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Abstrat

It is shown that motion in normal ondensed matter is a quasi-lassial motion, governed,

in general, by lassial quasi-partiles. It is also shown that the response of ondensed matter

to an external perturbation is similar to the response of lassial harmoni osillators driven

by external �elds. The quasi-lassial limit of the transition rate is derived, as well as the ab-

sorption power and the quasi-lassial equations of motion for an arbitrary physial quantity,

for a periodi external perturbation; all these quantities exhibit a typial resonant behaviour

of harmoni osillators with harateristi frequenies (eigenfrequenies) determined by the

underlying quantum dynamis. It is also shown that the response to an external perturbation

at �nite temperatures is that of a resonating harmoni osillator.

Consider a sample of ondensed matter onsisting of omposite partiles (e.g. moleules, moleular

strutures, atomi nulei, �ne grains, et). In many ases these partiles move around �xed

positions, as in solids, or move along lassial trajetories, as in lassial liquids or gases, suh as,

when idential, their motion is not entangled and we may onsider them as being disernable. We

assume that the partiles are endowed with an internal dynamis, given in terms of generalized

oordinates x

i

, i = 1; 2; :::N (spin inluded), a hamiltonian H =

P

N

i=1

h

i

(x

i

) and wavefuntions

'

n

i

(x

i

), h

i

'

n

i

(x

i

) = "

n

i

'

n

i

(x

i

), whereN is the partile number and "

n

i

are the partile energies; the

oordinates x

i

may denote a vetor assoiated to the i-th partile, like for translations, rotations

or vibrations in the three-dimensional spae, n

i

denoting the orrresponding quantum numbers.

We assume that eah partile has its own internal motion, independent of the motion of other

partiles, suh that the total energy is E

n

=

P

N

i=1

"

n

i

and the wavefuntions of the assembly of

N partiles an be written as '

n

(x

1

; :::x

N

) = '

n

(x) =

Q

N

i=1

'

n

i

(x

i

), where n = (n

1

; n

2

; :::n

N

) and

x = (x

1

; x

2

; :::x

N

); sine the internal oordinates are disentangled from eah other, there is no

need for symmetrization when partiles are idential.

The number N an be the number of partiles in the sample, but we an also onsider an arbitrary

position r in the sample and N(r; t) partiles around this position at one moment of time t; then,

the energy E

n

, the wavefuntions '

n

and the dimension of the vetor n depend on r and t through

N(r; t). An average over all these partiles around any position r at any moment of time t provides

a ontinuum model of matter; within suh a model the physial properties depend on the position

r and the time t. This is one of the basi assumption of all the lassial physis, like elastiity,

�uids, eletromagnetism, statistial physis, et.

Consider two vetors n = (n

1

; :::n

i

:::n

N

) and n

0

= (n

1

; :::n

0

i

:::n

N

) whih di�er by two values n

i

, n

0

i

of the quantum number of the i-th partile. For any reasonable di�erene n

0

i

�n

i

and N very large
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(N � 1) the two vetors n and n

0

di�er slightly from eah other; this holds also for the energies

E

n

, E

n

0

and for the wavefuntions '

n

, '

n

0

. For N � 1 there exists a large number of states n

(whih grows exponentialy with N), many of them degenerate, whih are densely distributed in

energy and wavefuntions. For instane, we an represent the energy as E

n

=

P

N

i=1

"

n

i

= N"

n

i

and the energy variation as ÆE

n

= Æ"

n

i

for some n

i

, and we have ÆE

n

=E

n

< 1=N � 1 for N � 1.

In quantum proesses, the unertainty ÆE

n

in energy and the unertainty Æt in time duration are

related through ÆE

n

Æt ' ~, while �E

n

= NÆE

n

and �E

n

Æt ' N~ � 1, whih shows that the

averaging proess over a marosopi number of partiles leads to a lassial dynamis. A similar

"lassial" unertainty relation holds also for momentum and oordinate, as a onsequene of the

"oarse graining" proedure of "marosopi" average desribed here.

Under these irumstanes the relevant wavefuntions are superpositions of the type

 

n

0

(x; t) =

Z

dn'

n

(x)e

�

i

~

E

n

t

=

Z

dn

n

(x)e

i[�

n

(x)�!

n

t℄

; (1)

where we introdued the modulus 

n

(x) and the phase �

n

(x) of the wavefuntions '

n

(x), and

denoted by !

n

= E

n

=~ the frequeny orresponding to the energy E

n

; the integration in equation

(1) extends over a large domain around an arbitrary value n

0

of the quantum numbers. Sine the

quantities in equation (1) are slowly varying funtions of n we may use the series expansions



n

= 

(0)

+ s

(1)

+ s

i

s

j



(2)

+ ::: ;

�

n

= �

(0)

+ s�

(1)

+ s

i

s

j

�

(2)

ij

+ ::: ;

!

n

= !

