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Abstra
t

The Heisenberg time-dependen
e of quantum-me
hani
al operators is analyzed within

the quasi-
lassi
al approximation, where the quanta of a
tion ~ (Plan
k's 
onstant) is mu
h

smaller than the relevant amounts of me
hani
al a
tion. It is shown that su
h a 
ir
um-

stan
e 
an provide an approximation by harmoni
 os
illators to some quantum-me
hani
al

systems, espe
ialy in 
ondensed matter. The a

ura
y of the approximation is assessed by

estimating the mean power absorbed from an external time-dependent for
e; both 
lassi
ally

and quantum-me
hani
ally this power exhibits a typi
al resonan
e behavior. It is shown that

the mean power obtained by means of the harmoni
-os
illator approximation is the variation

with respe
t to the quantum number of the total mean power. In most simple 
ases the

di�eren
e between the exa
t result and the approximate one resides in a numeri
al fa
tor.

A few examples are given for simple quantum-me
hani
al systems (rigid planar and spatial

rotator endowed with an ele
tri
 dipole moment under the a
tion of an ele
tri
 �eld), as well

as the nu
lear magneti
 and quadrupole resonan
es.

Introdu
tion. It is well known that the quasi-
lassi
al approximation works in QuantumMe
han-

i
s whenever the quanta of a
tion ~ (Plan
k's 
onstant) is mu
h smaller than the relevant amounts

of me
hani
al a
tion; this implies high quantum numbers. The energy levels of the hydrogen atom

be
ome dense for high values of the quantum number and 
an be approximated by the energy

provided by the Classi
al Me
hani
s. This is the well-known Bohr's prin
iple of 
orresponden
e.[1℄-

[3℄ When the de Broglie's wavelength is mu
h smaller than the relevant spatial dimensions and

does not vary too mu
h, then the wavefun
tion may be approximated by a quasi-plane wave

and the motion may have a traje
tory, very mu
h alike the geometri
al-opti
s approximation

for waves. This is known as the quasi-
lassi
al approximation (or the Je�rey-Wentzel-Kramers-

Brillouin - JWKB - approximation).[4℄-[10℄ A superposition of su
h plane waves gives a wavepa
ket

whi
h simulates spatial lo
alization (
lassi
al limit).[11, 12℄ In the quasi-
lassi
al limit ~! 0 the

quantum-me
hani
al 
ommutator reprodu
es the 
orresponding 
lassi
al Poisson bra
kets.[13℄

Another, less known, aspe
t of the quasi-
lassi
al approximation is des
ribed here, whi
h arises

from the Heisenberg's time-dependen
e of the quantum-me
hani
al operators.[14, 15℄ It leads to an

approximation by 
lassi
al harmoni
 os
illators of some quantum-me
hani
al systems, espe
ially

in 
ondensed matter; su
h an approximation may be 
alled a quasi-
lassi
al dynami
s.

Quasi-
lassi
al dynami
s. Quantum systems. Let O be a dynami
al variable of a quantum-

me
hani
al motion governed by a hamiltonian H (independent of time); its equation of motion

is

_

O = (i=~)[H;O℄, or

_

O

mn

= (i=~)(E

m

� E

n

)O

mn

, where O

mn

are the matrix elements for the
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states m, n with energies E

m

, E

n

; we assume O

mn

6= 0 for m 6= n. For large values of the

energy levels E

m

and the quantum number m the energy levels are "densely distributed", in the

sense that �E

m

=E

m

= (E

m

� E

n

)=E

m

� 1 for any �nite di�eren
e �E

m

= E

m

� E

n

; a

ording

to Bohr's 
orresponden
e prin
iple, in this 
ase we are approa
hing the (quasi-) 
lassi
al limit.

Moreover, under the same 
onditions, the matrix elements O

mn

depend weakly on m and may

fall abruptly to zero with in
reasing jm� nj (due to the rapid os
illations of the wavefun
tions

with large quantum numbers); a

ording to the equation of motion, the matrix elements O

mn

are

approximated by the Fourier 
omponents O

n�m

of the 
lassi
al quantity O(t). We write n = m+s,

!

n

= E

n

=~ = !

m+s

= !

m

+ s(�!

m

=�m) + ::: and O

mn

= O

m;m+s

' O

s

for small values of s (in


omparison withm, s� m). For a superposition  =

P

m




m

'

m

e

�i!

m

t

of wavefun
tions '

m

e

�i!

m

t

,

the mean value of the variable O is

O =

X

mn




�

m




n

O

mn

e

i(!

m

�!

n

)t

'

X

ms




�

m




m

O

s

e

�is(�!

m

=�m)t

'

X

s

O

s

e

�i!

s

t

; (1)

whi
h is the Fourier transform of the 
lassi
al quantity O(t) with frequen
ies !

s

= s(�!

m

=�m).

The equation of motion for one 
omponent reads

_

O

s

= �i!

s

O

s

; (2)

for a �xed m.

The nature and meaning of this equation require a few 
lari�
ations. First, we note the ap-

proximate 
hara
ter of the equation (2), as a result of the approximations involved in deriving

equation (1). Equation (2) is an approximation for the 
lassi
al equation of motion of the 
lassi
al

quantity O. Indeed, on one hand it retains partially the quantum-me
hani
al 
hara
ter of the

motion through !

s

= (E

m+s

� E

m

)=~ and the presen
e of m in O

s

(not written expli
itly); on

the other hand, it refers to a motion whi
h 
hanges the energy (E

m

6= E

m+s

), while the 
las-

si
al motion pro
eeds with the 
onservation of the energy. For su
h reasons, we 
all equation

(2) the quasi-
lassi
al equation of motion. For instan
e, writing O

s

= O

(1)

s

+ iO

(2)

s

, we have

_

O

(1)

s

= !

s

O

(2)

s

,

_

O

(2)

s

= �!

s

O

(1)

and

�

O

(1)

s

= �!

2

s

O

(1)

s

,

�

O

(2)

s

= �!

2

s

O

(2)

s

; the 
lassi
al quantity is

either O

(1)

s

or O

(2)

s

(O is a real quantity); the 
lassi
al equations of motion 
an be represented

as

_

O

(1)

s

= �H=�P ,

_

P = ��H=�O

(1)

s

,

�

O

(1)

s

= (�=�t)(�H=�P ), where P is a generalized momen-

tum and (�=�t)(�H=�P ) a
ts as a generalized for
e (and similar equations for O

(2)

s

); in general,

the generalized for
e (�=�t)(�H=�P ) di�ers from the harmoni
-os
illator for
e �!

2

s

O

(1)

s

. For the

parti
ular 
ase of a harmoni
 os
illator with eigenfrequen
y !

0

the quasi-
lassi
al equation of mo-

tion is formally the same as the 
lassi
al equation of motion, but the former assumes in addition

~!

0

= E

m+1

� E

m

, i.e. the quantum-me
hani
al 
ondition for the quantization of the energy.

The quantum-me
hani
al motion governed by the 
ommutator with the hamiltonian is equivalent

in the (quasi-) 
lassi
al limit ~ ! 0 with the 
lassi
al motion governed by the Poisson bra
kets,

though the quasi-
lassi
al motion is asso
iated with the quantum jumps (
hange of energy), while

the 
lassi
al motion refers to a given orbit (whi
h implies the energy 
onservation). In the 
las-

si
al limit ~ ! 0 the quantum jumps disappear and we are left with a 
lassi
al motion; but the


lassi
al equation of motion is not ne
essarily the equation of motion of a harmoni
 os
illator. It

is a remarkable property of the Quantum Me
hani
s that the quantum-me
hani
al motion of any

dynami
al variable 
an be approximated, within 
ertain limitations as those pointed out here, by

a harmoni
-os
illator motion in the quasi-
lassi
al limit, as indi
ated by equation (2).

