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Abstrat

A new type of resonane, whih we all parametri resonane, is desribed, onerning

the rotation (preession) of eletri dipoles about �xed (quenhed) positions determined by

internal eletri �elds. Most likely, it is expeted to our in polar (paraeletri) solids

and liquids. The resonane appear under the ation of an external radio-frequeny �eld of

frequeny ! = 2!

0

, where, for typial situations, !

0

is a frequeny of the order � 10

12

s

�1

.

The interation of the eletromagneti �eld with matter developed along the years in valuable teh-

niques of investigating the quantum behaviour of material samples; these tehniques are known as

(various) spetrosopies. First, the Thomson sattering of radiation by material dipoles evolved

in sophistiated sattering tehniques, like Raman or Brillouin sattering in ondensed matter.

Next, the resonant Rayleigh sattering (�uoresene sattering) led to optial spetrosopy, whih

unleashed the birth of Quantum Mehanis. Spetrosopies related to eletroni transitions as well

as moleular vibrations and rotations have been gradually developed, assoiated with the resonant

response of eletri dipoles. At the beginning of the seond half of the 20th entury the atomi,

moleular and nulear magneti moments have been brought into play, and the famous magneti

resonanes (nulear magneti resonane, eletron spin resonane, paramagneti resonane, ferro-

magneti resonane, nulear quadrupole resonane, et) have been established. The solid state

and materials physis inludes today various spetrosopies, all of them based on the resonane

phenomenon, whih bring valuable information about the struture of the ondensed matter.

1

We desribe here a spetrosopy tehnique, based on the well-known parametri resonane phe-

nomenon, whih may appear as new. It applies to eletri dipoles (paraeletri matter) oupled to

eletri �elds; the ombination of �elds onsists of a onstant, uniform �eld and a radio-frequeny

�eld.

Consider a onstant, uniform eletri �eld E

0

= E

0

(0; 0; 1) oriented along the z-axis; the potential

energy of an eletri dipole d = d(sin � os'; sin � sin'; os �) of arbitrary orientation is U =

�dE

0

os �. The hamiltonian of rotation in this �eld is given by

H =

1

2

I(

_

�

2

+ _'

2

sin

2

�)� dE

0

os � ; (1)

where I is the moment of inertia of the dipole, onsidered as a sherial pendulum (spherial top).

The equation of motion

I

d

dt

( _' sin

2

�) = 0 (2)
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There is a vast literature on the subjet, so that any spei� referene is both impossible and pointless.
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indiates that the omponent L

z

of the angular momentum is onserved, _' sin

2

� = L

z

=I; onse-

quently, an e�etive potential funtion

U

eff

=

L

2

z

2I sin

2

�

� dE

0

os � (3)

ours in the hamiltonian. Consider that the dipole energy dE

0

is muh greater than the rotation

energy L

2

z

=I, whih is of the order of the temperature T . For typial value d = 10

�18

esu and

temperature T = 300K ' 4 � 10

�14

erg this ondition requires an eletri �eld E

0

� T=d =

4� 10

4

statvolt=m ' 1:6� 10

9

V=m. This is a high eletri �eld, whih may appear as an internal

�eld in polar ondensed matter. For instane, the eletri �eld reated by an eletron harge at

distane 1Å = 10

�8

m is 4:8 � 10

�10

=10

�16

= 4:8 � 10

6

stavolt=m. In this ase, the e�etive

potential given by equation (3) has a minimum value for �

0

' (L

2

z

=IdE

0

)

1=4

' (T=dE

0

)

1=4

� 1

and it an be expanded in powers of Æ� = � � �

0

around this minimum value as

U

eff

' �dE

0

+ 2dE

0

Æ�

2

; (4)

the hamiltonian given by equation (1) beomes

H '

1

2

IÆ

_

�

2

+

1

2

I!

2

0

Æ�

2

� dE

0

; (5)

where !

0

= 2

p

dE

0

=I is sometimes known as Rabi's frequeny; aording to our ondition of

high �eld, we have !

0

� 10

12

s

�1

. Therefore, the dipoles are quenhed in the internal eletri

�eld, where they exeute small osillations. The angle ' rotates freely with the frequeny _' '

L

z

=I sin

2

�

0

=

1

2

!

0

(' =

1

2

!

0

t).

Consider an external radio-frequeny �eld E(t) = E(t)(sin�; 0; os�), E(t) = E os!t, whih

makes an angle � with the z-axis; its interation with the dipole is

H

int

= �dE(t)(sin� sin � os' + os� os �) ; (6)

whih provides two relevant interation hamiltonians:

H

1int

= �

1

2

dE sin�

�

os(! +

1

2

!

