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Abstract

The Heisenberg time-dependence of quantum-mechanical operators is analyzed within
the quasi-classical approximation, where the quanta of action % (Planck’s constant) is much
smaller than the relevant amounts of mechanical action. It is shown that such a circum-
stance can provide an approximation by harmonic oscillators to some quantum-mechanical
systems, especialy in condensed matter. The accuracy of the approximation is assessed by
estimating the mean power absorbed from an external time-dependent force; both classically
and quantum-mechanically this power exhibits a typical resonance behavior. It is shown that
the mean power obtained by means of the harmonic-oscillator approximation is the variation
with respect to the quantum number of the total mean power. In most simple cases the
difference between the exact result and the approximate one resides in a numerical factor.
A few examples are given for simple quantum-mechanical systems (rigid planar and spatial
rotator endowed with an electric dipole moment under the action of an electric field), as well
as the nuclear magnetic and quadrupole resonances.

Introduction. It is well known that the quasi-classical approximation works in Quantum Mechan-
ics whenever the quanta of action 7 (Planck’s constant) is much smaller than the relevant amounts
of mechanical action; this implies high quantum numbers. The energy levels of the hydrogen atom
become dense for high values of the quantum number and can be approximated by the energy
provided by the Classical Mechanics. This is the well-known Bohr’s principle of correspondence.[1]-
[3] When the de Broglie’s wavelength is much smaller than the relevant spatial dimensions and
does not vary too much, then the wavefunction may be approximated by a quasi-plane wave
and the motion may have a trajectory, very much alike the geometrical-optics approximation
for waves. This is known as the quasi-classical approximation (or the Jeffrey-Wentzel-Kramers-
Brillouin - JWKB - approximation).[4]-[10] A superposition of such plane waves gives a wavepacket
which simulates spatial localization (classical limit).[11, 12] In the quasi-classical limit & — 0 the
quantum-mechanical commutator reproduces the corresponding classical Poisson brackets.[13]

Another, less known, aspect of the quasi-classical approximation is described here, which arises
from the Heisenberg’s time-dependence of the quantum-mechanical operators.[14, 15] It leads to an
approximation by classical harmonic oscillators of some quantum-mechanical systems, especially
in condensed matter; such an approximation may be called a quasi-classical dynamics.

Quasi-classical dynamics. Quantum systems. Let O be a dynamical variable of a quantum-

mechanical motion governed by a hamiltonian H (independent of time); its equation of motion
is O = (i/h)[H, O], or Oy = (i/B)(Fy — En)Omp, where Oy, are the matrix elements for the
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states m, n with energies F,,, F,; we assume O,,, # 0 for m # n. For large values of the
energy levels F,, and the quantum number m the energy levels are "densely distributed", in the
sense that AE,,/E,, = (E,, — E,)/E,, < 1 for any finite difference AE,, = E,, — E,; according
to Bohr’s correspondence principle, in this case we are approaching the (quasi-) classical limit.
Moreover, under the same conditions, the matrix elements O,,, depend weakly on m and may
fall abruptly to zero with increasing |m — n| (due to the rapid oscillations of the wavefunctions
with large quantum numbers); according to the equation of motion, the matrix elements O,,, are
approximated by the Fourier components O,, ,,, of the classical quantity O(t). We write n = m+s,
wn = En/h = wpis = wim + $(0wy,/Om) + ... and Opy = Opymets =~ O for small values of s (in
comparison with m, s < m). For a superposition ¢y = > cpome ! of wavefunctions e “m’,
the mean value of the variable O is

O = Z C;kncnomnei(wm—wn)t ~ Z C;kncmose—is(awm/ﬁm)t ~ Z Ose—iwst : (1)

which is the Fourier transform of the classical quantity O(t) with frequencies w; = s(0wy,/Om).
The equation of motion for one component reads

O, = —iw,Oy , (2)
for a fixed m.