The quasi-
lassi
al equation of motion (2) implies that the motion is governed by a harmoni
-

os
illator e�e
tive hamiltonian

H

eff

=

1

2M

P

2

s

+

1

2

M!

2

s

O

2

s

; (3)
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where P

s

is the 
anoni
al-
onjugate momentum for the "
oordinate" O

s

and M is a "mass"

parameter.

In the presen
e of a time-dependent, external intera
tion given by a hamiltonianH

int

(t) = h 
os!t,

the 
hange in time of the quantity O

s

a
quires a new 
ontribution, whi
h we write as

_

O


l

; equation

(2) be
omes

_

O

s

= �i!

s

O

s

+

_

O


l

; (4)

the new term

_

O


l

denotes that part of the time derivative of the 
lassi
al quantity O, denoted

O


l

, whi
h arises from the external intera
tion. At this moment, we may drop out the su�x s

in equation (4) and denote !

0

= !

s

. With O = O

(1)

+ iO

(2)

we get from equation (4)

_

O

(1)

=

!

0

O

(2)

+

_

O


l

,

_

O

(2)

= �!

0

O

(1)

and

�

O

(1)

+ !

2

0

O

(1)

= [(�=�t)

_

O


l

℄

int

; (5)

the su�x int in equation (5) indi
ates that we retain only the 
ontribution of the external in-

tera
tion. Equation (5) is the equation of motion of a harmoni
 os
illator under the a
tion of a

generalized for
e [(�=�t)

_

O


l

℄

int

; a similar equation is obtained for O

(2)

; we may drop out the labels

(1), (2) and write simply

�

O + !

2

0

O = [(�=�t)

_

O


l

℄

int

: (6)

We are interested in the parti
ular solution of equation (6), whi
h is generated by the intera
tion.

Within the quasi-
lassi
al dynami
s the intera
tion produ
es small e�e
ts, so that we may denote

ÆO the parti
ular solution of equation (6); it is the variation of the quantity O for small 
hanges

s� m in the quantum numbers m; equation (6) be
omes

Æ

�

O + !

2

0

ÆO = [(�=�t)

_

O


l

℄

int

; (7)

if present in the rhs of this equation, ÆO should be negle
ted there, in order to preserve the

perturbation 
hara
ter of the intera
tion. A damping term 
an be introdu
ed in equation (7) (the


oe�
ient �), whi
h be
omes

Æ

�

O + !

2

0

ÆO + 2�Æ

_

O = (�=�t)(

_

O


l

)

int

; (8)

where �! 0

+

; multiplying by Æ

_

O we get a 
onservation law,

d

dt

�

1

2

(Æ

_

O)

2

+

1

2

!

2

0

(ÆO)

2

�

+ 2�(Æ

_

O)

2

= Æ

_

O[(�=�t)

_

O


l

℄

int

; (9)

whi
h is related to the energy 
onservation.

The 
al
ulation of the generalized for
e [(�=�t)

_

O


l

℄

int

is 
arried out by means of the Poisson

bra
kets. For the 
lassi
al dynami
s of the variable O we have

_

O = fO;H

eff

g+ fO;H

int

g and

(�=�t)

_

O = ffO;H

eff

g; H

eff

g+ ffO;H

eff

g; H

int

g+

+ffO;H

int

g; H

eff

g+ ffO;H

int

g; H

int

g ;

(10)

the �rst term in the rhs of equation (10) must be left aside sin
e it does not 
ontain the intera
tion;

similarly, the last term in equation (10) must be left aside, sin
e we limit ourselves to the �rst

order of the perturbation theory in H

int

; therefore, we get

(�=�t)(

_

O


l

)

int

= ffO;H

eff

g; H

int

g+ ffO;H

int

g; H

eff

g (11)
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for the generalized for
e appearing in equation (7). We note that the e�e
tive hamiltonianH

eff

is

used in equation (11), and not the 
lassi
al 
ounterpart of the original hamiltionianH, in order to

preserve the 
onsisten
y of the quasi-
lassi
al approximation. For spe
ial forms of the intera
tion

hamiltonian the generalized for
e given by equation (11) may 
ontain O and P generated by

H

eff

(or expressions 
ontaining su
h O and P ); let us denote them by O

0

and P

0

. The 
lassi
al

behaviour of these quantities implies undetermined 
onstants (arising from initial 
onditions),

beside a time dependen
e. If the external intera
tion pro
eeds at a slower time s
ale than the the

motion of these quantities, we may take the time average of the 
lassi
al O

0

and P

0

. In 
ondensed

matter at thermal equilibrium O

0

and P

0


an be determined by their thermal averages. We may

also take approximately for O

0

and P

0

the mean values for the quantum state m. All these

pro
edures introdu
e an additional approximate 
hara
ter in the solution of the quasi-
lassi
al

equation (8). It is also worth stressing the fa
t that there might be 
ases (like the motion of

the magnetization in 
ondensed matter) where we have equations of motion but not ne
essarily

a (
lassi
al) hamiltonian formalism; in that 
ase the time derivative �=�t in equation (7) retains

only its basi
 meaning, that of a derivative with respe
t to the time.

Assuming that h depends only on O in H

int

(t) = h 
os!t and using the hamiltonian given by

equation (3) we get

_

O


l

= P=M and

[(�=�t)

_

O


l

℄

int

= (

_

P=M)

int

= �(�H

int

=�O)=M = �(1=M)(�h=�O) 
os!t ; (12)

equation (8) be
omes

Æ

�

O + !

2

0

ÆO + 2�Æ

_

O = �

1

M

�

�h

�O


os!t (13)

with solution

ÆO = a 
os!t+ b sin!t ; (14)

where

a =

1

M

�

�h

�O

�

!

2

�!

2

0

(!

2

�!

2

0

)

2

+4!

2

�

2

'

1

2M!

0

�

�h

�O

�

!�!

0

(!�!

0

)

2

+�

2

;

b = �

1

M

�

�h

�O

�

2!�

(!

2

�!

2

0

)

2

+4!

2

�

2

' �

1

2M!

0

�

�h

�O

�

�

(!�!

0

)

2

+�

2

;

(15)

for ! near !

0

. The mean "power" dissipated (absorbed) by the os
illator is

ÆP

os


= MÆ

_

O[(�=�t)

_

O


l

℄

int

=

=M(�a! sin!t+ b! 
os!t)[�(1=M)(�h=�O) 
os!t)℄ =

= �

1

2

b!

�h

�O

'

(�h=�O)

2

4M

�

�

(!�!

0

)

2

+�

2

!

�(�h=�O)

2

4M

Æ(!

0

� !)

(16)

(for �! 0

+

). As a fun
tion of !, this is a typi
al resonan
e 
urve. As we shall see immediately,

ÆP

os


is only the variation of the mean absorbed power with respe
t to the quantum numbers, as

a 
onsequen
e of the small e�e
ts produ
ed by the 
lassi
al intera
tion.

Indeed, it is worth 
omparing this result with the quantum-me
hani
al theory of perturbation.

Let

 = '

n

e

�

i

~

E

n

t

+

0

X

k




kn

'

k

e

�

i

~

E

k

t

(17)
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be the wavefun
tion produ
ed to the �rst order of the perturbation theory by the intera
tion

H

int

(t) = h 
os!t; from the S
hrodinger equation i~� =�t = (H +H

int

) we get

i~ _


kn

=

1

2

h

kn

�

e

i(!

kn

+!)t+�t

+ e

i(!

kn

�!)t+�t

�

; (18)

where the intera
tion is introdu
ed adiabati
ally (�! 0

+

); hen
e,




kn

= �

h

kn

2~

�

e

i(!

kn

+!)t+�t

!

kn

+ ! � i�

+

e

i(!

kn

�!)t+�t

!

kn

� ! � i�

�

: (19)

The transition from the state n to the state k with the absorption of the quanta of energy ~!

kn

=

E

k

� E

n


orresponds to the 
oe�
ient




kn

' �

h

kn

2~

�

e

i(!

kn

�!)t+�t

!

kn

� ! � i�

; (20)

it produ
es

R =

� j


kn

j

2

�t

=

jh

kn

j

2

2~

2

�

�

(!

kn

� !)

