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Abstract

The temporal evolution of delta-pulses is studied by means of the wave equation in one, two
and three dimensions. It is shown that waves with a delta-pulse initial shape are different from
waves generated by intial delta-pulse sources (Green functions). Special attention is given
to the two-dimensional case, where the regularization procedure of the intervening improper
integrals should be adopted in agreement with cylindrical waves. The necessity is emphasized
of taking into account the small thickness of wires and slabs for wave propagation in purely
one and two-dimensional spaces (line or membrane).

The equation of the free (scalar) waves in anisotropic bodies reads

1 0%
2 5552 0 Dyu(r,t) =0, (1)

where v (v > 0) is a velocity parameter and D) is a certain second-order differential operator.
We use the Fourier transform

u(r,t) = ﬁ [dke®u(k,t) , u(k,t) = [dre *u(r,t) ,
(2)

§(r) = (27lr)d [ dke*r | §(k) = (2;)01 [ dre’kr |
where d (d = 1,2, 3) is the space dimension; equation (1) becomes

d*u(k, )

5 +v?F(k)u(k,t) =0 , (3)

whose solutions are

u(k, t) = VI 0) ; (4)

their linear combination involves two constants which are determined from the function and its
temporal derivative at the initial moment of time (Cauchy’s initial value problem); F'(k) is given
by

Dyu(r,t) = @™ u(k, t) k)e™u(k,t) . (5)

Equation (3) can also be written as

( +w\/_> <——w\/_>U—0 (6)
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which justifies either

d |
S wVFu, ulk,t) = e VK 0) (7)

dt
or d
d—ZZ =V Fu , U(k, t) = eiv v F(k)tu(ka 0) ; (8)

it is easy to see that +,/F (k) are two frequencies denoted usually by +w; first we choose equation
(7), which gives a wave propagating forward,

ikr—iv\/F(k)tu(k, 0) : (9)

u(r,t) = o)

in addition, F'(k) is a positive-defined quadratic form in the components of the wavevector k,
F(k) = X,; fijkik;, which can be brought to the principal axes. Indeed, we define k; = aijk;, such
as F(k') = aifijajmkk,, = fik?, where a;; is the (orthogonal) matrix that diagonalizes the matrix
fi; (and summation over repeated labels is included); we change the wavevector to ki = \/fik;
and the spatial coordinates to r; =7r;/v/fi, r; = a;ir; and get VF =VE? =F" and

U(r, 1) = (271r)d (k,0) | (10)

where we have changed the notations k' — k and r' — r and denoted by U the function u of the
new variables. The procedure described here is well-known as the transition to the ellipsoid of the
principal axes of a positive-defined quadratic form. In the new coordinates the orginal equation
reads
d*U(k,t)
dt?

1 9?U(r,t)

21.2
+'U:I€U(k,t):0,ﬁ 12

— AU(r,t) =0 . (11)
In principle, equation (10) solves our problem: using it, we can compute the wave at the moment
of time ¢ by knowing the wave at the initial moment of time ¢ = 0. Usually, we are interested in

the time evolution of a wave which initially is a delta-type function localized in the volume Vj,
i.e. u(r,0) = V,0(r), which, by using equations (2), means u(k,0) = U(k,0) = V, (delta-pulse).

In three dimensions we have from equation (10)

2 _—ivkt—ak tkru
U(r, t) = - /dk k2e / due* (12)
where we have introduced the convergence factor e ** o — 0*. Effecting the integral we get
Ulr,t) = V /dk k [eik(rwtﬂa) _ efik(rJrvtfia)] ) (13)
’ 42y ’

since we are interested in positive moments of time (outgoing wave), we may left aside the term
with 7 + vt (which propagates backwards in time) and write

U(I‘,t) — fdk kezk r—ut+ia) __ 47T yr T zR fdkezk:R

47r ir
(14)
- 4;‘£r%r71}1+’ia - 4:157‘% I:Pﬁ o Z.7T6(’I“ B Ut)] ;
here we have used ] !
— P— —imd(z) , a — 0" . (15)

T+ i T
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We retain only the real part of this result, which is equivalent to adding, with equal weight, the
conrtibution of the other frequency —uvk; it corresponds to an initial delta-pulse with zero velocity:

Ur,t) = —36 (r — vt) ; (16)
we can see that the original pulse V(r) propagates with velocity v as a spherical surface of radius

r = vt, while its magnitude decreases as 1/r. It is worth noting that on this spherical surface the
wave is ¢, not d. The solution given by equation (16) can also be written as

Voo Vv
Ur,t) = 4—777’6 (r—ot) = 7”426(7“ —ot) (17)
which is the temporal evolution of the initial wave U(r,0) = Vi(r) = 1250(r). In general, if we
limit ourselevs only to the the leading terms in the wave equation
1 0°U 10°U 190, ,0U
e AU~ ——— — — () = 1
v? Ot? v v2 02 r2or r 87“) 0 (18)

for 7 — oo, the solution is U = f(r — vt)/r (the outgoing wave); equation (18) indicates the
conservation of the energy E = 1[U? + v*(gradU)? ~ V2f?/r?,

In one dimension we have from equation (10)

U(ZL’,t) — % fj;oo dkeikx—iv\k\t—a\k\ —
(19)

_ il 1 1 ! !
o 22_77 (vatJria o z+vtfio¢) - 55(‘7; o Ut) + 55(‘7; + Ut) ’

where [ is the initial localization length of the pulse. It is easy to see that the term corresponding

to the frequency —uv |k| gives the same contribution, so that the final result is given by equation

(19). The original pulse [(x) splits into two pulses each of magnitude {/2 wich propagate with

velocities v and, respectively, —v in two opposite directions. The wave equation

1 02U 0*U
2or o ! (20)

in one dimension has the general solution U = f(x — vt) + g(x + vt), where f and g are arbitrary
functions.