0

)t+ os(! �

1

2

!

0

)t

�

Æ� ;

H

2int

=

1

2

dE os� os!t � Æ�

2

:

(7)

The interation hamiltonian H

1int

produes transitions between the harmoni-osillator states n

and n+1 with the resonane frequeny 
 =

1

2

!

0

;

3

2

!

0

. In general, for an interationH

int

= h os!t,

the rate of transition between two states n and n+ s, with energies E

n

, E

n+s

is

� j

n+s;n

j

2

�t

=

�

2~

2

jh

n+s;n

j

2

Æ(!

n;s

� !) (8)

in the �rst order of the perturbation theory, where !

n;s

= (E

n+s

� E

n

)=~. For H

1int

we get

� j

n+1;n

j

2

�t

=

�

16~I!

0

d

2

E

2

(n+ 1) sin

2

�Æ(! � 
) (9)

and the absorbed power

P = ~


�j

n+1;n

j

2

�t

=

�

16I!

0

d

2

E

2


(n + 1) sin

2

�Æ(! � 
) =

=

1

16I!

0

d

2

E

2


(n + 1) sin

2

�

�

(!�
)

2

+�

2

; �! 0

+

;

(10)
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whih is a typial resonane urve. In order to ompute the mean power the thermal weigths

e

��~!

0

n

=

P

e

��~!

0

n

should be introdued, where � = 1=T is the inverse of the temperature T ;

sine �~!

0

� 1, only the lowest states n are exited by interation.

The harmoni-osillator hamiltonian given by equation (5) and the interation hamiltonian H

2int

given by equation (7),

H

0

= H +H

2int

=

1

2

IÆ

_

�

2

+

1

2

I!

2

0

(1 + h os!t)Æ�

2

; (11)

where h =

E

2E

0

os�, leads to the lassial equation of motion

Æ

�

� + !

2

0

(1 + h os!t)Æ� = 0 ; (12)

whih is the well-known equation of parametri resonane (Mathieu's equation). As it is well

known, beside periodi solutions, the lassial equation (12) has also aperiodi solutions, whih

may grow inde�nitely with inreasing time; these are (parametrially) resonant solutions, whih

our for ! in the neighbourhood of 2!

0

=n, n = 1; 2; 3::: . As we an see immediately, the

solutions of equation (12) are determined by the initial onditions Æ�(t = 0) and Æ

_

�(t = 0) (as for

any homogeneous equation). Sine �utuations generate vanishing initial onditions, the lassial

solutions of equation (12) are vanishing.

The quantum-mehanial dynamis is di�erent. The interation hamiltonian H

2int

produes tran-

sitions between the harmoni-osillator states n and n + 2 (due to the matrix elements of Æ�

2

).

These transitions have frequeny 2!

0

, in aordane with the lassial dynamis. The transition

rate is

� j

n+2;n

j

2

�t

=

�h

2

128

!

2

0

(n+ 1)(n+ 2)Æ(2!

0

� !) (13)

and the absorbed power

P = 2~!

0

�j

n+2;n

j

2

�t

=

�h

2

64

~!

3

0

(n+ 1)(n+ 2)Æ(2!

0

� !) '

'

h

2

64

~!

3

0

(n+ 1)(n+ 2)

�

(2!

0

�!)

2

+�

2

; �! 0

+

;

(14)

where we may put n = 0. The intensity given by equation (14) is small, beause, espeially, the

fator (E=E

0

)

2

.

The parametri resonane disappears for � =

�

2

, i.e. for the applied radio-frequeny �eld E at right

angle with the quenhing �eld E

0

. The quenhing �eld may ourr, very likely, in (polar) solids; the

e�et of the parameri resonane depends on the orientation of the rystal; in amorphous samples

the absorption is averaged over angles � (os

2

� =

1

3

). The parameter � in equation (14), whih

gives the width of the absorption line, is a damping parameter; in solids it originates, very likely,

in the dipolar interation. Sine the dipolar interation is taken mainly in the quenhing e�et we

may expet a small damping, and, onsequently, a rather sharp resonane line. In liquids, beside

the random distribution of the dipoles (and the average over angle �), we may expet the usual

motional narrowing of the line. In gases the quenhing �eld is weak, and the parametri resonane

is not expeted to our.

Consider now the opposite ase, when the �eld E

0

is weak, suh that dE

0

� L

2

z

=I. The e�etive

potential U

eff

given by equation (3) has a minimum value for � '

�

2

and the hamiltonian given

by equation (1) redues to

H '

1

2

I

_

e

�

2

+

1

2

I!

2

0

_

e

�

2

; (15)
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where

e

� = � �

�

2

and !