2

+ �

2

!

� jh

kn

j

2

2~

2

Æ(!

kn

� !) (21)

transitions per unit time and absorbs (dissipates) a power

P =

jh

kn

j

2

2~

!

kn

�

(!

kn

� !)

2

+ �

2

!

� jh

kn

j

2

2~

!

kn

Æ(!

kn

� !) : (22)

We set n! m and k ! m+ s and get

P =

jh

s

j

2

2~

!

0

�

(!

0

� !)

2

+ �

2

!

� jh

s

j

2

2~

!

0

Æ(!

0

� !) : (23)

We 
ompare ÆP given by equation (23) with ÆP

os


given by equation (16); for these two quantities

be equal we should have

Æ

 

jh

s

j

2

2~

!

0

!

=

(�h=�O)

2

4M

; (24)

su
h an equality is not ful�lled in general; it gives the deviation of the quasi-
lassi
al approximation

(based on harmoni
 os
illators) from the quantum-me
hani
al dynami
s. Equation (24) is satis�ed

for a harmoni
 os
illator, as expe
ted; indeed, we have

Æ

 

jh

s

j

2

2~

!

0

!

=

h

s

Æh

s

~

!

0

=

h

s

(�h

s

=�O)ÆO

~

!

0

=

(�h=�O)

2

4M

; (25)

or

hÆO =

~

4M!

0

(�h=�O) ; (26)

where we dropped out the su�x s and assumed a 
onstant !

0

. Equation (26) 
an also be written

as

hÆO =

~

4M!

0

s

�

�h

�O

Æn ; (27)

for h = f

r

O

r

we get O =

p

(~r=2M!

0

s)n from equation (27), whi
h, for r = s = 1, is the matrix

element of the displa
ement operator for a harmoni
 os
illator with massM and frequen
y !

0

. For

h = fO, we get ÆP

os


= (�f

2

=4M)Æ(!

0

� !) from equation (16) and P

os


= (�f

2

=4M)nÆ(!

0

� !),
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whi
h 
oin
ides with equation (23) for large n. This is pre
isely the result obtained by means of the

�rst-order theoreti
al-perturbation 
al
ulation using the e�e
tive harmoni
-os
illator hamiltonian

given by equation (3) and the intera
tion hamiltonian H

int

= fO 
os!t in the limit of large n.

In general, for intera
tions of the form h = fO, we get from equation (24) Æ(O

2

!

0

) = ~=2M , or

Æ(O

_

O) = ~=2M , Æ(OP ) = ~=2, whi
h 
orresponds to the un
ertainty relations ÆPÆO ' ~=2. As

we shall see from examples below, for most simple 
ases the di�eren
e between P and P

os


is only

a numeri
al fa
tor of the order of the unity.

Similarly, the mean value of an operator O for the wavefun
tion  given by equation (17) is

O = O

nn

+

0

X

k

�




kn

O

�

kn

e

�i!

kn

t

+ 


�

kn

O

kn

e

i!

kn

t

�

; (28)

hen
e, we may see that the 
hange brought about by the intera
tion in the (quasi-) 
lassi
al matrix

elements of an operator are in
luded in

h

2~

O

�

e

�i!t

�! + i�

+ 
:
:

�

=

h

~

O

�! � 
os!t� � sin!t

(�!)

2

+ �

2

; (29)

where �! = !

0

�!, the intera
tion has been removed adiabati
ally from t to t!1 (in a

ordan
e

with the relaxation term in the harmoni
-os
illator equation) and irrelevant phase fa
tors have

been left aside. Now we 
ompare the variation of this 
hange with the 
lassi
al solution given by

equation (14),

2

h

~

ÆO =

(�h=�O)

2M!

0

; (30)

whi
h is identi
al with equation (26) (the fa
tor 2 in the lhs of equation (30) 
omes from the fa
t

that the �nal state k is both n+ s and n� s).

Example 1. Planar rotator. Consider a dipole d, 
onsisting of a 
harge q with mass m, whi
h


an rotate freely in plane at a distan
e l form its axis (plane rotator); sin
e l = l(
os'; sin') and

_

l = l _'(� sin'; 
os'), we get the hamiltonian

H =

1

2

ml

2

_'

2

=

1

2ml

2

L

2

; (31)

where L = ml

2

_' is the angular moment and I = ml

2

is the moment of inertia. Sin
e L = �i~

�

�'

,

we get the wavefun
tions  

l

=

1

p

2�

e

il'

and the energy levels E

l

= ~

2

l

2

=2I, l = 0; 1; 2; ::: (l denotes

here both the quantum number and the dipole length); the matrix elements of the dipole moment

d involve only states l and l � 1, with the frequen
y !

l�1;l

= (E

l�1

� E

l

)=~=

~

I

(�l +

1

2

).

The angle ' is not a dynami
al variable, so it is not suitable for a quasi-
lassi
al dynami
s (though

for large l there exists the 
lassi
al limit, in the sense that ' 
an be lo
alized by wavepa
kets with

a high a

ura
y). Indeed, from the 
ommutation relation [L; '℄ = �i~ we get (l� l

0

)'

ll

0

= �iÆ

ll

0

,

and '

ll

0

= 0 for l 6= l

0

, while '

ll

is undetermined. This result 
an be veri�ed dire
tly on the matrix

elements

'

ll

0

=

1

2�

Z

d' � 'e

i(l

0

�l)'

=

�

�[i(l

0

� l)℄

1

2�

Z

d'e

i(l

0

�l)'

= 0 ; l 6= l

0

; (32)

similarly, _' = (i=~)[H;'℄ = L=I, _'

ll

0

= (i=~)(E

l

� E

l

0

)'

ll

0

= (~l=I)Æ

ll

0

and _'

ll

0

= 0 for l 6= l

0

; the


lassi
al motion pro
eeds with _' = L=I = 
onst.

1

1

The dire
t 
al
ulation by parts of the integral in equation (32) requires the dismissal of the "surfa
e" term,

a

ording to the rules of the Quantum Me
hani
s regarding orthogonal sets of eigenfun
tions (see, for instan
e,

Ref. [16℄).
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The proje
tion of the dipole on an axis 
an play the role of a dynami
al variable. Su
h an axis 
an

be provided by an external ele
tri
 �eld E(t) = E 
os!t. The orientation of the rotator is given

by the dire
tion of its angular momentum L. In a lo
al referen
e frame we may take L dire
ted

along the z axis; then, the ele
tri
 �eld has the 
omponents E = E(sin �; 0; 
os �) and the dipole


an be written as d = d(
os'; sin'; 0). The intera
tion hamiltonian reads

H

int

(t) = �dE 
os!t = �dE sin � 
os' 
os!t ; (33)

we take x = l 
os' as a dynami
al variable and write the intera
tion hamiltonian as

H

int

(t) = �(dE=l)x sin � 
os!t = �qEx sin � 
os!t : (34)

We 
an see that the matrix elements x

ll

0

are non-vanishing for l

0

= l � 1; therefore we 
an write

�x

s

+ !

2

s

x

s

= 0, where s = 1 and !

s

= (~=I)(l + 1=2) ' (~=I)l for l � 1 (indeed, we need

~!

s

=E

l

= 2l + 1 � 1, in order to have energy levels densely distributed). It is worth noting that

!

s

= (~=I)l = L=I is the 
lassi
al frequen
y in x = l 
os(Lt=I) and, indeed,

...

x

+ (L=I)

2

x = 0.