(0)

+ s!

(1)

+ s

i

s

j

!

(2)

ij

+ ::: ;

(2)

where s = n� n

0

. Equation (1) beomes

 

n

0

(x; t) ' e

i[�

(0)

(x)�!

(0)

t℄

Z

ds[

(0)

(x) + :::℄e

is[�

(1)

(x)�!

(1)

t℄+is

i

s

j

[�

(2)

ij

�!

(2)

ij

t℄

; (3)

and, in the �rst approximation, we get

 

n

0

(x; t) ' 

(0)

(x)e

i[�

(0)

(x)�!

(0)

t℄

R

dse

is[�

(1)

(x)�!

(1)

t℄

'

' (2�)

N



(0)

(x)e

i[�

(0)

(x)�!

(0)

t℄

Æ(�

(1)

(x)� !

(1)

t) ;

(4)

we an see that the wavefuntion superposition is a loalized wavepaket with a lassial trajetory

given by �

(1)

(x)�!

(1)

t = grad

n

�(x)� !

(1)

t = 0. Due to the large number of partiles, the loal,

(free) internal motion in ondensed matter is a lassial motion. For instane, if the oordinates x

are the angles of free rotations with angular frequeny !, then the phase is �

l

= lx, the energy is

E

l

=

1

2

~l!, the derivatives in the expansions given by equations (2) are taken with repet to the

omponens of the vetor l = (l

1

; l

2

; :::l

N

), where l is the angular momentum, and the equations

of motion are the lassial equations x = !t of free rotations. If the internal motion onsists of

vibrations, then the wavepaket does not propagate, but, instead, it redues to a loal, lassial

vibration; if the internal motion is rotation of eletri dipoles or magneti moments, it redues to

lassial motion of spatial rotators; if the internal motion is that of eletri harges and urrents

in atomi nulei, then, in ondensed matter, it redued to lassial motion of loal harges and

urrents; et.

As it is well known, the next-order approximation to equation (3) involves the quadrati terms

in s

i

whih leads to (imaginary) gaussians with pre-fators proportional to t

�N=2

at least. For
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inreasing time the gaussians osillate rapidly and the wavepaket �attens, gets deloalized, and,

onsequently, has a �nite lifetime (and a mean free path if propagating). In this ontext, we may

speak of lassial quasi-partiles whih govern the internal motion in ondensed matter; apart from

�nite lifetimes and mean free paths, the quasi-partiles are haraterized by arbitrary vetors n

0

around whih the wavepakets are onstruted. In the �rst approximation, the wavefuntions of

the quantum states whih form the quasi-partiles an be written as

�

n

0

;s

(x; t) ' 

(0)

(x)e

i[�

(0)

(x)�!

(0)

t℄

� e

is[�

(1)

(x)�!

(1)

t℄

(5)

(up to a normalization onstant), where 

(0)

, �

(0)

, �

(1)

, !

(0)

and !

(1)

depend slightly on n

0

. A

partiular situation in this ontext is o�ered by the harmoni osillators whose wavefuntions are

real and the frequenies are linear in the quantum numbers. A superposition of suh wavefuntions

yields an osillating (vibrating) loalized wavepaket; however, it is important to realize that there

still exists the ontinuum of states and energies for a marosopi set of suh N osillators.

It is easy to see that the above onsiderations an be extended to interating internal motions

as well as to the external motion of the partiles in (normal) ondensed matter. Indeed, around

any arbitrary position in a ondensed matter sample we onsider N partiles desribed by a

wavefuntion '

n

(x) = '

n

1

n

2

:::n

N

(x

1

; x

2

; :::x

N

) with an energy E

n

= E

n

1

n

2

:::n

N

, where the quantum

numbers n

1

;n

2

;...n

N

are allowed to take values in a reasonably large range. Under suh onditions

we have a large multitude of quantum states, most of them degenerate, densely distributed in

energy and wavefuntions; suh states form quasi-partile wavepakets whose motion, like (limited)

free translations and rotations in the ase of "external" motion, turns out to be a lassial motion.

