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Abstra
t

The temporal evolution of delta-pulses is studied by means of the wave equation in one, two

and three dimensions. It is shown that waves with a delta-pulse initial shape are di�erent from

waves generated by intial delta-pulse sour
es (Green fun
tions). Spe
ial attention is given

to the two-dimensional 
ase, where the regularization pro
edure of the intervening improper

integrals should be adopted in agreement with 
ylindri
al waves. The ne
essity is emphasized

of taking into a

ount the small thi
kness of wires and slabs for wave propagation in purely

one and two-dimensional spa
es (line or membrane).

The equation of the free (s
alar) waves in anisotropi
 bodies reads
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where v (v > 0) is a velo
ity parameter and D

(2)

is a 
ertain se
ond-order di�erential operator.

We use the Fourier transform
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where d (d = 1; 2; 3) is the spa
e dimension; equation (1) be
omes
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whose solutions are
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their linear 
ombination involves two 
onstants whi
h are determined from the fun
tion and its

temporal derivative at the initial moment of time (Cau
hy's initial value problem); F (k) is given

by
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Equation (3) 
an also be written as
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whi
h justi�es either
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it is easy to see that �

q

F (k) are two frequen
ies denoted usually by �!; �rst we 
hoose equation

(7), whi
h gives a wave propagating forward,
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in addition, F (k) is a positive-de�ned quadrati
 form in the 
omponents of the waveve
tor k,
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h 
an be brought to the prin
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is the (orthogonal) matrix that diagonalizes the matrix

f
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(and summation over repeated labels is in
luded); we 
hange the waveve
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where we have 
hanged the notations k

00

! k and r

00

! r and denoted by U the fun
tion u of the

new variables. The pro
edure des
ribed here is well-known as the transition to the ellipsoid of the

prin
ipal axes of a positive-de�ned quadrati
 form. In the new 
oordinates the orginal equation

reads
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In prin
iple, equation (10) solves our problem: using it, we 
an 
ompute the wave at the moment

of time t by knowing the wave at the initial moment of time t = 0. Usually, we are interested in

the time evolution of a wave whi
h initially is a delta-type fun
tion lo
alized in the volume V

d

,

i.e. u(r; 0) = V

d

Æ(r), whi
h, by using equations (2), means u(k; 0) = U(k; 0) = V

d

(delta-pulse).

In three dimensions we have from equation (10)
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where we have introdu
ed the 
onvergen
e fa
tor e

��k

, �! 0

+

. E�e
ting the integral we get
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sin
e we are interested in positive moments of time (outgoing wave), we may left aside the term

with r + vt (whi
h propagates ba
kwards in time) and write
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here we have used
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We retain only the real part of this result, whi
h is equivalent to adding, with equal weight, the


onrtibution of the other frequen
y �vk; it 
orresponds to an initial delta-pulse with zero velo
ity:

U(r; t) =

V

4�r

Æ
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(r � vt) ; (16)

we 
an see that the original pulse V Æ(r) propagates with velo
ity v as a spheri
al surfa
e of radius

r = vt, while its magnitude de
reases as 1=r. It is worth noting that on this spheri
al surfa
e the

wave is Æ

0

, not Æ. The solution given by equation (16) 
an also be written as
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whi
h is the temporal evolution of the initial wave U(r; 0) = V Æ(r) =

V

4�r

2

Æ(r). In general, if we

limit ourselevs only to the the leading terms in the wave equation
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for r ! 1, the solution is U = f(r � vt)=r (the outgoing wave); equation (18) indi
ates the
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In one dimension we have from equation (10)
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where l is the initial lo
alization length of the pulse. It is easy to see that the term 
orresponding

to the frequen
y �v jkj gives the same 
ontribution, so that the �nal result is given by equation

(19). The original pulse lÆ(x) splits into two pulses ea
h of magnitude l=2 wi
h propagate with

velo
ities v and, respe
tively, �v in two opposite dire
tions. The wave equation
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in one dimension has the general solution U = f(x� vt) + g(x+ vt), where f and g are arbitrary

fun
tions.

We note that the above meaningful results are obtained only by giving a sense to delta-type

fun
tions through the regularization pro
edure of the �-
uto�. In two dimensions this dire
t

pro
edure is not possible anymore.

Indeed, in two dimensions we have
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where S is the area over whi
h the pulse is originaly lo
alized. The 
uto� � is super�uous here,

sin
e we know to 
ompute the integral

f(x) =
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it 
an be written as
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where the integration is 
arried out over the 
ir
le of radius unity. The integrand 
an be de
om-

posed as (z� z

1
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2
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for x < �1 we set x = � 
osh u and the integral 
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For jxj < 1 we set x = 
os� and z

1;2

= e
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; we 
an see that the integral in equation (23) has

two poles on the 
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le of radius unity. We 
an give a sense to this integral by pushing the pole
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le forx > 0 and vi
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we get
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We 
an see that U(r; t) is vanishing for r < vt and has non-zero values outside the 
ir
le r = vt.