The nature and meaning of this equation require a few clarifications. First, we note the ap-
proximate character of the equation (2), as a result of the approximations involved in deriving
equation (1). Equation (2) is an approximation for the classical equation of motion of the classical
quantity O. Indeed, on one hand it retains partially the quantum-mechanical character of the
motion through ws = (E,4s — En)/h and the presence of m in O, (not written explicitly); on
the other hand, it refers to a motion which changes the energy (E,, # E.s), while the clas-
sical motion proceeds with the conservation of the energy. For such reasons, we call equation
(2) the quasi-classical equation of motion. For instance, writing Oy = oM ¢ iOgZ), we have
O = 0,09 0¥ = —w,0M and OV = —wagl), 0P = —w520£2); the classical quantity is
either O or O (O is a real quantity); the classical equations of motion can be represented
as O = OH/OP, P = —8H/8O§1), o = (0/0t)(0H/OP), where P is a generalized momen-
tum and (0/0t)(0H/OP) acts as a generalized force (and similar equations for O§2)); in general,
the generalized force (0/0t)(0H/OP) differs from the harmonic-oscillator force —w?Ogl). For the
particular case of a harmonic oscillator with eigenfrequency wy the quasi-classical equation of mo-
tion is formally the same as the classical equation of motion, but the former assumes in addition
hwy = Epy1 — By, t.e. the quantum-mechanical condition for the quantization of the energy.
The quantum-mechanical motion governed by the commutator with the hamiltonian is equivalent
in the (quasi-) classical limit i — 0 with the classical motion governed by the Poisson brackets,
though the quasi-classical motion is associated with the quantum jumps (change of energy), while
the classical motion refers to a given orbit (which implies the energy conservation). In the clas-
sical limit & — 0 the quantum jumps disappear and we are left with a classical motion; but the
classical equation of motion is not necessarily the equation of motion of a harmonic oscillator. It
is a remarkable property of the Quantum Mechanics that the quantum-mechanical motion of any
dynamical variable can be approximated, within certain limitations as those pointed out here, by
a harmonic-oscillator motion in the quasi-classical limit, as indicated by equation (2).

The quasi-classical equation of motion (2) implies that the motion is governed by a harmonic-
oscillator effective hamiltonian

1 1
Heff = mPSQ + 5MW§O§ s (3)
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where P; is the canonical-conjugate momentum for the "coordinate" O, and M is a "mass"
parameter.

In the presence of a time-dependent, external interaction given by a hamiltonian H;,,(t) = h cos wt,
the change in time of the quantity O; acquires a new contribution, which we write as O equation
(2) becomes

O, = —iw,05 + O ; (4)

the new term O¢ denotes that part of the time derivative of the classical quantity O, denoted
O, which arises from the external interaction. At this moment, we may drop out the suffix s
in equation (4) and denote wy = w,. With O = O +i0® we get from equation (4) O =
woO® + OCl, 0@ = —4,,0M and

O + g0 = [(8/0t)0%im ; )

the suffix int in equation (5) indicates that we retain only the contribution of the external in-
teraction. Equation (5) is the equation of motion of a harmonic oscillator under the action of a
generalized force [(0/0t)O%;ns; a similar equation is obtained for O®); we may drop out the labels
(1), (2) and write simply

O +wi0 = [(0/0)0 it - (6)

We are interested in the particular solution of equation (6), which is generated by the interaction.
Within the quasi-classical dynamics the interaction produces small effects, so that we may denote
dO the particular solution of equation (6); it is the variation of the quantity O for small changes
s < m in the quantum numbers m; equation (6) becomes

60 + wpdO = [(8/0) 0N ins ; (7)

if present in the rhs of this equation, 6O should be neglected there, in order to preserve the
perturbation character of the interaction. A damping term can be introduced in equation (7) (the
coefficient «), which becomes

60 + w260 + 2060 = (/) (ON)int (8)

where o« — 07; multiplying by 6O we get a conservation law,

% G(&O)? + %w§(50)2> +20(80)? = 80[(8/0t)O0ins . (9)

which is related to the energy conservation.