We note that the above meaningful results are obtained only by giving a sense to delta-type
functions through the regularization procedure of the a-cutoff. In two dimensions this direct
procedure is not possible anymore.

Indeed, in two dimensions we have

U(I‘, t) — # fdkeikr—ivkt—ak _ (25)2 fdgpfdkkeik(”ow_”t“a) _
S 1 S 0 1 (21)
= — 5 [ oo = T o | Wiy

where S is the area over which the pulse is originaly localized. The cutoff « is superfluous here,
since we know to compute the integral

f) = [ dp——

: 22
o5p (22)
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it can be written as

1

where the integration is carried out over the circle of radius unity. The integrand can be decom-
posed as (z — 21)(z — 22), where 2 = x £ +/22 — 1. For x > 1 we set & = coshu, 2z = ¢" > 1 and
2y = €% < 1; the integral in equation (23) becomes

2
fl@) = —— , o> 1; (24)
x?2—1
for # < —1 we set = —coshu and the integral changes sign (f(z) = 2mwsgn(xz)/(x? — 1)'/? for
|z| > 1). Therefore, we have
S r

Ulr,t) r>ut. (25)

~or (r2 — v22)3/2
For |z| < 1 we set z = cos and 2,5 = e*'®; we can see that the integral in equation (23) has
two poles on the circle of radius unity. We can give a sense to this integral by pushing the pole
2 = €' outside the circle and z, = e~ inside the circle forz > 0 and viceversa for —1 < = < 0;

we get
21

r) = —————=5sgn(x), |z|<1. 26
@) = ——sgn(a) . | (20)
We can see that Ul(r,t) is vanishing for r < vt and has non-zero values outside the circle r = vt.
This result is not acceptable, because it is not causal. In addition, we can see that U(r,0) as given
by equation (25) is not the original pulse So(r). This is caused by the manipulation of singular
(improper) integrals and by the regularization procedure employed here, which is not acceptable.

Let us introduce the Bessel function Jy. The laplacian in two dimensions applied to a plane wave
reads

, 10, 0 0* : :
A tkr _ | = 7 . 7 zkr:_kQ tkr | 2
‘ [rar(rdr)—'-ﬂacp?]e “ (27)
we define the Bessel function (of zeroth degree and the first kind)
Jo(kr) = i/dgpeik" = i/dcpeikmow (28)
0 2m 2m
and get
1d, d 5
(= - — 2
rdr(rdr)JU(kT) k= Jo(kr) (29)
or ,
d 1d
<d2’2 + > d + ) JU(Z) 0 ; (30)
this is the Bessel equation for Jy(z) (z = kr); we get also
d? 1 12
12 + 12 +1)27%Jy=0 (31)

and the asymptotic behaviour

Jo(z) ~ \/gcos(z —m/4), z— 0. (32)
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We can see that 1

) = oy / dker — % / dkkJo(kr) (33)

which holds as a convention.

We can use this asymptotic behaviour of the Bessel function .Jy in equation (21); making use of

the integral
o0 1
/0 dze N = 5\/§ . (34)

S 1
T Ax/2r (vt — )32
which coincides with equation (25) up to the sign of r — vt, provided we write the denominator in

this latter equation as (r? — v?t?)3/2 ~ 24/2r3/2. Unfortunately, equation (35) is valid for large r,
which is not acceptable.

we get

Ul(r,t) (35)

The correct (acceptable) procedure of regularization of the waves in two dimensions is based upon
the observation that the wave equation in two dimensions is obtained from the wave equation
in three dimensions by an integration over one coordinate, say z; we write the initial condition
VI(R) as Sdz§(R) = Sdzd(r)d(z), where we have introduced the notation R = (r, z). We have
cylindrical waves in this case, and an initial delta-pulse deployed over a line along the z-coordinate,
but for the wave equation there is no difference between these waves and purely two-dimensional
waves. Making use of equations (12) and (17) we get

S
(2m)?

g o o
Ulrt) = 5.5 [ s [ aenmeimizan - -2 [ geleivkeR K = (k) (36)

which is equation (21) in two dimensions, and

Ulr,t) = £ [ deM020 = 5 [ dRE S —
(37)
-5 __ vt
Y (’U2t2—7‘2)3/2 ’

vt >r

and 0 otherwise. We can see that these cylindrical pulses propagate with a sharp front on the
circle r = vt, without warning for v¢ < r and with a wake behind for v¢ > r. In contrast with
one or three dimensions, the two dimensional (cylindrical) waves have a tail (a rear, a wake).
Similarly, we can obtain the one-dimensional waves given by equation (19) by integrating over a
surface the three-dimensional waves