All what is neessary for suh a piture to hold is the existene of individual quantum numbers

n

1

, n

2

, ...n

N

; it is not neessary to have individual wavefuntions '

n

i

, nor energy levels "

n

i

,

i = 1; 2; :::N , and, moreover, the symmetrization of the wavefuntion for idential partiles does

not produe any di�ulty. Consequently, the desription may apply to both internal and external

interating motion of individual partiles with individual quantum numbers.

Usually, the interation between the internal degrees of freedom or the interation between parti-

les in their motion relative to one another in ondensed matter leads to (quantum) elementary

exitations, whih are either quasi-partiles, like quasi-eletrons, polarons, et, or olletive, orre-

lated elementary exitations like phonons, magnons, plasmons, et. When loalized, we may form

loally sets of N quasi-partiles and apply the above formalism of "oarse graining", whih leads to

a lassial dynamis. When deloalized, and labelled by wavevetors k, we an form superpositions

of suh k-quasi-partiles, whih again leads to loalized wavepakets and a lassial dynamis. The

oletive exitations are usually propagating waves labelled by wavevetors k (or global vibrations

like the volume plasmons); usually, eah of these k-wave obeys a harmoni-osillator dynamis,

with quantum numbers n

k

. We an form sets of suh k-waves, say k

1

;k

2

; :::k

N

, in the viinity of

some k, and onsider harmoni-osillator states labelled by n

k

1

; n

k

2

; :::n

k

N

, whih lead again to a

lassial dynamis; this time, the lassial quasi-partiles are loalized in the k-spae (and deloal-

ized in the diret spae, i.e. they retain, in general, their wavelike harater; a more appropriate

term for them might be lassial "quasi-waves"). The wavepakets for harmoni osillators are, in

general, osillating (vibrating, not propagating) wavepakets, but what is essential in this piture

is the fat that there exist energies E

n

k

1

:::n

k

N

= ~(!

k

1

n

k

1

+ !

k

N

n

k

N

) whih are densely distributed

over the states n

k

1

; n

k

N

and, similarly, densely-distributed wavefuntions.

A notable exeption from the piture desribed above is provided by the quantum ondensed

matter ("ondensates"), i.e. quantum "liquids" like super�uids, superondutors, ferromagnetis,

et, where the partiles ondense marosopially on a single quantum state (or a few), at low

temperature. The adjetive "normal" is used to di�erentiate the usual ondensed matter from
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the quantum ondensed matter. In normal ondensed matter the wavefuntions and energy levels

have a limited validity, due, on one side, to the large number of states densely distributed in

energy, to the natural unertainties arising from internal, residual interations and, on the other

side, to the inevitable interation with the external world, whih makes pratially impossible the

preparation of a pure quantum state. In fat, mixed states desribed by the density matrix, or

thermodynami states desribed by the statistial matrix are appropriate for ondensed matter,

exhibiting, to a large extent, a lassial behaviour.

An arbitrary physial quantity F (x) an be de�ned as a loal one-partile operator F (x) =

P

N

i=1

f

i

(x

i

) for the set of N partiles disussed above and a density F (x)=N an be employed.

Suitable extensions, like two-partile operators, an be introdued similarly. Consider an external

�eld whih ouples to ondensed matter, like, for instane, the oupling of the eletromagneti,

eletri or magneti �elds to eletri harges and urrents, eletri dipoles, or, respetively, mag-

neti moments.

An external perturbation h(x; t) hanges the unperturbed wavefuntions  

n

(x; t) = g

n

'

n

(x)e

�

i

~

E

n

t

into perturbed wavefuntions

e

 

n

= eg

n

'

n

(x)e

�

i

~

E

n

t

+

0

X

k



kn

'

k

e

�

i

~

E

k

t

; (6)

where the prime over summation means k 6= n; in order to simplify the notation we write simply

n instead of bold n for the state label and, for tehnial reasons, we introdue the weights g

n

,

P

n

jg

n

j

2

= 1, whih help us get the density matrix. Indeed, the mean value

F =

X

nm

( 

n

; F 

m

) =

X

nm

g

�

n

g

m

F

nm

e

i!

nm

t

(7)

of an arbitrary physial quantity F , where ~!

nm

= E

n

�E

m

, shows that g

�

n

g

m

! �

mn

is a represen-

tation (of pure states) for the density matrix �

mn

. The statistial matrix w

n

= e

��E

n

=

P

n

e

��E

n

,

where � = 1=T is the inverse of the temperature T , is diagonal (in the energy representation)

and orresponds to g

�

n

g

n

! �

nn

! w

n

(

P

n

e

��E

n

is the free energy). The Shrodinger equation

i~

�

e

 