The calculation of the generalized force [(8/0t)0%;; is carried out by means of the Poisson
brackets. For the classical dynamics of the variable O we have O = {O, H.sr} + {O, H;p } and

(a/at)o = {{O’Heff}’Heff}+{{O’H6ff}’Hint}+ (10)
10
+{{Oa Hlnt}a Heff} + {{Oa Hznt}a Hznt} )
the first term in the rhs of equation (10) must be left aside since it does not contain the interaction;

similarly, the last term in equation (10) must be left aside, since we limit ourselves to the first
order of the perturbation theory in H;,;; therefore, we get

(0/08)(O%)ins = {{O, Hegg}, Hin} + {{O, Hint}, Heg} (11)
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for the generalized force appearing in equation (7). We note that the effective hamiltonian H.,; is
used in equation (11), and not the classical counterpart of the original hamiltionian H, in order to
preserve the consistency of the quasi-classical approximation. For special forms of the interaction
hamiltonian the generalized force given by equation (11) may contain O and P generated by
H.¢¢ (or expressions containing such O and P); let us denote them by Oy and Fy. The classical
behaviour of these quantities implies undetermined constants (arising from initial conditions),
beside a time dependence. If the external interaction proceeds at a slower time scale than the the
motion of these quantities, we may take the time average of the classical Oy and F,. In condensed
matter at thermal equilibrium Oy and Py can be determined by their thermal averages. We may
also take approximately for Oy and P, the mean values for the quantum state m. All these
procedures introduce an additional approximate character in the solution of the quasi-classical
equation (8). It is also worth stressing the fact that there might be cases (like the motion of
the magnetization in condensed matter) where we have equations of motion but not necessarily
a (classical) hamiltonian formalism; in that case the time derivative 0/0¢t in equation (7) retains
only its basic meaning, that of a derivative with respect to the time.

Assuming that h depends only on O in H;y(t) = hcoswt and using the hamiltonian given by
equation (3) we get

O = P/M and
[(0/0t)ONins = (P/M)int = —(0Hin /0O) /M = —(1/M)(0h/DO) cos wt ; (12)
equation (8) becomes
60 + w20 + 2060 = L %coswt (13)
° M 90
with solution
00 = acoswt + bsinwt , (14)
where
a=1L.0h __ ww ~ L Oh . wowy
T M 90 (w-w?)?+4w?a® T 2Mwy 00  (w—wp)?+a? ?
(15)
h— 1. oh, 2wa ~_ 1 .0, a
T M 00 (wP-w?)?+4w2a? T 2Mwo 90 (w—wo)?+a®
for w near wg. The mean "power" dissipated (absorbed) by the oscillator is
8P, = MOO[(8/0t) Oy =
= M (—aw sinwt + bw cos wt)[—(1/M)(0h/00) cos wt)| = (16)
0h/90)? o 7(8h/00)>
= —%bw% ~ ( 4/M) : (w—wo)2+aZ — ( 45\4 ) 6(WO _CU)

(for a« — 0%). As a function of w, this is a typical resonance curve. As we shall see immediately,
0P,,. is only the variation of the mean absorbed power with respect to the quantum numbers, as
a consequence of the small effects produced by the classical interaction.

Indeed, it is worth comparing this result with the quantum-mechanical theory of perturbation.
Let

!
¥ =pae B4 Y cpnpre B (17)
k
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be the wavefunction produced to the first order of the perturbation theory by the interaction
H;ni(t) = hcoswt; from the Schrodinger equation ihdy /0t = (H + H;pny)1) we get

1 , :
T — Qhkn [ez(wkn—l—w)t-i-at + ez(wkn—w)t—l—at] : (18)

where the interaction is introduced adiabatically (o« — 07); hence,

hkn ei(wkn+w)t+at ei(wkn —w)t+at

Chn = ——— , : . 19
F 2h wkn+w—za+wkn—w—za (19)

The transition from the state n to the state k£ with the absorption of the quanta of energy hwy, =
E. — E, corresponds to the coefficient
h ei(wkn—w)t-i-at
Chn ™~ — o ————; (20)
2h  wpy, — W — o

it produces

8 |C]€n|2 |hkn|2 « Vs |hkn|2
R = — . - ) — 21
ot 202 (wgn — w)? + a2 2h2 (Whn — ) (21)
transitions per unit time and absorbs (dissipates) a power
|hkn|2 « Vs |h]m|2
P = n 0 (Wen — . 22
on (W, — w)?2 + a? on (Wen = ) (22)