We drop out the label s in x

s

and denote !

0

= (~=I)l with a �xed l; therefore, the 
orresponding

quasi-
lassi
al equation of motion reads �x+!

2

0

x = 0 (also, we use x instead of Æx). The for
e a
ting

upon this harmoni
 os
illator is (dE=l) sin � 
os!t, so that we have the quasi-
lassi
al equation of

motion

�x + !

2

0

x =

qE

m

sin � 
os!t : (35)

The mean absorbed power is

ÆP

os


= qE _x sin � 
os!t =

1

2

qEb! sin � =

q

2

E

2

sin

2

�

4m

�

(! � !

0

)

2

+ �

2

: (36)

A

ording to equation (23) the power absorbed by quantum-rotation jumps is given by

P =

�d

2

E

2

sin

2

�

8~

!

0

Æ(!

0

� !) ; (37)

sin
e !

0

= (~=I)l we 
an see that ÆP = (�q

2

E

2

sin

2

�=8m)Æ(!

0

�!), whi
h di�ers from ÆP

0s


given

by equation (36) by a fa
tor 1=2. Su
h a dis
repan
y re�e
ts the deviation of the quasi-
lassi
al

approximation, based on harmoni
 os
illators, from the original dynami
s.

It is worth noting that for large l we are in the 
lassi
al limit, with the hamiltonian L

2

=2I �

dE sin � 
os' 
os!t; the equation of motion reads

�' = �

dE

I

sin � sin' 
os!t ; (38)

we solve this equation by perturbation theory, with a series ' = '

0

+ �'

1

+ :::, where � =

dE sin �=I � 1. With 
onvenient initial 
onditions we get

' = !

0

t+

�

2

�

sin(!

0

+ !)t� (!

0

+ !)t

(!

0

+ !)

2

+

sin(!

0

� !)t� (!

0

� !)t

(!

0

� !)

2

�

+ ::: ; (39)

whi
h indi
ates a rotation with small os
illations. As expe
ted, this 
lassi
al solution is fundamen-

tally di�erent from the quantum-me
hani
al jumps and from the quasi-
lassi
al approximation.

A fri
tion term 
an be in
luded in '

0

(with the 
oe�
ient � su
h as �� � 1), with a similar


on
lusion.
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Example 2. Spheri
al pendulum. The spheri
al pendulum (spatial, rigid rotator, spheri
al

top) 
onsists of a point of mass M whi
h rotates freely in spa
e at the end of a radius l =

l(sin � 
os'; sin � sin'; 
os �), as des
ribed by the hamiltonian

H =

1

2

M

_

l

2

=

1

2

Ml

2

(

_

�

2

+ _'

2

sin

2

�) ; (40)

if the point has a 
harge q, it is a dipole d = ql whi
h 
an 
ouple to an external ele
tri
 �eld

E 
os!t, with an intera
tion hamiltonian H

int

(t) = �dE 
os � 
os!t. We take the ele
tri
 �eld

dire
ted along the z-axis.

As it is well known, the angular momentum L = M l�

_

l has the 
omponents L

x

= Ml

2

(�

_

� sin'�

_' sin � 
os � 
os'), L

y

= Ml

2

(

_

� 
os' � _' sin � 
os � sin'), L

z

= Ml

2

_' sin

2

� and the hamiltonian


an be written as

H =

1

2I

L

2

; (41)

where I =Ml

2

is the moment of inertia. The eigenfun
tions are the spheri
al harmoni
s Y

lm

with

the eigenvalues ~

2

l(l+1), l = 0; 1; :::. The z-
omponent of the angular momentum is L

z

= �i~

�

�'

,

with the same eigenfun
tions Y

lm

, L

z

Y

lm

= ~mY

lm

, m = �l;�l + 1; :::l. The energy levels of the

spheri
al pendulum are E

l

=

~

2

2I

l(l+ 1); they are degenerate with respe
t to the quantum number

m, whi
h takes 2l + 1 values. (l denotes here both the length of the dipole and the quantum

number of the angular momentum).

The angles ' and � do no admit a quasi-
lasssi
al approximation, in the sense dis
ussed here for

dynami
al variables (this is a typi
al situation for the free motion). Indeed, the matrix elements

'

lm;lm

0

are vanishing for m 6= m

0

, while the matrix elements �

l;m;l+s;m

do not fall o� rapidly with

in
reasing s.

We 
an take z = l 
os � as a quasi-
lassi
al variable with s = 1, 
orresponding to transitions from

l to l + 1; the generalized for
e is

(�=�t)( _z


l

) =

qE

M


os!t (42)

and the equation of motion reads

�z + !

2

0

z =

qE

M


os!t : (43)

The mean absorbed power is given by

ÆP

os


=

1

2

qEb!

0

=

q

2

E

2

4M

�

(! � !

0

)

2

+ �

2

; (44)

whi
h should be multiplied by 2l + 1 ' 2l in order to a

ount for the degenera
y; we get ÆP

os


=

(�q

2

E

2

=2M)lÆ(!

0

� !).

The transition rate of quantum jumps for !

0

= (E

l+1

� E

l

)=~ = (~=I)(l + 1) is

� j


lm

j

2

�t

=

�d

2

E

2

2~

2

j(
os �)

lm

j

2

Æ(!

0

� !) ; (45)

where[10℄

(
os �)

lm

= (
os �)

l+1;m;l;m

= �i

s

(l + 1)

2

�m

2

(2l + 1)(2l + 3)

; (46)
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the absorbed power is

P = ~!

0

P

l

m=�l

�j


lm

j

2

�t

=

�d

2

E

2

2~

!

0

P

l

m=�l

j(
os �)

lm

j

2

Æ(!

0

� !) =

=

d

2

E

2

6~

!

0

(l + 1)

�

(!�!

0

)

2

+�

2

=

d

2

E

2

6I

(l + 1)

2

�

(!�!

0

)

2

+�

2

:

(47)

We 
an see that ÆP = (�d

2

E

2

=3I)lÆ(!

0

-!) (for l � 1), whi
h di�ers from ÆP

os


given above by a

fa
tor 2=3.

We may 
onsider the 
lassi
al limit of the motion, 
orresponding to large values of m ' l � 1;

in this 
ase the '-motion is in the 
lassi
al limit (for large m and ~ ! 0 the 
omponent L

z

remains �nite) and the asso
iated Legendre polynomials P

lm

in the spheri
al harmoni
s Y

lm

are

lo
alized near the equator; indeed, P

ll

� sin

l

�. For small variations Æ� around �=2 we have

Æ� ' sin Æ� = 
os(�=2 � Æ�) = 
os �, so we have to take the matrix elements of 
os �, whi
h are

di�erent from zero for l

0

= l � 1. Consequently, we take Æ# for O in the quasi-
lassi
al equation,

s = 1 and !

0

= (E

l+1

� E

l

)=~ ' (~=I)l, for a �xed l � 1; in addition, 
os � in the intera
tion

hamiltonian may be approximated by Æ�, where Æ� is the new quasi-
lassi
al variable �

s

; the

equation of quasi-
lassi
al motion is

�

�

s

+ !

2

0

�

s

= �

dE

I


os!t : (48)

The mean absorbed power is given by

ÆP = �dE

_

�

s


os!t = �

1

2

dEb! '

d

2

E

2

4I

�

(!�!

0

)

2

+�

2

;

(49)

whi
h 
oin
ides with equation (44) and the m = l-
omponent of ÆP in equation (47), as expe
ted

(up to the degenera
y fa
tor).

Extension to some problems in 
ondensed matter. In 
ondensed matter the energy levels

have a limited meaning, as a 
onsequen
e of the intera
tion between the atomi
 
onstituents.

