24) lead to the omplex onjugate of equation (18),

i.e. to the same equation (19) and the same energy for the edge states, as expeted. Ribbons

with armhair edges do not exhibited edge states, ribbons with horseshoe edges an be treated in

likewise manner; a non-symmetri ribbon with one zig-sag edge and another horseshoe edge implies

two onditions of the type of equations (19) and (22) (two distint purely imaginary wavevetors

q), whih restrit appreiably the edge states.

In onlusion we may say that semi-in�nite graphene sheets with zig-zag or horseshoe edges exhibit

eletroni edge states within the nearest-neighbour tight-binding approximation, as do the ribbons

with these same edges, while the semi-in�nite graphene sheet with armhair edge does not, within

the same approximation. We have assumed here an in�nite length along one axis (x-axis); this

ondition an be removed, by onsidering a �nite length along this axis too, as for a retangular
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piee of graphene sheet. The tight-binding treatment an be onduted in this ase along the

same lines as desribed above.

Aknowledgments. The authors are indebted to the members of the Seminar of Theoretial

Physis at Magurele-Buharest for fruitful disussions, and to their oleague G. Vaman for bringing

this problem to their attention. Collaborative atmosphere of the Institute for Physis and Nulear

Engineering at Magurele-Buharest is also gratefully aknowledged. This work has been supported

by Grants #09370102/2009 and #116/2011 of the Romanian Governmental Ageny of Sient�

Researh.

Referenes

[1℄ P. R. Wallae, "The band theory of graphite", Phys. Rev. 71 622-634 (1947).

[2℄ J. W. MClure, "Diamagnetism of graphite", Phys. Rev. 104 666-671 (1956).

[3℄ J. C. Slonzewski and P. R. Weiss, "Band struture of graphite", Phys. Rev. 109 272-279

(1958).

[4℄ K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.

Grigorieva and A. A. Firsov, "Eletri �eld e�et in atomially thin arbon �lms", Siene

306 666-669 (2004).

[5℄ K. S. Novoselov, D. Jiang, F. Shedin, T. J. Booth, V. V. Khotkevih, S, V. Morozov and A.

K. Geim, "Two dimensional atomi rystals", Pro. Natl. Aad. Si. USA 102 10451-10453

(2005).

[6℄ K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva , S.

V. Dubonos and A. A. Firsov, "Two dimensional gas of massless Dira fermions in graphene",

Nature 438 197-200 (2005).

[7℄ Y. Zhang, J. W. Tan, H. L. Stormer and P. Kim, "Experimental observation and the quantum

Hall e�et and Berry's phase in graphene", Nature 438 201-204 (2005).

[8℄ R. Peierls, "Remarks on transition temperatures", Helv Phys. Ata 7, Suppl. 2, 81-83 (1934).

[9℄ L. Landau, "Theory of phase transformations. II", ZhETF 7 627-632 (1937) (Phys. Z. Sow-

jetunion, "Zur Theorie der Phasenumwandlungen", 11 545-549 (1938)).

[10℄ L. Landau and E. Lifshitz, Course of Theoretial Physis, vol 5, Statistial Physis, Part I,

Pergamon, Oxford (1980).

[11℄ N. N. Mermin, "Crystalline order in two dimensions", Phys. Rev. 176 250-254 (1968).

[12℄ M. Apostol, "On the low dimensional solids and their melting", Syntheti Metals 79 253-257

(1996).

[13℄ K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, "Edge states in graphene

ribbons: nanometer size e�ets and edge shape dependene", Phys. Rev. B54 17954-17961

((1996).

[14℄ K. Wakayabashi, M. Fujita, H. Ajiki and M. Sigrist, "Eletroni and magneti properties of

nanographite ribbons", Phys. Rev. B59 8271-8282 (1999).



8 J. Theor. Phys.

[15℄ K. Wakayabashi and M. Sigrist, "Zero-ondutane resonanes due to �ux states in

nanographite ribbons", Phys. Rev. Lett. 84 3390-3393 (2000).

[16℄ L. Brey and H. Fertig, "Edge states and the quantized Hall e�et in graphene", Phsy. Rev.

B73 195408 (2006) (1-5).

[17℄ L. Brey and H. Fertig, "Eletroni states of graphene nanoribbons studied with the Dira

equation", Phys. Rev. B73 235411 (2006) (1-5).

[18℄ L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen and S. G. Louie, "Quasipartile energies and

band gaps in graphene nanoribbons", Phys. Rev. Lett. 99 186801 (2007) (1-4).

[19℄ A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The

eletroni properties of graphene", Revs. Mod. Phys. 81 109-162 (2009).

[20℄ K. W. Lee and and C. E. Lee, "Edge states in horseshoe-shape arbon nanotubes transformed

by hydrogen adsorption", Phys. Rev. B87 235119 (2013) (1-4).

[21℄ I. Tamm, "Uber eine moglihe Art der Elektronenbindung an Krystallober�ahen", Z. Phys.

76 849-850 (1932).

[22℄ I. Tamm, "On the posssible bound states of eletrons on a rystal surfae", Phys. Z. Sowjet.

1 733-746 (1932).

[23℄ W. Shokley, "On the surfae states assoiated with a periodi potential", Phys. Rev. 56

317-323 (1939).

[24℄ M. Ezawa, "Peuliar width dependene of the eletroni properties of arbon nanoribbons",

Phys. Rev. B73 045432 (2006) (1-8).

[25℄ T. Kawai, Y. Miyamoto, O. Sugino and Y. Koga, "Graphiti ribbons without hydrogen

termination: eletroni strutures and stabilities", Phys. Rev. B62 R16349-R16352 (2000).

[26℄ Y.-W. Son, M. L. Cohen and S. O. Louie, "Energy gaps in graphene nanoribbons", Phys.

Rev. Lett. 97 216803 (1-4).

[27℄ A. R. Akhmerov and C. W. J. Beenakker, "Boundary onditions for Dira fermions on a

terminated honeyomb lattie", Phys. Rev. B77 085423 (2008) (1-10).

[28℄ A. Coriovei, "Spin-Wave theory of thin ferromagneti �lms", Phys. Rev. 130 2223-2229

(1963).

[29℄ A. Coriovei, G. Costahe and D. Vamanu, "Ferromagneti thin �lms", in Solid State Physis,

eds. H. Ehrenreih, F. Seitz and D. Turnbull, 27 237-350 (1972).

[30℄ A. Coriovei, "On the "yli ondition" in the study of the seular problem for �nite one

dimensional bodies", Rev. Roum. Phys. 10 3-13 (1965).

[31℄ L. Brillouin and M. Parodi, "Propagation des ondes dans les millieux periodiques", Mason,

Dunod, Paris (1956).

[32℄ B. Partoens and F. M. Peeters, "From graphene to graphite: eletroni struture around the

K point", Phys. Rev. B74 075404 (2006).



J. Theor. Phys. 9

[33℄ N.T. Cuong, M. Otani and S. Okada, "Absene of edge states near the 120

Æ

orners of zig-zag

graphene nanoribbons", Phys. Rev. B87 045424 (2013) (1-5).



 J. Theor. Phys. 2013, apoma�theor1.theory.nipne.ro