We set n — m and k£ — m + s and get

p |h5|2 o N 7r|h5|2
= w
2wy — w)? + o 2h

wod (wp — w) - (23)

We compare § P given by equation (23) with 6 P,s. given by equation (16); for these two quantities

be equal we should have
|hs” (0h/00)?
g ( on ) T 4M (24)

such an equality is not fulfilled in general; it gives the deviation of the quasi-classical approximation
(based on harmonic oscillators) from the quantum-mechanical dynamics. Equation (24) is satisfied
for a harmonic oscillator, as expected; indeed, we have

he)> \ _ hsdhs  hy(Ohy/DO)SO  (8h/DO)?
5 ( o Wo = 7 Wy = 7 Wp = AM y (25)
or 5
héO = Do (8h/90) | (26)

where we dropped out the suffix s and assumed a constant wy. Equation (26) can also be written

as
h oh

s
AMwys 00 "
for h = f,0" we get O = /(hir/2Muwys)n from equation (27), which, for r = s = 1, is the matrix

element of the displacement operator for a harmonic oscillator with mass M and frequency wy. For
h = fO, we get § Py, = (mf%/4M)6(wy — w) from equation (16) and P,y = (7 f?/4M)nd(wy — w),

hsO = (27)
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which coincides with equation (23) for large n. This is precisely the result obtained by means of the
first-order theoretical-perturbation calculation using the effective harmonic-oscillator hamiltonian
given by equation (3) and the interaction hamiltonian H;,; = fO coswt in the limit of large n.
In general, for interactions of the form h = fO, we get from equation (24) 6(O%wy) = h/2M, or
5(00) = h/2M, 6(OP) = /2, which corresponds to the uncertainty relations P3O ~ /2. As
we shall see from examples below, for most simple cases the difference between P and P, is only
a numerical factor of the order of the unity.

Similarly, the mean value of an operator O for the wavefunction ¢ given by equation (17) is
!
0= Onn + Z (ClmOZne—iwknt + Cznokneiwknt) : (28)
k

hence, we may see that the change brought about by the interaction in the (quasi-) classical matrix
elements of an operator are included in

h < e~wt N > h Aw - coswt — asinwt
ce | ==

- - = -0 29
2h - \ Aw + i« hi (Aw)? + a2 ’ (29)

where Aw = wy—w, the interaction has been removed adiabatically from ¢ to ¢ — oo (in accordance
with the relaxation term in the harmonic-oscillator equation) and irrelevant phase factors have
been left aside. Now we compare the variation of this change with the classical solution given by
equation (14),

2@50 _ (0Oh/00) |

h 2Mwyg

which is identical with equation (26) (the factor 2 in the lhs of equation (30) comes from the fact
that the final state & is both n 4+ s and n — s).

(30)

Example 1. Planar rotator. Consider a dipole d, consisting of a charge ¢ with mass m, which
can rotate freely in plane at a distance [ form its axis (plane rotator); since 1 = [(cos ¢, sin ) and
1 = 1p(—sinp, cos @), we get the hamiltonian

1 1
H=-ml’y* = L’ 31
2" T o (31)
where I = ml?¢ is the angular moment and I = ml? is the moment of inertia. Since I = —ih%,

we get the wavefunctions v, = \/LQ—We”“’ and the energy levels E; = h?[?/2I,1 = 0,1,2, ... (I denotes

here both the quantum number and the dipole length); the matrix elements of the dipole moment
d involve only states [ and [ £ 1, with the frequency w41, = (B — El)/h:?(il + %)

The angle ¢ is not a dynamical variable, so it is not suitable for a quasi-classical dynamics (though
for large [ there exists the classical limit, in the sense that ¢ can be localized by wavepackets with

a high accuracy). Indeed, from the commutation relation [L, o] = —ih we get (I — [ )¢, = —id,,
and ¢,y =0 for [ # I', while ¢y is undetermined. This result can be verified directly on the matrix
elements
_1 /d R P N o / doei D9 — | e (32)
Y = o ¥ pe - a[z(ll _ l)] ot pe — Y )

similarly, ¢ = (i/R)[H, ] = L/1, ¢y = (i/B) (B, — Ey)y = (hl/1)8,; and ¢y = 0 for [ # I'; the
classical motion proceeds with ¢ = L/T = const.'