A 
oarse graining is meaningful in this 
ase, whi
h 
onsists in taking a number N of atomi



onstituents, labelled by i = 1; 2; :::N , around ea
h point in the sample, su
h that N � 1, but

N is still mu
h smaller than the total number of atomi
 
onstituents in the sample. The 
oarse

graining implies averages of the type O = (1=N)

P

N

i=1

O

i

for any physi
al quantity O, so that any


hange ÆO is of the order ÆO � ÆO

i

=N (for an in
oherent motion, like in "normal" 
ondensed

matter), or ÆO=ÆO

i

� 1=N � 1; therefore, the quantum states (and the energy levels) are

densely distributed and the quasi-
lassi
al approximation 
an be applied. Moreover, the quantum-

me
hani
al states for ea
h atomi
 
onstituent i are usually limited in number (like magneti
-

moment states, for instan
e), so that the 
omparison between the quasi-
lassi
al approximation

and the quantum-me
hani
al 
omputations involve small quantum numbers; in this 
ase ÆO is

pra
ti
ally O, and P

os


is pra
ti
ally P , up to numeri
al fa
tors of the order of unity. Usually,

the (normal) 
ondensed matter is at �nite temperatures, whi
h implies both dire
t and reverse

quantum transitions (jumps). Making use of equation (22), the temperature-dependent power 
an

be written as

P

th

=

�

2~

!

0

�

P

0

n

�

�

�

h

P

m(n)

jh

n+s;n

(m)j

2

e

��E

n

�

P

m(n+s)

jh

n;n+s

(m)j

2

e

��E

n+s

i

Æ(!

0

� !)=Z ;

(50)

where (

P

0

n

) stands for the summation over those states n whi
h are separated by the same

frequen
y !

0

from states n + s;

P

m(n)

indi
ates a summation over possible degenerate states
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labelled by m(n) for n (and m(n + s) for n + s), whi
h may a�e
t the matrix elements of the

intera
tion hamiltonian h; � = 1=T is the re
ipro
al of the temperature T ; and

Z =

X

n

X

m(n)

e

��E

n

(51)

is the partition fun
tion. In the quasi-
lassi
al approximation equation (50) 
an be written ap-

proximately as

P

th

=

�

P

0

n

�

�jh

s

j

2

2~

!

0

(�~!

0

)f(n)e

��E

n

Æ(!

0

� !)=Z =

=

�

P

0

n

�

P (n)(�~!

0

)f(n)e

��E

n

=Z ;

(52)

where jh

s

j

2

f(n) is the approximate result of the summation

P

m(n)

jh

n+s;n

(m)j

2

and �~!

0

was

assumed to be mu
h smaller than unity. In equation (52) P

os


may be used approximately for

P (n), a

ording to the dis
ussion above. For the parti
ular 
ase of a harmoni
 os
illator there

is no degenera
y and summation in equation (52) extends over all the states (P (n) � n). The

partition fun
tion is Z =

P

n=o

e

��~!

0

n

' 1=�~!

0

and

P

n=0

ne

��~!

0

n

= 1=(�~!

0

)

2

, so that P

th

is

independent of temperature.

Example 3. Nu
lear magneti
 resonan
e. We 
onsider the motion of a magneti
 moment

�!

�

in a 
onstant (stati
) and uniform magneti
 �eld H

0

dire
ted along the z-axis (the longitudinal

�eld) and an os
illating magneti
 �eld H(t) = H 
os!t, dire
ted along the x-axis (the transverse

�eld), where ! is the os
illation frequen
y. The intera
tion hamiltonian 
an be written as

H

int

= �

�!

� [H

0

e

z

+H(t)e

x

℄ ; (53)

where e

x;z

are the 
orresponding unit ve
tors. The Larmor equation

_

�!

� = 


�!

� � [H

0

e

z

+H(t)e

x

℄

reads

_�

x

= 
�

y

H

0

;

_�

y

= �
�

x

H

0

+ 
�

z

H 
os!t ;

_�

z

= �
�

y

H 
os!t ;

(54)

where 
 is the gyromagneti
 fa
tor.

The magneti
 moment in the equations written above is a quantum-me
hani
al operator; it is

related by the quantum-me
hani
al operator of the angular momentum J (spin) by

�!

� = g�

B

J =


~J, where g is a Lande fa
tor, �

B

is a Bohr magneton (atomi
 or nu
lear) and 
 is a gyromagneti


fa
tor (the magneti
 moment of a parti
le, or ensembly of parti
les, is given by � = g�

B

J = 
~J ; it

is 
onvenient to use a su�x for this magneti
 moment, and write, for instan
e, �

p

= g�

B

J = 
~J ,

where the su�x p stands for "parti
le", in order to distinguish it from the magnitude [(

�!

� )

2

℄

1=2

of the operator

�!

� ). Making use of the 
ommutation relations [J

i

; J

j

℄ = i"

ijk

J

k

of the operators

of the angular momentum, the Larmor equations of motion written above are obtained from the

quantum-me
hani
al equation of motion

_

�!

� = (i=~)[H

int

;

�!

� ℄. The intera
tion �

�!

�H

0

= ��

z

H

0

=

�
~J

z

H

0

splits the degenerate level a

ording to �
~m

z

H

0

, where m

z

= �J; �J + 1; :::J is the

quantum number of the 
omponent J

z

; it is 
onvenient to introdu
e the frequen
y !

0

= 
H

0

and

write the energy levels as �~!

0

m

z

. The states labelled bym

z

are eigenstates of the operator J

z

and

�

z

; for ea
h of these states J

z

and �

z

are 
onstant, while �

x;y

(and J

x;y

) are undetermined; the mean

value of �

x;y

(and J

x;y

) over any state m

z

is vanishing. The intera
tion �

�!

�H(t) = �
~J

x

H(t)

produ
es transitions between the states m

z

and m

z

� 1, so it mixes up su
h states; 
onsequently,

we measure mean (average) values (expe
tation values) of the operators

�!

� = (�

x

,�

y

; �

z

).
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Therefore, we take the average of the magneti
 moment over the quantum motion in equations

(54) (quantum-me
hani
al averages); this means that we 
an repla
e the operator

�!

� = 
~J by

its average, denoted

�!

�

av

and given by

�!

�

av

=

X

��

0

Z

dr 

�

�

0

(

�!

� )

�

0

�

 

�

; (55)

where  

�

is the spinor 
orresponding to the angular momentum J;

�!

�

av

is now a 
lassi
al vari-

able whi
h 
an be measured. It is this quantity whi
h is often viewed as the magneti
 moment,

espe
ially for ensemblies of parti
les (a similar average J

av


an be introdu
ed for the angular

momentum, so we 
an preserve the equation

�!

�

av

= 
~J

av

); we note that equations (55) de�ne

also a density of magneti
 moment (magnetization). For a sample of 
ondensed matter

�!

�

av


an


arry a position label r

i

, denoting the position of the i-th parti
le with this magneti
 moment; in

a 
ourse-graining average, spe
i�
 to the 
ontinuum models of matter, the label r

i

, may be
ome

the 
ontinuous, lo
al position r, so that the 
orresponding average magneti
 moment

�!

�

av

may be

a fun
tion

�!

�

av

(t; r) of the time t and position r. Moreover, the measurable quantities in 
ondensed

matter are statisti
al averages, so that we may assume that we have a lo
al thermodynami
 equi-

librium and

�!

�

av

(t; r) is also averaged over su
h a statisti
al distribution, whi
h 
an be written as

�!

�

av

. If we are not interested in the spatial variations (whi
h may imply di�usion of the moments),

we may leave aside the r-dependen
e; for simpli�
ation we may also leave aside the average bars

and the su�x av, and write simply

�!