0

= L

z

=I; the �eld E

0

brings only a small orretion to the �=2-shift in

�, while its ontribution to the hamiltonian is a seond-order e�et. The angle ' moves freely

with angular veloity _' = !

0

. The quantized '-motion gives L

z

= ~m, m any integer, suh

that !

0

=

~

I

m; the lowest value of this frequeny is ~=I ' 10

11

� 10

12

s

�1

for typial values

I = 10

�39

� 10

�38

g � m

2

(10

4

� 10

5

eletroni mass for the moleular mass, 10

�8

m for the

moleular diameter). We an see that the moleular rotations are desribed by a set of harmoni

osillators with frequenies !

0

=

~

I

m, beside the '-preession. The energy quanta are ~!

0

=

~

2

I

m,

with the lowest value

~

2

I

= 1K � 10K.

The interation hamiltonian given by equation (6) leads to two relevant interations

H

1int

= dE os� os!t �

e

� ;

H

2int

=

1

4

dE sin� [os(! + !

0

)t+ os(! � !

0

)t℄ �

e

�

2

:

(16)

The interation H

1int

produes transitions between the harmoni-osillator states n and n + 1,

with an absorbed power

P =

�

4I

d

2

E

2

(n+ 1) os

2

�Æ(!

0

� !) : (17)

At low temperatures (~

2

=I � T ), only a few states ontribute to the absorbed power, suh that

we may put n = 0 in equation (17) and sum over a few values of m in Æ(!

0

� !) = Æ(~m=I � !).

The interation hamiltonian H

2int

given by equation (16) produes parametri resonane with

frequnies 
 = !

0

; 3!

0

. The absorbed power is

P =

�~


128I

2

!

2

0

d

2

E

2

(n + 1)(n+ 2) sin

2

�Æ(
� !) : (18)

It is worth noting that low �elds E

0

have, pratially, no e�et upon the motion, suh that we

are left with free rotations, with the hamiltonian H = L

2

=2I, energy levels E

l

= ~

2

l(l + 1)=2I,

l = 0; 1; 2; :::, and eigenfuntions Y

lm

(spherial harmonis). The interation hamiltonian

H

int

= �dE(sin� sin � os'+ os� os �) os!t (19)

generates transitions aording to the matrix elements of sin � os' and os �. Sine the rotations

are free, we may take E direted along the z-axis, i.e. we may put � = 0. The matrix elements

of os � are given by

(os �)

l+1;m;l;m

= C

lm

= �i

s

(l + 1)

2

�m

2

(2l + 1)(2l + 3)

: (20)

We get the absorbed power

P =

�

2~

d

2

E

2

jC

lm

j

2

!

l

Æ(!

l

� !) ; (21)

where !

l

= ~(l + 1)=I, l = 0; 1; 2; ::: and the mean absorbed power

P =

�

2~

d

2

E

2

C

X

ml

jC

lm

j

2

e

��~

2

l(l+1)=2I

!

l

Æ(!

l

� !) ; (22)

C is the normalization onstant of the thermal distribution,

C

X

l

(2l + 1)e

��~

2

l(l+1)=2I

= 1 : (23)
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We an see that we have resonanes for ! = !

l

, as in the ase of the harmoni-osillator ap-

proximation, and the mean powers are similar in both ases, providing we limit ourselves to the

lowest-energy harmoni-osillator states.

It is worth noting that, although a weak �eld has pratially no in�uene on the rotation, it has

an in�uene on the statistial behaviour. Indeed, the hamiltonian of rotations

H =

1

2

I(

_

�

2

+ _'

2

sin

2

�) (24)

an also be written as

H =

1

2I

P

2

�

+

1

2I sin

2

�

P

2

'

(25)

with the momenta (angular momenta) P

�

= I

_

� and P

'

= I _' sin

2

�. The lassial statistial

distribution is

onst � dP

�

dP

'

d�e

��P

2

�

=2I

e

��P

2

'

=2I sin

2

�

; (26)

or, integrating over momenta,

1

2

sin �d�. In the presene of the �eld we have the distribu-

tion '

1

2

sin �d� � e

�dE

0

(sine �dE

0

� 1), whih leads, for example, to os � = �dE

0

=3. In

the quantum regime, where T � ~

2

=I, the interation �dE

0

os � brings a seond-order on-

tribution to the energy levels E

l

= ~

2

l(l + 1)=2I, the matrix elements of os � are modi�ed

to (

℄

os �)

lm;lm

in the �rst-order of the perturbation theory, and the mean value is given by

os � =

P

^

(os �)

lm;lm

�(�E

l

)e

��E

l

=

P

e

��E

l

.
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