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Abstrat

The temporal evolution of delta-pulses is studied by means of the wave equation in one, two

and three dimensions. It is shown that waves with a delta-pulse initial shape are di�erent from

waves generated by intial delta-pulse soures (Green funtions). Speial attention is given

to the two-dimensional ase, where the regularization proedure of the intervening improper

integrals should be adopted in agreement with ylindrial waves. The neessity is emphasized

of taking into aount the small thikness of wires and slabs for wave propagation in purely

one and two-dimensional spaes (line or membrane).

The equation of the free (salar) waves in anisotropi bodies reads
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where v (v > 0) is a veloity parameter and D

(2)

is a ertain seond-order di�erential operator.

We use the Fourier transform
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where d (d = 1; 2; 3) is the spae dimension; equation (1) beomes
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whose solutions are
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their linear ombination involves two onstants whih are determined from the funtion and its

temporal derivative at the initial moment of time (Cauhy's initial value problem); F (k) is given

by
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Equation (3) an also be written as
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whih justi�es either
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it is easy to see that �

q

F (k) are two frequenies denoted usually by �!; �rst we hoose equation

(7), whih gives a wave propagating forward,
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in addition, F (k) is a positive-de�ned quadrati form in the omponents of the wavevetor k,
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where we have hanged the notations k

00

! k and r

00

! r and denoted by U the funtion u of the

new variables. The proedure desribed here is well-known as the transition to the ellipsoid of the

prinipal axes of a positive-de�ned quadrati form. In the new oordinates the orginal equation

reads
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In priniple, equation (10) solves our problem: using it, we an ompute the wave at the moment

of time t by knowing the wave at the initial moment of time t = 0. Usually, we are interested in

the time evolution of a wave whih initially is a delta-type funtion loalized in the volume V

d

,

i.e. u(r; 0) = V

d

Æ(r), whih, by using equations (2), means u(k; 0) = U(k; 0) = V

d

(delta-pulse).

In three dimensions we have from equation (10)
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where we have introdued the onvergene fator e
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. E�eting the integral we get
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sine we are interested in positive moments of time (outgoing wave), we may left aside the term

with r + vt (whih propagates bakwards in time) and write
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here we have used
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We retain only the real part of this result, whih is equivalent to adding, with equal weight, the

onrtibution of the other frequeny �vk; it orresponds to an initial delta-pulse with zero veloity:
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(r � vt) ; (16)

we an see that the original pulse V Æ(r) propagates with veloity v as a spherial surfae of radius

r = vt, while its magnitude dereases as 1=r. It is worth noting that on this spherial surfae the

wave is Æ
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, not Æ. The solution given by equation (16) an also be written as
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whih is the temporal evolution of the initial wave U(r; 0) = V Æ(r) =

V
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limit ourselevs only to the the leading terms in the wave equation
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for r ! 1, the solution is U = f(r � vt)=r (the outgoing wave); equation (18) indiates the

onservation of the energy E =
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In one dimension we have from equation (10)
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where l is the initial loalization length of the pulse. It is easy to see that the term orresponding

to the frequeny �v jkj gives the same ontribution, so that the �nal result is given by equation

(19). The original pulse lÆ(x) splits into two pulses eah of magnitude l=2 wih propagate with

veloities v and, respetively, �v in two opposite diretions. The wave equation
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in one dimension has the general solution U = f(x� vt) + g(x+ vt), where f and g are arbitrary

funtions.

We note that the above meaningful results are obtained only by giving a sense to delta-type

funtions through the regularization proedure of the �-uto�. In two dimensions this diret

proedure is not possible anymore.

Indeed, in two dimensions we have
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where S is the area over whih the pulse is originaly loalized. The uto� � is super�uous here,

sine we know to ompute the integral
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it an be written as
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where the integration is arried out over the irle of radius unity. The integrand an be deom-
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For jxj < 1 we set x = os� and z
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; we an see that the integral in equation (23) has

two poles on the irle of radius unity. We an give a sense to this integral by pushing the pole
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We an see that U(r; t) is vanishing for r < vt and has non-zero values outside the irle r = vt.

This result is not aeptable, beause it is not ausal. In addition, we an see that U(r; 0) as given

by equation (25) is not the original pulse SÆ(r). This is aused by the manipulation of singular

(improper) integrals and by the regularization proedure employed here, whih is not aeptable.