� for this 
lassi
al quantity; in fa
t, it is more 
onvenient to

use the magnetizationM (the magneti
 moment of the unit volume, a

ordingly averaged), whi
h

obeys the equations of motion

_

M

x

= 
M

y

H

0

;

_

M

y

= �
M

x

H

0

+ 
M

z

H 
os!t ;

_

M

z

= �
M

y

H 
os!t ;

(56)

derived from equations (55) by the su

ession of averages des
ribed above (quantum-me
hani
al,


oarse-graining, statisti
al). We 
onsider here the parti
ular situation of magneti
 moments as-

so
iated with atomi
 nu
lei, but the pro
edure des
ribed above is more general and 
an also

be applied to other magneti
 moments. The average pro
edure des
ribed here for the magneti


moments in 
ondensed matter is the quasi-
lassi
al approximation as presented in this paper.

At thermal equilibrium the statisti
al average of the magnetization is zero; applying the magneti


�eld H

0

an intera
tion �

�!

�H

0

appears, whi
h restores the thermal equilibrium with a non-zero

average magneti
 moment dire
ted along the longitudinal �eld H

0

. Sin
e the intera
tion energy

�H

0

is mu
h smaller than the temperature T , we may use the distribution � e

�!

�H

0

=T

of the


lassi
al statisti
s; we get the statisti
al average of the magneti
 moment �

z

= �

2

H

0

=3T and

the longitudinal magnetization M

0

= n�

z

= n�

2

H

0

=3T , where n is the density of parti
les; the

transverse 
omponents of the magnetization are vanishing (M

x;y

= 0); here � is the "magneti


moment of the parti
le" (� = �

p

= 
~J). As it is well known, this is the Curie-Langevin-Debye

law.[17℄-[20℄ The relaxation of the longitudinal magnetization is governed by the kineti
 equation

dM

z

dt

= �

1

(M

0

�M

z

) ; (57)

where �

1

is a (longitudinal) damping 
oe�
ient; the solution isM

z

= M

0

(1�e

��

1

t

), for zero initial

magnetization. The average transverse magnetization is vanishing; if, by external means, we take
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the transverse magnetization out of equilibrium (M

x;y0

6= 0 initially), it will relax a

ording to

dM

x

dt

= ��

2

M

x

;

dM

y

dt

= ��

2

M

y

; (58)

where �

2

is a transverse damping 
oe�
ient. The solution is M

x;y

= M

x;y0

e

��

2

t

(for more de-

tails regarding the relaxation 
oe�
ients, see, for instan
e, Ref. [21℄). In
luding these damping


oe�
ients equations (56) be
ome

_

M

x

= 
M

y

H

0

� �

2

M

x

;

_

M

y

= �
M

x

H

0

+ 
M

z

H 
os!t� �

2

M

y

;

_

M

z

= �
M

y

H 
os!t� �

1

(M

z

�M

0

) ;

(59)

for small values of the �eld H we may put approximatelyM

z

'M

0

in these equations and negle
t

the time-dependen
e of the longitudinal 
omponentM

z

of the magnetization; then, equations (59)


an be approximated by

_

M

x

' 
M

y

H

0

� �

2

M

x

;

_

M

y

' �
M

x

H

0

+ 
M

0

H 
os!t� �

2

M

y

;

(60)

or

_

M

x

' !

0

M

y

� �

2

M

x

;

_

M

y

' �!

0

M

x

+ !

m

H 
os!t� �

2

M

y

;

(61)

where !

0

= 
H

0

and !

m

= 
M

0

. These equations 
an be transformed into

�

M

x

+ !

2

0

M

x

+ �

2

_

M

x

= !

0

!

m

H 
os!t ;

�

M

y

+ !

2

0

M

y

+ �

2

_

M

y

= �!!

m

H sin!t ;

(62)

for �

2

� !

0

; !

m

, whi
h are equations of motion of damped harmoni
 os
illators, in a

ordan
e

with their quasi-
lassi
al nature. The parti
ular solution of equations (61) is given by

M

x

= a 
os!t+ b sin!t ;

M

y

=

�a!+b�

2

!

0

sin!t+

b!+a�

2

!

0


os!t ;

(63)

where

a = �!

0

!

m

H

!

2

�!

2

0

��

2

2

(!

2

�!

2

0

��

2

2

)

2

+4!

2

�

2

2

;

b = !

0

!

m

H

2!�

2

(!

2

�!

2

0

��

2

2

)

2

+4!

2

�

2

2

:

(64)

We 
an simplify these solutions by using �

2

� !

0

, !

m

and assuming ! 
lose to !

0

. We get

M

x

' a 
os!t+ b sin!t ; M

y

' �a sin!t+ b 
os!t ; (65)

where

a ' �

1

2

!

m

H

!�!

0

(!�!

0

)

2

+�

2

2

; b '

1

2

!

m

H

�

2

(!�!

0

)

2

+�

2

2

:

(66)



J. Theor. Phys. 13

These solutions are obtained also from the os
illator equations (62) with �

2

! �

2

=2 in equations

(66). From equations (63) we 
an see that the magnetization performs a Larmor pre
ession about

the z-axis with frequen
y ! (the frequen
y of the external �eld); the transverse magnetization

rotates with 
onstant magnitude M

2

x

+M

2

y

= a

2

+ b

2

' (!

m

H=2�

2

)

2

. The power absorbed from

the �eld and dissipated by the motion of the transverse magnetization 
an be obtained from

equations (62), through

d

dt

�

1

2

_

M

2

x

+

1

2

!

2

0

M

2

x

�

+ �

2

_

M

2

x

= !

0

!

m

H

_

M

x


os!t ; (67)

We get

P

os


= H

_

M

x


os!t =

1

2

Hb! =

1

4

!

m

H

2

!�

2

(! � !

0

)

2

+ �

2

2

; (68)

or

P

os


=

�

4

!

m

!

0

H

2

Æ(! � !

0

) ; �

2

! 0

+

(�

2

� !

0

) : (69)

These are typi
al solutions of damped harmoni
 os
illators exhibiting resonan
e for ! = !

0

. This

is the typi
al solution of the magneti
 resonan
e.[22℄-[24℄ As it is well known, equations (59) and

(60) are 
alled Blo
h equations.[25℄

Let us 
al
ulate now the power absorbed in magneti
 resonan
e by quantum-me
hani
al transitions

m

z

! m

z

� 1 
aused by the intera
tion hamiltonian H

int

(t) = �
~I

x

H 
os!t (we denote the

nu
lear spin by I); ea
h of these transitions pro
eeds with the absorption or emission of the

quanta of energy ~!

0

; these transitions release and absorb energy, and we are interested in the

net energy absorption rate per unit time.

In the presen
e of the longitudinal �eld H

0

the energy levels are given by �
~H

0

m

z

= �~!

0

m

z

;

the lowest energy level has m

z

= I and the highest energy level has m

z

= �I. The energy

absorption pro
eeds from m

z

to m

z

� 1, where m

z

= I; I � 1; :::� I + 1, with the rate

� j


m

z

�1

j

2

�t

=

1

2




2

H

2

j(I

x

)

m

z

�1;m

z

j

2

�

(! � !

0

)

2

+ �

2

; (70)

the energy emission implies transitions from m

z

to m

z

+ 1, where m

z

= I � 1; I � 2; :::� I; the

rate of these transitions is given by

� j


m

z

+1

j

2

�t

=

1

2




2

H

2

j(I

x

)

m

z

+1;m

z

j

2

�

(! � !