�t

= (H + h)

e

 leads to

i~

_

eg

n

= eg

n

h

nn

(t) +

P

0

k



kn

h

nk

(t)e

i!

nk

t

;

i~ _

kn

= eg

n

h

kn

e

i!

kn

t

+

P

0

k

0



k

0

n

h

kk

0

e

i!

kk

0

t

;

(8)

and, in the �rst order of the perturbation theory, we have

eg

n

= g

n

e

�

i

~

R

t

dt

0

h

nn

(t

0

)

' g

n

[1�

i

~

Z

t

dt

0

h

nn

(t

0

)℄ (9)

and

i~ _

kn

= g

n

e

i!

kn

t

h

kn

(t) : (10)

We an see that

(

e

 

n

;

e

 

n

) = g

2

n

;

(

e

 

n

;

e

 

m

) = eg

�

n



nm

+ eg

m



�

mn

; n 6= m ;

(11)

whih shows that unitarity

P

n

g

2

n

= 1 is preserved (the normalization is

P

n

( 

n

;  

n

) =

P

jg

n

j

2

=

1)); we shall see below that the orthogonality (

e

 

n

;

e

 

m

) = 0, for n 6= m, is also preserved.
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We introdue the perturbation slowly from t = �1 ("adiabatially") and get the oe�ients



kn

= �

i

~

g

n

Z

t

�1

dt

0

e

i!

kn

t

0

+�t

0

h

kn

(t

0

) ; (12)

where �! 0

+

; for a periodi perturbation h(t) = h os!t



kn

= �
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h

kn

2~

�

e

i(!

kn
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!

kn

+ ! � i�

+
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i(!
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The oe�ient 

kn

gives the probability for the transition n! k; obviously, for !

kn

> 0 the seond

term in equation (13) brings the main ontribution (! > 0); for �! 0 we get



kn

= �

g

n

h

kn

2~

� 2�iÆ(!

kn

� !) (14)

and the transition probability per unit time (the rate of transition)

j

kn

j

2

=t =

2�

~

jg

n

j

2

jh

kn

=2j

2

Æ(E

k

� E

n

� ~!) (15)

whih is the famous Fermi's "golden rule" (Æ(! = 0) = t=2�). Up to the weights g

n

, g

k

, an equal

rate holds for the transition from the state k to the state n (whih is an illustration of the priniple

of detailed balaning), the net balane depending on the original populations of states,

� j

kn

j

2

�t

�

� j
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j
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�t

=
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Making use of equation (13) we get immediatelyw

m



�

mn

= �w

n



nm

, i.e. the orthogonality equation

(11) (

e

 

n

;

e

 

m

) = 0 for n 6= m.

In view of the slow variation with the state labels we may write !

kn

' s!

(1)

= !

s

in equation

(14) and h

kn

' h

s

, where k = n+ s; we may limit ourselves to the lowest !

s

. For alulating the

matrix elements h

kn

we may use the wavefuntions given by equation (5), suh as h

s

= Nh

s

, h

s

being an average over the N partiles (h(x) =

P

N

i=1

h

i

(x

i

)). The oe�ient 

kn

beomes
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' 

n;s

= �

i
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g

n

[2�(Nh

s

=2)Æ(!

s

� !)℄ ; (17)

we an see that the temporal Fourier transform of the external interation is inluded in the braket

in equation (17), orresponding to the harateristi frequeny !

s

. The oe�ient 

kn

governs the

response of the ondensed matter sample to the external �eld. Usually, the weigths g

n

orrespond

to the statistial weights w

n

= e

��E

n

=

P

n

e

��E

n

, whih, for energies small in omparison with the

temperature, an be approximated by 1=N ; making use of equation (16), where we retain only

the jg

n

j

2

-term, and leaving aside other weights and multipliities we an write down the energy

absorbed per unit time from the external �eld as

2�

~

N

�

�

h

s

=2

�

�

2

!Æ(!

s

� !) =

1

~
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�

�

h

s
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�

�

2

2�!