!The direct calculation by parts of the integral in equation (32) requires the dismissal of the "surface" term,
according to the rules of the Quantum Mechanics regarding orthogonal sets of eigenfunctions (see, for instance,
Ref. [16]).
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The projection of the dipole on an axis can play the role of a dynamical variable. Such an axis can
be provided by an external electric field E(t) = E coswt. The orientation of the rotator is given
by the direction of its angular momentum L. In a local reference frame we may take L directed
along the z axis; then, the electric field has the components E = E(sin 6,0, cos§) and the dipole
can be written as d = d(cos ¢, sin ¢, 0). The interaction hamiltonian reads

Hini(t) = —dE coswt = —dE sin  cos p coswt ; (33)
we take x = [ cos ¢ as a dynamical variable and write the interaction hamiltonian as
Hini(t) = —(dE/l)x sin 0 cos wt = —qFEx sin 6 cos wt . (34)

We can see that the matrix elements x,,are non-vanishing for [' = [ + 1; therefore we can write
iy + wlry = 0, where s = 1 and wy, = (B/I)(l + 1/2) ~ (B/I)l for [ > 1 (indeed, we need
hws/E; = 20+ 1> 1, in order to have energy levels densely distributed). It is worth noting that
ws = (B/I)l = L/I is the classical frequency in x = [cos(Lt/I) and, indeed, T + (L/I)*z = 0.
We drop out the label s in z; and denote wy = (h/I)l with a fixed [; therefore, the corresponding
quasi-classical equation of motion reads #+wix = 0 (also, we use x instead of z). The force acting
upon this harmonic oscillator is (dE/I) sin f cos wt, so that we have the quasi-classical equation of
motion

E
i+ wir = T Gin b coswt . (35)
m
The mean absorbed power is
1 2E?sin” 0
0P, = qE 1 sinf cos wt = inbw sinf = 1 4:;1 = w?)Q npel (36)
According to equation (23) the power absorbed by quantum-rotation jumps is given by
d?>E? sin® 0
pP= %woé(wo —w); (37)

since wy = (h/I)l we can see that 6P = (m¢® E?sin? §/8m)(wo — w), which differs from 6 Py, given
by equation (36) by a factor 1/2. Such a discrepancy reflects the deviation of the quasi-classical
approximation, based on harmonic oscillators, from the original dynamics.

It is worth noting that for large I we are in the classical limit, with the hamiltonian L?/2I —
dFE sin 6 cos ¢ cos wt; the equation of motion reads

dFE
G = —Tsinﬁsingocoswt ; (38)

we solve this equation by perturbation theory, with a series ¢ = ¢y + Ay + ..., where A =
dEsinf/1 < 1. With convenient initial conditions we get

A | sin(wy + w)t — (wg +w)t  sin(wyg — w)t — (wg — w)t
0= wyt + 2 (wo 4+ w)t — (wo +w) (wo — w)t — (wo — w)
2 (wo + w)? (wp — w)?

. (39)

which indicates a rotation with small oscillations. As expected, this classical solution is fundamen-
tally different from the quantum-mechanical jumps and from the quasi-classical approximation.
A friction term can be included in ¢q (with the coefficient o such as aA < 1), with a similar
conclusion.
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Example 2. Spherical pendulum. The spherical pendulum (spatial, rigid rotator, spherical
top) consists of a point of mass M which rotates freely in space at the end of a radius 1 =
[(sin 0 cos @, sin O sin @, cos #), as described by the hamiltonian

1 . 1 .
H— 5M]? — 5MF(Q2 + ¢?sin?h) ; (40)
if the point has a charge ¢, it is a dipole d = ¢l which can couple to an external electric field
E coswt, with an interaction hamiltonian H;,;(t) = —dF cosf coswt. We take the electric field
directed along the z-axis.