0

)

2

+ �

2

; (71)

the matrix elements of the spin 
omponent I

x

are[10℄

(I

x

)

m

z

�1;m

z

=

1

2

[(I +m

z

)(I �m

z

+ 1)℄

1=2

;

(I

x

)

m

z

+1;m

z

=

1

2

[(I �m

z

)(I +m

z

+ 1)℄

1=2

:

(72)

The transition rates must be weighted by the statisti
al distribution e

�~!

0

m

z

=

P

m

z

e

�~!

0

m

z

, so that

the net transition rate is given by

R =

�j


m

z

�1

j

2

�t

�

�j


m

z

+1

j

2

�t

=

=

1

2




2

H

2

jI

x

j

2

�

(!�!

0

)

2

+�

2

;

(73)
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where

jI

x

j

2

=

h

P

�I+1

m

z

=I

j(I

x

)

m

z

�1;m

z

j

2

�

P

�I

m

z

=I�1

j(I

x

)

m

z

+1;m

z

j

2

i

e

�~!

0

m

z

=

P

�I

m

z

=I

e

�~!

0

m

z

=

=

1

4

h

P

�I+1

m

z

=I

(I

2

+ I +m

z

�m

2

z

)�

P

�I

m

z

=I�1

(I

2

+ I �m

z

�m

2

z

)

i

e

�~!

0

m

z

=

P

�I

m

z

=I

e

�~!

0

m

z

(74)

(here, the net emission rate is equal with the net absorption rate, R in equation (73) being, in

fa
t, jRj); the rearrangement of the summations in equation (74) lead to

jI

x

j

2

=

1

2

I

X

m

z

�I

m

z

e

�~!

0

m

z

=

I

X

m

z

=�I

e

�~!

0

m

z

=

1

2

m

z

; (75)

where m

z

is the thermal average of the quantum number m

z

. For �~!

0

� 1 we get m

z

=

~!

0

I(I+1)=3T (and m

2

z

= I(I+1)=3); we note that the average magneti
 moment dire
ted along

the z-axis is 
~m

z

= 


2

~

2

H

0

I(I + 1)=3T while the same average 
al
ulated with the 
lassi
al

statisti
s is �

2

H

0

=3T = 


2

~

2

H

0

I

2

=3T (as given above); in the quantum-me
hani
al statisti
s I

2

is

repla
ed by I(I + 1), as expe
ted. Inserting jI

x

j

2

given by equation (75) in equation (73) we get

the net absorption rate

R =

1

4




2

H

2

m

z

�

(! � !

0

)

2

+ �

2

(76)

and the power absorbed per unit volume

P = n~!

0

R =

1

4

n~!

0




2

H

2

m

z

�

(! � !

0

)

2

+ �

2

; (77)

or

P =

1

4


!

0

M

0

H

2

�

(! � !

0

)

2

+ �

2

=

1

4

!

m

!

0

H

2

�

(! � !

0

)

2

+ �

2

; (78)

sin
e n
~m

z

is the magnetization M

0

along the z-axis (and !

m

= 
M

0

). This equation should

be 
ompared with the equation (68) whi
h gives the absorbed power per unit volume within the


lassi
al treatment; we 
an see that they are the same (near the resonan
e, with � = �

2

, up to

I

2

repla
ed by I(I + 1) in magnetization and !

m

). We note that the perturbation is applied here

adiabati
ally (for a long time), whi
h warrants the attaining of the thermal equilibrium.

Example 4. Nu
lear quadrupole resonan
e. It may happen that the stru
ture of the

quantum states of the magneti
 moment (spin) is not governed by an external �eld, as H

0

in the


ase of the magneti
 resonan
e des
ribed above, but it is produ
ed by lo
al intera
tions of the

magneti
 moments with their environment. For instan
e, the hyper�ne intera
tion a
ts in the 
ase

of paramagneti
 (spin) resonan
e, the quadrupole intera
tion determines the nu
lear quadrupole

resonan
e, et
. In su
h 
ases the dire
t appli
ation of the averages te
hnique in the equations of

motion of the magneti
 moment des
ribed above is not 
onvenient, sin
e these equations depend

also on external degrees of freedom, or a non-linear. First, we should take into a

ount the e�e
t

of the lo
al intera
tion with the surrounding medium. The quantum nature of the 
ondensed

matter has 
ertain parti
ularities, whi
h may allow a quasi-
lassi
al des
ription.

In normal 
ondensed matter the wavefun
tions and energy levels have a limited validity, due, on

one side, to the large number of states densely distributed in energy, to the natural un
ertainties

arising from internal, residual intera
tions and, on the other side, to the inevitable intera
tion

with the external world, whi
h makes pra
ti
ally impossible the preparation of a pure quantum

state. In fa
t, mixed states des
ribed by the density matrix, or thermodynami
 states des
ribed
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by the statisti
al matrix are appropriate for 
ondensed matter, exhibiting, to a large extent, a


lassi
al behaviour. These parti
ularities also provide the basis for a quasi-
lassi
al dynami
s

in some 
ases in 
ondensed matter. (This is true for usual 
onditions, whi
h de�ne a "normal"


ondensed matter. At low temperatures, we may en
ounter quantum states for 
ondensed matter,

like super�uidity, super
ondu
tivity, ferromagnetism, et
).

The nu
lear magneti
 moments in solids are a�e
ted by the intera
tion with the surrounding ions,

whi
h generate high gradients of ele
tri
 �eld. Consequently, a quadrupole intera
tion

V

2

=

1

6

X

ij

Q

ij

V

ij

; V

ij

=

�

2

�

�x

ai

�x

aj

(79)

a
ts on the nu
lear magneti
 moments, where Q

ij

is the tensor of the quadrupole moment, � is the

ele
tri
 potential at the lo
ation of the magneti
 moment, a denotes the surrounding ions and i; j

are 
artesian 
oordinates. This intera
tion splits the degenera
y of the energy levels with respe
t

to the magneti
 quantum number m (and shifts the energy levels), su
h that transitions between

su
h levels may be indu
ed by an external time-dependent magneti
 �eld (the energy levels 
an

depend on the temperature). These transitions have a resonan
e 
hara
ter, and are known as

the nu
lear quadrupole resonan
e.[26℄-[29℄ (The resonan
e frequen
ies are in the radiofrequen
y

range. The nu
lear quadrupole resonan
e does not appear for nu
lear spins I = 0; 1=2, whi
h

give a vanishing quadrupole moment. The average of the quadrupole intera
tion with respe
t

to the mole
ular motion leads to a very weak e�e
tive intera
tion in liquids, so that the nu
lear

quadrupole resonan
e is not observed in liquids, or in gases, where the intera
tion is very weak).

Let us 
onsider a sample of 
ondensed matter 
onsisting of atomi
 
onstituents (not ne
essarily

identi
al), like atoms, ions, mole
ules, spins, magneti
 moments, et
 (at rest, as in solids, or in

motion as in liquids, gases, et
). As independent entities, ea
h of these atomi
 
onstituents has its

own (quantum) dynami
s, de�ned by stationary states and energy levels. Some of these states may

be degenerate, as, for instan
e, the spin states asso
iated with various spatial orientations of the

spin (the spatial degeneray). The lo
al intera
tion o

urring in 
ondensed matter, between these

atomi
 
onstituents, or between them and their environment lead to 
hanges in these quantum

states, or to generation of new quantum states, as, for instan
e, those o

urring by the removal of

the degenera
ies. Let us 
onsider a 
olle
tion of N su
h "quatum systems" labelled by i = 1; 2:::N ,

ea
h with a set of quantum states labelled by quantum numbers n

i

and energy "

n

i

, su
h as the

total energy of the 
olle
tion is E

n

= "

n

1

+"

n

2

+:::+"

n

N

; it is 
onvenient to denote the states of the


olle
tion by n = (n

1

; n

2

; :::n

N

). Now we see that another energy E

n

0

is obtained by 
hanging at

least by a unity at least one of the quantum numbers n

i

, for instan
e E

n

0

= "

