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Abstrat

It is shown that in the rotation spetra of dipolar moleules there exist parametri res-

onanes (transitions). These resonanes are omputed expliitly for a spherial top in the

presene of high eletri �elds, whih may our in polar moleular solids, or for polar in-

lusions (impurities) in polar environments. The approximation employed makes use of the

separation of the preession motion from osillations.

Consider a moleule endowed with an eletri dipole moment d, plaed in a onstant, uniform

eletri �eld E

0

. The rotations of the moleule an be approximated by those of a spherial

top (spherial pendulum, rigid, spatial rotator)[1, 2℄ with moment of inertia I, suh that the

hamiltonian an be written, in spherial oordinates, as
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I(

_

�

2
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sin
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�)� dE

0

os � ; (1)

where the z-axis is hosen along the �eld E

0

. The lassial equation of motion I

d

dt

( _' sin

2

�) = 0

indiates the onservation of the omponent L

z

= I _' sin

2

� of the angular momentum, whih leads

to an e�etive potential U

eff

=

L
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z
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�

� dE

0

os �. Usually, the eletri �eld E

0

is as low as the

inequality dE

0

� L

2

z

=I is ful�lled, even for the lowest values of L

z

. Under these irumstanes,

the e�etive potential U

eff

has a minimum value whih is plaed at �

0

' �=2, and the �eld E

0

brings a ontribution only in the seond order of approximation. The e�etive potential an be

expanded in powers of

e

� = � � �=2, leading to a harmoni-osillator hamiltonian
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(up to onstant, irrelevant terms), where !

0

= L

z

=I. The angle ' rotates freely with the preession

frequeny !

0

( _' = !

0

). These lassial rotations an be quantized, leading to L

z

= ~m, m being

any integer, the rotation energy E

rot

= L

2

z

=2I = ~

2

m

2

=2I and the vibration energy E

vibr

=

~!

0

(n+1=2) = ~

2

m(n+1=2)=I, n = 0; 1; 2; :::. Obviously, this is only an approximate sheme for

free rotations, valid at low temperature, where only the lowest energy levels m; n are exited, and

for low values of the eletri �eld whih satisfy dE

0

� ~=I. As it is well known, the free rotations

are desribed by the hamiltonian L

2

=2I, where L is the angular momentum, with the energy

levels E

l

= ~

2

l(l + 1)=2I, l = 0; 1; 2; ::: and spherial harmonis Y

lm

(�; '), m = �l;�l + 1; :::l,

as eigenfuntions. The e�et of the eletri �eld E

0

an be omputed in the �rst order of the

perturbation theory (seond order in energy), �nite-temperature mean values inluding (Stark
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e�et for rotations); as it is well known, in the lassial limit we get os � = �dE

0

=3, where

� = 1=T is the inverse of the temperature T (whih is the well-known Curie-Langevin law).[3℄-[6℄

A time-dependent eletri �eld E(t) = E os!t(sin�; 0; os�), whih makes an angle � with

the z-axis, generates an interation hamiltonian H

int

= �dE(sin� sin � os' + os� os �) os!t.

This interation gives rise to transitions between rotational states l and l + 1, l = 0; 1; 2; :::, with

frequeny !

l

= ~(l + 1)=I, i.e. with frequeny !

0

= ~m=I. Indeed, for � in the viinity of �=2,

the interation hamiltonian an be written as

H
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(up to onstant, irrelevant terms). The interation hamiltonianH

(1)

int

generates transitions between

states n and n + 1 of the harmoni-osillator hamiltonian given by equation (2), aording to

the matrix elements of

e

�, with frequenies ! = !

0

. The interation hamiltonian H

(2)

int

and the

harmoni-osillator hamiltonian given by equation (2) lead to the lassial equation of motion

of a parametri resonane. As it is well known, the resonane ours, mainly, in the viinity of

!�!

0

= 2!

0

(2!

0

=n, n = 1; 2; 3; :::), i.e. ! = !

0

; 3!

0

(it is worth noting that 3!

0

is, in fat, !

0

for

m = 3).[2℄ Indeed, the matrix elements of

e

�

2

are non-vanishing between states n and n+2, whih

indiates transitions with frequeny given by ! � !