Let us introdue the Bessel funtion J
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we de�ne the Bessel funtion (of zeroth degree and the �rst kind)
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this is the Bessel equation for J
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We an see that
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whih holds as a onvention.

We an use this asymptoti behaviour of the Bessel funtion J
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in equation (21); making use of
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we get
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whih oinides with equation (25) up to the sign of r� vt, provided we write the denominator in

this latter equation as (r
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. Unfortunately, equation (35) is valid for large r,

whih is not aeptable.

The orret (aeptable) proedure of regularization of the waves in two dimensions is based upon

the observation that the wave equation in two dimensions is obtained from the wave equation

in three dimensions by an integration over one oordinate, say z; we write the initial ondition

V Æ(R) as SdzÆ(R) = SdzÆ(r)Æ(z), where we have introdued the notation R = (r; z). We have

ylindrial waves in this ase, and an initial delta-pulse deployed over a line along the z-oordinate,

but for the wave equation there is no di�erene between these waves and purely two-dimensional

waves. Making use of equations (12) and (17) we get
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whih is equation (21) in two dimensions, and
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and 0 otherwise. We an see that these ylindrial pulses propagate with a sharp front on the

irle r = vt, without warning for vt < r and with a wake behind for vt > r. In ontrast with

one or three dimensions, the two dimensional (ylindrial) waves have a tail (a rear, a wake).

Similarly, we an obtain the one-dimensional waves given by equation (19) by integrating over a

surfae the three-dimensional waves
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where R = (x; y; z); here, the diret integration in equation (38) leads immediately to the result

given by equation (19) for one-dimensional wave, rather than integrating the three-dimensional

solution

V

4�r

Æ

0

(r�vt) given by equation (17). The result orresponds to pulses onentrated at the

initial moment over a surfae and propagating in one dimension along the diretion perpendiular

to the original surfae, rather than pulses restrited to a line; but, the wave equation does not

make a di�erene between these two situations. For realisti situations onerning waves on�ned

to a plane surfae or to a line we should inlude the (small) �nite thikness of the surfae (the slab)

or the line (thread, wire, rod, et), when the orresponding wave equation in three dimensions

beomes the wave equation in two or one dimensions with an additional term of the form onst �U

(Klein-Gordon equation, as for waveguides).
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It is worth noting that in onnetion with wave delta-pulses a di�erent problem is also well known,

namely the wave equation (in three dimensions)
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whih assumes a delta-pulse soure loalized at the initial moment and at the origin of the spae;

this is di�erent from an initial delta-pulse wave. The solution of equation (39) is of the form of a

Fourier transform
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whih is the Green funtion of the Helmholtz equation (41) (spherial wave); and 1=4�R is the

Green funtion of the Laplae equation � = !=v = 0). It follows
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whih is the Green funtion of the full wave equation in three dimesnions; we an see that it

desribe a delta-pulse propagating as a spherial surfae with veloity v and with an amplitude

dereasing with the distane like 1=R; it di�ers from the pulse given by equation (17). As it is

well known, the usefulnesss of the Green funtions resides in that it gives the (partiular) solution
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of the wave equation
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Denoting R = (r; z) and integrating over z in equation (39) we get the wave equation in two

dimensions
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and zero otherwise; we note again that this pulse di�ers from the pulse given by equation (37). It

is interesting to ompute the temporal Fourier transform of the Green funtion given by equation

(49),
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whih is the integral over z of the three-dimensional Green funtion given by equation (44),
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This funtion is the solution of the equation
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whih is obtained from equation (41) by integrating over z. We are interested in solutions whih

do not depend on the diretion of r, i.e. solutions of the equation
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this is the Bessel equation (29), whih, beside the solution J

0

, has another, independent solution,

whih goes like ln r for r ! 0; we an hek
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for an in�nitesimal irle, so that U � �(1=2�) ln r for r ! 0. The solution whih behaves like

ln r for r ! 0 and like an outgoing wave at the in�nity is the Hankel funtion (of zeroth degree

and the �rst kind)
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Therefore,
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This is the Green funtion of the wave equation (Helmholtz equation) in two dimensions; it gives

also the integrals in equations (50).

Similarly, we an integrate equation (44) over r in R = (x; r), and get the Green funtion
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of the wave (Helmholtz) equation
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2

U
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2
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2
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where k = !=v. The temporal Fourier transform of the Green funtion given by equation (57)

leads to a step-funtion, a result whih an be obtained diretly by integrating over r the three-

dimensional Green funtion given by equation (45).
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