(! � !

s

)

2

+ �

2

; �! 0 ; (18)

whih is a typial resonane absorption. Equation (18) shows that the response of the assembly

of N partiles to an external �eld proeeds by the lassial motion of harmoni osillators with

frequeny !

s

.
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For instane, an eletri �eld E oupled to the displaement u of harges q with mass m gives

a hamiltonian h = qEu os!t; the quantization yields u =

p

~=2m!

s

(a + a

+

), and we an see

that u

s

orresponds to transitions n = 0 ! n = 1, where n is the quanta number; therefore, we

have u

s

=

p

~=2m!

s

(2m!

s

u

2

s

=~ is the osillator strength) and, from equation (18), the power

absorption

P =

q

2

E

2

4m

�

(! � !

s

)

2

+ �

2

(19)

per partile. This is indeed the power absorbtion of a lassial osillator with the equation of

motion

m�u
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+m!

2

s

u

s

+m _u

s

= qE os!t ; (20)

where
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where � = =2; from equation (20) we get

d
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1
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2
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+

1

2
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2

s

u

2

s

�
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and the (average) absorbed power

P = m _u

2
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=

q

2

E

2

4m

�
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; (23)

whih oinides with equation (19).

The matrix elements of an arbitrary quantity F between perturbed states given by equation (6)

are
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or, by making use of the oe�ients given by equation (13),
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F

nm

= g

�

n

g

m

h

1�

i

~

R

t

dt

0

(h

mm

� h

nn

)

i

e

i!

nm

t

F

nm

�

�g

�

n

g

m

e

i!

nm

t

2~

P

0

k

h

F

nk

h

km

!

km

+!�i�

+

h

nk

F

km

!

kn

�!+i�

i

e

i!t

�

�g

�

n

g

m

e

i!

nm

t

2~

P

0

k

h

F

nk

h

km

!

km

�!�i�

+

h

nk

F

km

!

kn

+!+i�

i

e

�i!t

;

(25)

where

1�

i

~

Z

t

dt

0

(h

mm

� h

nn

) = 1�

i

~!

(h

mm

� h

nn

) sin!t ; (26)

we an see the ourrene of the (unperturbed) density matrix g

�

n

g

m

! �

mn

.

Aording to equation (25) the evolution of a quantity F assoiated to two states n andm proeeds

by transitions whih involve intermediate states labelled by k ("indiret proesses"). In view of

the ontinuum of states in ondensed matter the main ontribution omes from those k-states

lying in the viinity of the n;m-states ("diret proesses"). We write

!

km

= !

nm

+ !

kn

= !

nm

+ (k� n)!

1n

+ ::: ;

!

kn

= !

mn

+ !

km

= �!

nm

+ (k�m)!

1m

+ :::

(27)
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and neglet the !

1n;m

-terms in equation (25); we get

e

F

nm

' g

�

n

g

m

�

1�

i

~!

(h

mm

� h

nn

) sin!t

�

e

i!

nm

t

F

nm

�

�g

�

n

g

m

1

2~

[F; h℄

nm

h

e

i(!

nm

+!)t

!

nm

+!

+

e

i(!

nm

�!)t

!

nm

�!

i

;

(28)

or

_

e

F

nm

' g

�

n

g

m

�

1�

i

~

(h

mm

� h

nn

) os!t

�

e

i!

nm

t

F

nm

+

+g

�

n

g

m

�

1�

i

~!

(h

mm

� h

nn

) sin!t

�

i!

nm

e

i!

nm

t

F

nm

+

+g

�

n

g

m

i

~

e

i!

nm

t

[h(t); F ℄

nm

:

(29)

Leaving aside the weight fators we an write

_

e

F

nm

' i!

nm

e

i!

nm

t

F

nm

+

i

~

e

i!

nm

t

[h(t); F ℄

nm

(30)

for the quasi-lassial motion of a quantity F in ondensed matter subjeted to a perturbation h;

this equation an be obtained diretly from Shrodinger's equation i~

� 

�t

= [H + h(t)℄ , by taking

the matrix elements ( 

0

; F ) within the approximation used above. Indeed, we get

i~

�

�t

( 

0

; F ) = ( 

0

; [F;H + h(t)℄ ) ; (31)

or, with  = e

�

i

~

Ht

�,

�

�t

(�

0

; e

i

~

Ht

Fe

�

i

~

Ht

�) =

i

~

(�

0

; e

i

~

Ht

[H;F ℄e

�

i

~

Ht

�) +

i

~

(�

0

; e

i

~

Ht

[h(t); F ℄e

�

i

~

Ht

�) : (32)

Making use of equation (6) we get

�

n

= '

n

+

0

X

k



kn

'

k

(33)

for g

n

= 1 and

i

~

(�

n

; e

i

~

Ht

[H;F ℄e

�

i

~

Ht

�

m

) = i!