n

1

+ :::+"

n

0

i

+ :::+"

n

N

,

where n

0

i

= n

i

�1. Su
h a 
hange implies a small di�eren
e in energy, E

n

0

�E

n

in 
omparison with

the energies E

n;n

0

, providing N � 1. If the dynami
s is su
h as the 
hange in energy pro
eeds

in time �t, then E

n

0

� E

n

is of the order ~=�t, where ~ is Plan
k's 
onstant. This indi
ates a


hange in the me
hani
al a
tion of the order ~, whi
h is mu
h smaller that the me
hani
al a
tion

asso
iated to the whole set of N systems. Consequently, we may adopt a quasi-
lassi
al des
ription

for the dynami
s of the assembly of N systems. Moreover, we may take su
h assemblies in the

vi
inity of any position in the sample, and take the average of the physi
al quantities over su
h


oarse-graining stru
tures; the number N of systems in ea
h assembly is mu
h larger than unity,

but still su�
iently small at the ma
ros
opi
 s
ale as to allow the de�nition of a 
oarse-graining

averaged model (possibly 
ontinuous) for the ma
ros
opi
 sample. The physi
al quantities de�ned

in this manner are 
lassi
al quantities wi
h obey a (quasi-) 
lassi
al dynami
s.

If the perturbation hamiltonian is given by H

int

(t) = �

�!

�H 
os!t, where

�!

� is the (quasi-)


lassi
al magneti
 moment, the quasi-
lassi
al dynami
s for a frequen
y !

s

= !

0

is governed by
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the quasi-
lassi
al equations of motion

_

�!

� = �i!

0

�!

� + 


�!

�


l

�H 
os!t ; (80)

where 
 is the gyromagneti
 fa
tor; in this equation

�!

� is the magneti
 moment generated by the

magneti
 �eld H 
os!t (parti
ular solution) and

�!

�


l

may have a non-vanishing part

�!

�

0

generated

by the statisti
al distribution over the states whose energies are denoted ~!(m); ~!

0

is one of the

di�eren
es ~!(m

0

)�~!(m), a

ording to the sele
tion rules; it is these 
ontributions

�!

�

0

whi
h are

retained in

�!

�


l

. Equations (80) for the real part of the moment

�!

� be
ome

�

�!

� + !

2

0

�!

� = �
!

�!

�

0

�H sin!t : (81)

We may assume that the thermal average of the magneti
 moment is vanishing in the absen
e of

the intera
tion,

�!

�

0

=

X

�!

�

0

e

��H

=

X

e

��H

= 0 ; (82)

where � = 1=T is the inverse of the temperature T . In the presen
e of the intera
tion whi
h

produ
es the energy levels ~!(m) the mean value of the magneti
 moment is

�!

�

0

=

X

�!

�

0

e

��H��~!(m)

=

X

e

��H��~!(m)

' ��~

�!

�

0

!(m) ; (83)

for �~!(m)� 1; it is di�eren
es of the type ~!(m

0

)� ~!(m) whi
h matters in this mean value,

so we may write 
onveniently

�!

�

0

!(m) = 
�!

0

, where 
 is an undetermined numeri
al ve
torial


oe�
ient dire
ted along the mean magnetization (magneti
 moment

�!

�

0

) and � is the magneti


moment. Now, equations (81) 
an be written for magnetization (in
luding damping) as

�

M+ !

2

0

M + 2�

_

M = !!

m


�H sin!t ; (84)

where !

m

= 
n�(~!

0

=T ), n being the density of magneti
 moments; M

0

= n�~�!

0


 = (!

m

=
)


is a stati
 magnetization. We 
an see now that the situation is very mu
h similar with the nu
lear

magneti
 resonan
e ; in fa
t, the 
lassi
al equations (84) apply also to the nu
lear magneti
 with


 = e

z

. We note the o

urren
e of the ve
tor 
 in the nu
lear quadrupole resonan
e, whi
h

indi
ates the anisotropy of the magnetization.

The (parti
ular) solution of equations (84) is

M = 
�H(a sin!t+ b 
os!t) ; (85)

where

a = �

1

2

!

m

! � !

0

(! � !

0

)

2

+ �

2

; b = �

1

2

!

m

�

(! � !

0

)

2

+ �

2

(86)

(for ! near the resonan
e frequen
y !

0

); the absorbed (mean) power (per unit volume) is given

by

P = (
�H)

_

M sin!t = �

1

2

!

0

b(
�H)

2

=

1

4

!

m

!

0

(
�H)

2

�

(! � !

0

)

2

+ �

2

: (87)

The magnetization indu
ed by the external �eld H 
os!t performs a rotation about H in the

plane perpendi
ular to H and 
 with the angular frequen
y !. The power 
omputed by means

of the quantum transitions of the intera
tion hamiltonian H

int

(t) = �

�!

�H 
os!t 
oin
ides with

the absorbed power given by equation (87), providing the numeri
al ve
tor 
 is determined from

the matrix elements of the magneti
 moment

�!

� (the thermal average of the transition rate being

taken). We emphasize again that the 
onsiderations made above assume the thermal equilibrium
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whi
h requires times longer than the damping (relaxation) times; for short pulses of the external

�eld the magnetization su�ers a sudden nutation and pre
ession; the mean value 
an be 
om-

puted by means of the perturbation theory; it is of the order n� multiplied by a redu
tion fa
tor

jH

int

j =~�! ' 
H=�!, where �! is the bandwidth generated by the pulse (the inverse of the

duration of the pulse); this estimation may be taken as M

0

in the damped free-os
illation solution

(free indu
tion) of the harmoni
 os
illator equation.

The quadrupole intera
tion V

2

exhibits, in general, an anisotropy; its diagonalization, whi
h leads

to eigenfreqen
ies denoted by !

0

in the quasi-
lassi
al approximation, de�nes an ellipsoid (the

prin
ipal axes of the quadrati
 form); the external radiofrequen
y �eld H may have an arbitrary

orientation with respe
t to these axes, as expressed by the ve
torial produ
t 
 �H in equation

(85). If the sample is an amorphous solid, or it is impuri�ed, or it is a powder, et
, an average must

be taken over the orientations of the sample, as given by sin

2

� in the equation for the absorbed

power, where � is the angle between H and 
.

An external, uniform magneti
 �eld H

0


an be applied in NQR experiments; it produ
es energy

levels ~!(m) = 
~mH

0

, whi
h 
ombine now with the energy levels produ
ed by the quadrupole

intera
tion V

2

to give the frequen
ies !

0

.

Dis
ussion and 
on
lusions. The time dependen
e of the quantum-me
hani
al operators

(Heisenberg representation) has been investigated here in the quasi-
lassi
al approxmation, where

the energy levels are densely distributed. It has been shown, in these 
ir
umstan
es, that physi
al

quantities behave approximately as 
lassi
al harmoni
 os
illators, with eigenfrequen
ies given by

the di�eren
e in energy levels. Under the a
tion of a time-dependent external �eld these 
las-

si
al os
illators absorb (dissipate) energy, whi
h approximates the variation, with respe
t to the

quantum numbers, of the energy absorbed in quantum-me
hani
al transitions. Two examples of

simple quantum-me
hani
al systems are given in this respe
t (planar and spatial rigid rotators

endowed with an ele
tri
 dipole moment), whi
h may serve to further enlighten the details of

the approximation involved. In 
ondensed matter the 
oarse graining average provides a natu-

ral means for the quasi-
lassi
al approximation. This approximation has been illustrated here

for magneti
 resonan
e and the nu
lear quadrupole resonan
e. The quasi-
lassi
al equations of

motion presented in this paper may shed further light upon the relationship between Quantum

Me
hani
s and Classi
al Me
hani
s.
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