This result is not a

eptable, be
ause it is not 
ausal. In addition, we 
an see that U(r; 0) as given

by equation (25) is not the original pulse SÆ(r). This is 
aused by the manipulation of singular

(improper) integrals and by the regularization pro
edure employed here, whi
h is not a

eptable.

Let us introdu
e the Bessel fun
tion J
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. The lapla
ian in two dimensions applied to a plane wave

reads
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we de�ne the Bessel fun
tion (of zeroth degree and the �rst kind)
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We 
an see that
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whi
h holds as a 
onvention.

We 
an use this asymptoti
 behaviour of the Bessel fun
tion J
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in equation (21); making use of
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ides with equation (25) up to the sign of r� vt, provided we write the denominator in

this latter equation as (r
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. Unfortunately, equation (35) is valid for large r,

whi
h is not a

eptable.

The 
orre
t (a

eptable) pro
edure of regularization of the waves in two dimensions is based upon

the observation that the wave equation in two dimensions is obtained from the wave equation

in three dimensions by an integration over one 
oordinate, say z; we write the initial 
ondition

V Æ(R) as SdzÆ(R) = SdzÆ(r)Æ(z), where we have introdu
ed the notation R = (r; z). We have


ylindri
al waves in this 
ase, and an initial delta-pulse deployed over a line along the z-
oordinate,

but for the wave equation there is no di�eren
e between these waves and purely two-dimensional

waves. Making use of equations (12) and (17) we get
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h is equation (21) in two dimensions, and
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and 0 otherwise. We 
an see that these 
ylindri
al pulses propagate with a sharp front on the


ir
le r = vt, without warning for vt < r and with a wake behind for vt > r. In 
ontrast with

one or three dimensions, the two dimensional (
ylindri
al) waves have a tail (a rear, a wake).

Similarly, we 
an obtain the one-dimensional waves given by equation (19) by integrating over a

surfa
e the three-dimensional waves
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where R = (x; y; z); here, the dire
t integration in equation (38) leads immediately to the result

given by equation (19) for one-dimensional wave, rather than integrating the three-dimensional

solution

V

4�r

Æ

0

(r�vt) given by equation (17). The result 
orresponds to pulses 
on
entrated at the

initial moment over a surfa
e and propagating in one dimension along the dire
tion perpendi
ular

to the original surfa
e, rather than pulses restri
ted to a line; but, the wave equation does not

make a di�eren
e between these two situations. For realisti
 situations 
on
erning waves 
on�ned

to a plane surfa
e or to a line we should in
lude the (small) �nite thi
kness of the surfa
e (the slab)

or the line (thread, wire, rod, et
), when the 
orresponding wave equation in three dimensions

be
omes the wave equation in two or one dimensions with an additional term of the form 
onst �U

(Klein-Gordon equation, as for waveguides).
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It is worth noting that in 
onne
tion with wave delta-pulses a di�erent problem is also well known,

namely the wave equation (in three dimensions)
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tion of the Helmholtz equation (41) (spheri
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whi
h is the Green fun
tion of the full wave equation in three dimesnions; we 
an see that it

des
ribe a delta-pulse propagating as a spheri
al surfa
e with velo
ity v and with an amplitude

de
reasing with the distan
e like 1=R; it di�ers from the pulse given by equation (17). As it is

well known, the usefulnesss of the Green fun
tions resides in that it gives the (parti
ular) solution
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Denoting R = (r; z) and integrating over z in equation (39) we get the wave equation in two

dimensions
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and zero otherwise; we note again that this pulse di�ers from the pulse given by equation (37). It

is interesting to 
ompute the temporal Fourier transform of the Green fun
tion given by equation

(49),
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whi
h is the integral over z of the three-dimensional Green fun
tion given by equation (44),
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This fun
tion is the solution of the equation
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whi
h is obtained from equation (41) by integrating over z. We are interested in solutions whi
h

do not depend on the dire
tion of r, i.e. solutions of the equation
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this is the Bessel equation (29), whi
h, beside the solution J

0

, has another, independent solution,
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h goes like ln r for r ! 0; we 
an 
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for an in�nitesimal 
ir
le, so that U � �(1=2�) ln r for r ! 0. The solution whi
h behaves like

ln r for r ! 0 and like an outgoing wave at the in�nity is the Hankel fun
tion (of zeroth degree

and the �rst kind)
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This is the Green fun
tion of the wave equation (Helmholtz equation) in two dimensions; it gives

also the integrals in equations (50).

Similarly, we 
an integrate equation (44) over r in R = (x; r), and get the Green fun
tion
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ikR

= �

1

2

1

ik � �

e

ikjxj

; �! 0 ; (57)

of the wave (Helmholtz) equation

�U(x; !) +

!

2

v

2

U(x; !) = �Æ(x) ;

d

2

U

dx

2

+ k

2

U = �Æ(x) ; (58)

where k = !=v. The temporal Fourier transform of the Green fun
tion given by equation (57)

leads to a step-fun
tion, a result whi
h 
an be obtained dire
tly by integrating over r the three-

dimensional Green fun
tion given by equation (45).
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