nm

e

i!

nm

t

F

nm

�

i

2~

e

i!

nm

t

P

0

k

h

!

nk

F

nk

h

km

!

km

+!�i�

+

!

km

F

km

h

nk

!

kn

�!+i�

i

e

i!t

�

�

i

2~

e

i!

nm

t

P

0

k

h

!

nk

F

nk

h

km

!

km

�!�i�

+

!

km

F

km

h

nk

!

kn

+!+i�

i

e

�i!t

;

(34)

for k lose to n in terms ontaining !

km

and for k lose to m in terms ontaining !

km

the quantity

given by equation (34) in brakets is zero; from equation (32) we are left with

�

�t

(�

n

; e

i

~

Ht

Fe

�

i

~

Ht

�

m

) ' i!

nm

e

i!

nm

t

F

nm

+

i

~

('

n

; e

i

~

Ht

[h(t); F ℄e

�

i

~

Ht

'

m

) ; (35)

whih is equation (30) for g

n

= 1.

In equation (30) we an absorb the exponential fators e

i!

nm

t

in F

nm

, whih beomes now time-

dependent; in addition, we may limit ourselves to states lying lose to n or m in the ommutator,

suh as equation (30) an be written now as

_

F

nm

' i!

nm

F

nm

+

i

~

[h(t); F ℄

nm

; (36)
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where we reognize the equation of motion

_

F =

i

~

[H + h(t); F ℄. Moreover, sine the evolution of

a lassial quantity is governed by Poisson's braket

_

_

F = fH;Fg =

�F

�q

�H

�p

�

�F

�p

�H

�q

, where q and p

are the anonial oordinate and, respetively, momentum, writing p = �i~

�

�q

, we get

_

F = fH;Fg =

�H

�p

�F

�q

�

�F

�p

�H

�q

=

i

~

h

�H

�p

(pF )�

�F

�p

(pH)

i

=

=

i

~

[(�H)F � (�F )H℄ =

i

~

[HF � FH℄ =

i

~

[H;F ℄ ;

(37)

therefore, we an write equation (36) as

_

F

nm

' i!

nm

F

nm

+ fh(t); Fg = i!

nm

F

nm

+

�

�F

�t

�

l;h

; (38)

whih indiates a lassial dynamis for F ; we an pass now to the lassial desription, and prefer

to use !

nm

' �!

s

; we get

_

F ' �i!

s

F +

�

�F

�t

�

l;h

;

�

F + !

2

s

F =

�

�

2

F

�t

2

�

l;h

; (39)

whih is the equation of motion for a harmoni osillator with the harateristi frequeny !

s

,

driven by an external (generalized) fore generated by the perturbation h(t).

From equation (24) we �nd the mean value

F =

P

nm

(

e
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; F

e

 

m

) =

=
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nm
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n
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+

P
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(eg
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(40)

hene the perturbed density matrix
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= �
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P
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(41)

indeed, this is the equation of motion

_

e� =

i

~

[�; e

i

~

Ht

h(t)e

�

i

~

Ht

℄ for the density matrix. For a

diagonal unperturbed density matrix we get F =

P

nm

e�

mn

F

nm

and
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mn

= �
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mn
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� �
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i
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(42)

Using the statistial matrix �

mm

= w

m

= e

��E

m

=

P

m

e

��E

m

we an ompute the quasi-lassial

response

ÆF =
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os!t+ i! sin!t
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(43)

of a quantity F due to the external perturbation for densely-distributed states n = m+ s; sine

!

�s

= �!

s

we get

ÆF = �

2(!
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� !
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F
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where we must hange the sign of � in order to aount for damping. Comparing with equation

(21) we an see that the response is that of a harmoni osillator ated by an external periodi

perturbation.

In onlusion, one may say that a "oarse graining", i.e. a (loal) "marosopi" average, in

(normal) ondensed matter leads to a lassial desription of both internal and external motion.

In general, lassial quasi-partiles are relevant for suh a motion, loalized either in the diret

spae (for quantum quasi-partiles) or in the k-spae for olletive (wavelike) exitations. The

oupling and the response of the normal ondensed matter to external �elds is desribed in terms

of lassial harmoni osillators, the only remnants of the quantum nature being harateristi

frequenies and osillator strengths. The quasi-lassial limit of the transition rate, absorbed

power, equation of motion of arbitrary quantities, density and statistial matries have been

derived, all exhibiting typial features of resonant dynamis of harmoni osillators.