[ . . l L
U(.’L’,t) _ W/dy/dz/dKezKRwKtaK — ﬁ/dkezkxfzﬂk\tfa\m , K = (k,ky,kz) , (38)

where R = (z,y, 2z); here, the direct integration in equation (38) leads immediately to the result
given by equation (19) for one-dimensional wave, rather than integrating the three-dimensional
solution {-¢ (r —vt) given by equation (17). The result corresponds to pulses concentrated at the
initial moment over a surface and propagating in one dimension along the direction perpendicular
to the original surface, rather than pulses restricted to a line; but, the wave equation does not
make a difference between these two situations. For realistic situations concerning waves confined
to a plane surface or to a line we should include the (small) finite thickness of the surface (the slab)
or the line (thread, wire, rod, etc), when the corresponding wave equation in three dimensions
becomes the wave equation in two or one dimensions with an additional term of the form const - U
(Klein-Gordon equation, as for waveguides).
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It is worth noting that in connection with wave delta-pulses a different problem is also well known,
namely the wave equation (in three dimensions)

1 0°U

5 — AU =6(H3(R) . (39)

which assumes a delta-pulse source localized at the initial moment and at the origin of the space;
this is different from an initial delta-pulse wave. The solution of equation (39) is of the form of a
Fourier transform

1 .
UR,1) = 5- / dwU (R, w)e ™ | (40)
s
which leads to the equation
w2
AU (R, w) +2 2 UR,w)=—-4(R); (41)
we can check easily
oNR
(A+A2)7:0,R7&0 (42)
and .
6'L/\R
= /ngrad 7 = —47 (43)

for the infinitesimal volume; therefore,

1 et B

4 R

UR,w) = (44)
which is the Green function of the Helmholtz equation (41) (spherical wave); and 1/47R is the
Green function of the Laplace equation A = w/v = 0). It follows

2R
U(R,t) = —/dwU (R, w)e ! = /dwe i MR (45)
27 AT R

which is the Green function of the full wave equation in three dimesnions; we can see that it
describe a delta-pulse propagating as a spherical surface with velocity v and with an amplitude
decreasing with the distance like 1/R; it differs from the pulse given by equation (17). As it is
well known, the usefulnesss of the Green functions resides in that it gives the (particular) solution

(R )
U(R, 1) :/dR e (46)
of the wave equation
1 0*U
——— — AU = ) 4
U2 8t2 U f(R7 t) ( 7)

Denoting R = (r,z) and integrating over z in equation (39) we get the wave equation in two
dimensions

19°U
ﬁ@ — AU = §(1)d(r) (48)

with a delta-source; its Green function is obtained immediately from equation (45) as

0(R/v—t) 1 > L0(Rv—1) v 1
d A A ; 4
/ “urR 47TR 27T , R \/m 27T 'U2t2 — T2 , T < ( 9)
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and zero otherwise; we note again that this pulse differs from the pulse given by equation (37). It
is interesting to compute the temporal Fourier transform of the Green function given by equation
(49),

dt wt

Ulr,w) = me

_7r r/v

(50)

1 tkR _ 1 oo ikr coshu _
et =5 [y due , k=w/v

which is the integral over z of the three-dimensional Green function given by equation (44),

PilR — ikR 1
U(r,w) 27r/ dR —r2 27r/o dz—e (51)

This function is the solution of the equation
AU (r,w) + k*U(r,w) = —4(r) , (52)

which is obtained from equation (41) by integrating over z. We are interested in solutions which
do not depend on the direction of r, i.e. solutions of the equation

1d, dU
AU KU =0, —(r—)+kU=0; 53
(r,0) + RU(,0) =0, ~(r50) + , (53)
this is the Bessel equation (29), which, beside the solution Jy, has another, independent solution,

which goes like Inr for » — 0; we can check
/dm (Inr) = 27r/dr— r—lnr) = or (54)

for an infinitesimal circle, so that U ~ —(1/2x)Inr for r — 0. The solution which behaves like
Inr for r — 0 and like an outgoing wave at the infinity is the Hankel function (of zeroth degree
and the first kind)

Zn(kr), kr—0,

H (kr) ~ (55)
%ei('”*”/‘l) , kr — 00 .
Therefore, _
Ulr,w) = iHél)(kr) Ck=w/v. (56)

This is the Green function of the wave equation (Helmholtz equation) in two dimensions; it gives
also the integrals in equations (50).

Similarly, we can integrate equation (44) over r in R = (z,r), and get the Green function

U( / drS L dpett — _ L1 el o g (57)
nw) = o 2 ) T o= 0 ® !
of the wave (Helmholtz) equation
w? d*U
AU (z,w) + 7 —U(z,w) =—6(z) , ) + kU = —6(x) , (58)

where £ = w/v. The temporal Fourier transform of the Green function given by equation (57)
leads to a step-function, a result which can be obtained directly by integrating over r the three-
dimensional Green function given by equation (45).
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