As it is well known, the angular momentum L = M1 x 1 has the components L, = MZQ(—é sin ¢ —
¢sinfcosfcos ), L, = MI*(@cosp — psinfcosfsinp), L, = MI*>¢sin? and the hamiltonian
can be written as

1
H=_—I?, (41)

21
where I = MI? is the moment of inertia. The eigenfunctions are the spherical harmonics Y}, with
the eigenvalues h?[(I+1),1 =0, 1,.... The z-component of the angular momentum is L, = —ih%,

with the same eigenfunctions Y},,, L,Y}, = imY},,, m = —I,—1 + 1,...[. The energy levels of the
spherical pendulum are E; = %l(l + 1); they are degenerate with respect to the quantum number
m, which takes 2] + 1 values. (I denotes here both the length of the dipole and the quantum
number of the angular momentum).

The angles ¢ and 6 do no admit a quasi-classsical approximation, in the sense discussed here for
dynamical variables (this is a typical situation for the free motion). Indeed, the matrix elements
Pimm' are vanishing for m # m’, while the matrix elements 01.mii+sm do not fall off rapidly with
increasing s.

We can take z = [ cosf as a quasi-classical variable with s = 1, corresponding to transitions from
[ to [ 4+ 1; the generalized force is

E
8/0) (") = L= coswt (42)
M
and the equation of motion reads
E
4wz = qﬁcoswt . (43)

The mean absorbed power is given by

1 ¢*E? o
5P, = ~qEbuy = :
Q100 M (W — wo)? + a2

(44)
which should be multiplied by 2/ + 1 ~ 2[ in order to account for the degeneracy; we get d P,,. =
(rq?E?/2M)16(wy — w).
The transition rate of quantum jumps for wy = (Ey1 — E))/h= (h/I)(l + 1) is

Oem|”  wd?E?

o = o |(cos€)lm|2 §(wo — w) (45)

where[10]

(+1)2=m?
(€08 0)im = (€08 )11 mitm = —z\/(% )@+ (46)
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the absorbed power is

P =ty S0, Aol = 52200 S (cos )l 8wy — w) =

m=—l Ot 2h A7
__ d?E? l 1 «a __ d’E? l 1 2 o} ( )
— “6n wo(l + )(w7w0)2+o¢2 — 6l ((+1) (w—wo)2+a? *

We can see that 6P = (rd?E?/31)1§(wp-w) (for [ > 1), which differs from § P, given above by a
factor 2/3.

We may consider the classical limit of the motion, corresponding to large values of m ~ [ > 1;
in this case the p-motion is in the classical limit (for large m and A — 0 the component L,
remains finite) and the associated Legendre polynomials P, in the spherical harmonics Y, are
localized near the equator; indeed, P; ~ sin'@. For small variations 60 around 7/2 we have
00 ~ sin 6 = cos(m/2 — 60) = cos @, so we have to take the matrix elements of cos, which are
different from zero for I’ = [ + 1. Consequently, we take §9 for O in the quasi-classical equation,
s =1and wy = (Ejy1 — Ey)/h ~ (h/I)l, for a fixed [ > 1; in addition, cos# in the interaction
hamiltonian may be approximated by 6, where 66 is the new quasi-classical variable #,; the
equation of quasi-classical motion is

. dFE
0, + wib, = —— cos wt . (48)
The mean absorbed power is given by

6P = ~dEf, coswt = —LdBbw ~ T e (49)

which coincides with equation (44) and the m = [-component of 0 P in equation (47), as expected
(up to the degeneracy factor).