0

= 2!

0

, as in the lassial ase. We onlude

that in the spetrum of free moleular rotations there exist parametri resonanes (transitions).

Consider now a very high eletri �eld E

0

, suh that the minimum value of the e�etive potential

U

eff

is plaed at �

0

' (L

2

z

=IdE

0

)

1=4

� 1. The moleular rotations are quenhed in this ase

about the diretion of the �eld. For a moleular mass 10

4

� 10

5

eletron mass (10

�27

g) and

moleular dimension 1Å = 10

�8

m we get the typial value for the moleular moment of inertia

I = 10

�39

� 10

�38

g � m

2

; the frequeny !

0

= ~=I given above (for m = 1) is !

0

= 10

11

� 10

12

s

�1

(terahertz-far infrared region); it orresponds to quanta of rotation energy ~

2

=I = 1�10K (1K =

1:3� 10

�16

erg).[7℄ For a typial dipole moment d = 10

�18

esu we get E

0

� 10

2

� 10

3

statvolt=m

(1statvolt=m = 3 � 10

4

V=m) in order to ful�l the ondition dE

0

� ~

2

=I. This is a very high

eletri �eld, whih may our in polar moleular solids, or near polar impurities embedded in

polar environments (the eletri �eld generated by a moleular dipole d = 10

�18

esu at distane

1Å is 10

6

statvolt=m). The ourrene of suh an eletri �eld is very similar with the potential

U

0

(1 � os 2�) whih may at upon rotating moleules in rystals, driving the transition from

rotations to vibrations (quenhed rotations) whih is seen in the urve of the heat apaity vs

temperature.[8, 9℄ Under these irumstanes, an expansion in powers of

e

� = � � �

0

leads to the

hamiltonian

H =
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(up to onstant, irrelevant terms), where !

0

= 2

p

dE

0

=I; the angle ' rotates freely with the

angular veloity !

0

=2 ( _' = !

0

=2). Sine dE

0

� ~

2

=I, the frequeny !

0

is at least of the order of

~=I; suh frequenies (~=I,

p

dE

0

=I) are known as Rabi frequenies.[10, 11℄

The hamiltonian of interation with the time-dependent eletri �eld E(t) given above beomes



J. Theor. Phys. 3

in this ase
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The interation hamiltonian H

(1)

int

produes transitions between harmoni-osillator states n and

n + 1 (matrix elements of

e

�) with frequenies ! � !

0

=2 = !

0

, i.e. ! = !

0

=2, 3!

0

=2, as well as

transitions of a muh lower intensity (orresponding to the �

0

e

�-term) with frequeny ! = !

0

.

The interation hamiltonian H

(2)

int

, whih, lassially, generates parametri resonanes for ! in

the viinity of 2!

0

=n, n = 1; 2; 3; :::, produes quantum transitions, of low intensity, between

harmoni-osillator states n and n+ 2, with frequeny ! = 2!

0

.

It is worth estimating the transition rate of the interation hamiltonian H

(2)

int

. For an intera-

tion hamiltonian of the form H

int

= h os!t the transition rate between two states n and m

is � j

nm

j

2

=�t = (�=2~

2

) jh

nm

j

2

Æ(! � !

nm

) (with standard notations); the absorbed power is

P = ~!

nm

� j

nm

j

2

=�t. For the hamiltonian H

(2)

int

given by equation (5) we get

P =

�

16I

2
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where we have used the matrix elements (

e

�)

n+1;n

=

p

~(n+ 1)=2I!

0

of the harmoni-osillator.

The mean absorbed power is given by
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�

16I
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X

n=0
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0

n

; (7)

where C is a normalization onstant (and � = 1=T is the inverse of the temperature T ). For low

temperatures only a few terms ontribute to the summation in equation (7).

In onlusion, we may say that we have identi�ed parametri-resonane ontributions to the ro-

tational spetra of eletri dipolar moleules in eletri �elds. These resonanes are omputed

expliitly for spherial-top moleules in high eletri �elds, whih may our in polar moleu-

lar solids or for polar impurities in polar environments, by separating approximately moleular

preession from zenithal osillations.
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