Extension to some problems in condensed matter. In condensed matter the energy levels
have a limited meaning, as a consequence of the interaction between the atomic constituents.
A coarse graining is meaningful in this case, which consists in taking a number N of atomic
constituents, labelled by 7 = 1,2,...N, around each point in the sample, such that N > 1, but
N is still much smaller than the total number of atomic constituents in the sample. The coarse
graining implies averages of the type O = (1/N) Zf\;l O; for any physical quantity O, so that any
change 60 is of the order §O ~ §O;/N (for an incoherent motion, like in "normal" condensed
matter), or dO/50; ~ 1/N < 1; therefore, the quantum states (and the energy levels) are
densely distributed and the quasi-classical approximation can be applied. Moreover, the quantum-
mechanical states for each atomic constituent ¢ are usually limited in number (like magnetic-
moment states, for instance), so that the comparison between the quasi-classical approximation
and the quantum-mechanical computations involve small quantum numbers; in this case dO is
practically O, and P,,. is practically P, up to numerical factors of the order of unity. Usually,
the (normal) condensed matter is at finite temperatures, which implies both direct and reverse
quantum transitions (jumps). Making use of equation (22), the temperature-dependent power can
be written as

P = g ()

(50)
x Zm(n) |hn+s,n(m)|2 e P — Zm(ﬂ+5) |hn,n+5(m)|2 e Pt 6(wo —w)/Z |

where (3°)) stands for the summation over those states m which are separated by the same
frequency wy from states n + s; Zm(n) indicates a summation over possible degenerate states
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labelled by m(n) for n (and m(n + s) for n + s), which may affect the matrix elements of the
interaction hamiltonian h; = 1/T is the reciprocal of the temperature T'; and

Z=3"Y et (51)
n m(n)

is the partition function. In the quasi-classical approximation equation (50) can be written ap-
proximately as

Pon = () Dol (Bho) f (m)e =75 (g — )/ Z =

= (X)) P(n)(Bhwo) f(n)e PP )7,

where |h,|* f(n) is the approximate result of the summation > mn) |hnssn(m))® and Bhiw, was
assumed to be much smaller than unity. In equation (52) P,s. may be used approximately for
P(n), according to the discussion above. For the particular case of a harmonic oscillator there
is no degeneracy and summation in equation (52) extends over all the states (P(n) ~ n). The
partition function is Z =Y _ e #om ~ 1/Bhw and Y, _ ne Pion = 1/(Bhwy)?, so that Py, is
independent of temperature.

(52)

Example 3. Nuclear magnetic resonance. We consider the motion of a magnetic moment ﬁ
in a constant (static) and uniform magnetic field Hy directed along the z-axis (the longitudinal
field) and an oscillating magnetic field H(¢) = H cos wt, directed along the x-axis (the transverse
field), where w is the oscillation frequency. The interaction hamiltonian can be written as

Hint = _ﬁ[HOez + H(t)ex] ) (53)

where e, , are the corresponding unit vectors. The Larmor equation ﬁ =i % [Hoe, + H(t)e,]

reads _
fiz = Yy Ho

fly = — Yz Ho 4+ v H coswt (54)

fi; = =Yy H coswt |
where v is the gyromagnetic factor.

The magnetic moment in the equations written above is a quantum-mechanical operator; it is
related by the quantum-mechanical operator of the angular momentum J (spin) by ﬁ = gupd =
vhJ, where g is a Lande factor, pp is a Bohr magneton (atomic or nuclear) and  is a gyromagnetic
factor (the magnetic moment of a particle, or ensembly of particles, is given by u = gugJ = yhJ; it
is convenient to use a suffix for this magnetic moment, and write, for instance, p, = gugJ = yhJ,
where the suffix p stands for "particle", in order to distinguish it from the magnitude [(77)?]"/2
of the operator ﬁ) Making use of the commutation relations [J;, J;] = ig;jxJi of the operators
of the angular momentum, the Larmor equations of motion written above are obtained from the
quantum-mechanical equation of motion 7/ = (1/h)[Hyng, ﬁ] The interaction — ZHy = —pu, Hy =
—~h.J,Hy splits the degenerate level according to —yhm,H,, where m, = —J, —J + 1, ....J is the
quantum number of the component .J,; it is convenient to introduce the frequency wy = vH, and
write the energy levels as —fuwym,. The states labelled by m, are eigenstates of the operator .J, and
p; for each of these states .J, and p, are constant, while p, ,, (and J;,) are undetermined; the mean
value of yi,, (and .J,,) over any state m, is vanishing. The interaction — ZH(t) = —~h.J, H(t)
produces transitions between the states m, and m, 4+ 1, so it mixes up such states; consequently,
we measure mean (average) values (expectation values) of the operators 7 = (fiy, /iy, fi-)-
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Therefore, we take the average of the magnetic moment over the quantum motion in equations
(54) (quantum-mechanical averages); this means that we can replace the operator 7/ = vAJ by
its average, denoted ,u_mf and given by

it =3 [ iy (s (55)

where 1), is the spinor corresponding to the angular momentum J; m is now a classical vari-
able which can be measured. It is this quantity which is often viewed as the magnetic moment,
especially for ensemblies of particles (a similar average J,, can be introduced for the angular
momentum, so we can preserve the equation ,u_aZ = vhJ.,); we note that equations (55) define
also a density of magnetic moment (magnetization). For a sample of condensed matter m can
carry a position label r;, denoting the position of the i-th particle with this magnetic moment; in
a course-graining average, specific to the continuum models of matter, the label r;, may become
the continuous, local position r, so that the corresponding average magnetic moment ﬁ may be
a function Jig, (¢, ) of the time ¢ and position r. Moreover, the measurable quantities in condensed
matter are statistical averages, so that we may assume that we have a local thermodynamic equi-
librium and ﬁ(t, r) is also averaged over such a statistical distribution, which can be written as

Tay- If we are not interested in the spatial variations (which may imply diffusion of the moments),
we may leave aside the r-dependence; for simplification we may also leave aside the average bars
and the suffix av, and write simply ﬁ for this classical quantity; in fact, it is more convenient to
use the magnetization M (the magnetic moment of the unit volume, accordingly averaged), which
obeys the equations of motion

Mx - ’YMyHO )
M, = —yM,Hy + yM.H coswt , (56)

M, = —yMyH coswt

derived from equations (55) by the succession of averages described above (quantum-mechanical,
coarse-graining, statistical). We consider here the particular situation of magnetic moments as-
sociated with atomic nuclei, but the procedure described above is more general and can also
be applied to other magnetic moments. The average procedure described here for the magnetic
moments in condensed matter is the quasi-classical approximation as presented in this paper.

At thermal equilibrium the statistical average of the magnetization is zero; applying the magnetic
field Hy an interaction —ﬁHO appears, which restores the thermal equilibrium with a non-zero
average magnetic moment directed along the longitudinal field Hy. Since the interaction energy
uHy is much smaller than the temperature 7', we may use the distribution ~ eH/T of the
classical statistics; we get the statistical average of the magnetic moment 1, = p?H,/3T and
the longitudinal magnetization My = np, = nu?Hy/3T, where n is the density of particles; the
transverse components of the magnetization are vanishing (A/,, = 0); here p is the "magnetic
moment of the particle" (1 = p, = yhJ). As it is well known, this is the Curie-Langevin-Debye
law.[17]-|20] The relaxation of the longitudinal magnetization is governed by the kinetic equation

dM,
dt

=1 (Mo — M,) , (57)

where a4 is a (longitudinal) damping coefficient; the solution is M, = My(1—e "), for zero initial
magnetization. The average transverse magnetization is vanishing; if, by external means, we take
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the transverse magnetization out of equilibrium (A, 40 # 0 initially), it will relax according to

dM. dM,
L= M, , —2 = —auM, , o8
dt 2 T 2 (58)
where a5 is a transverse damping coefficient. The solution is M, , = I,yoe_o‘ﬁ (for more de-

tails regarding the relaxation coefficients, see, for instance, Ref. [21]). Including these damping
coefficients equations (56) become

Mz = 7MyH0 - a2Mx )
My = —yM,Hy+ yM,H coswt — as M, , (59)
M, = —y My, H coswt — oy (M, — My) ;

for small values of the field H we may put approximately M, ~ M, in these equations and neglect
the time-dependence of the longitudinal component M, of the magnetization; then, equations (59)
can be approximated by

M, ~ fYMyHO — M,

(60)
M, ~ —yMyHy + yMoH coswt — aa M, ,
or )
M, ~ wyM, — asM, ,
_ (61)
M, ~ —woM, + wy, H coswt — aaM,, ,
where wy = vHy and w,, = vM,. These equations can be transformed into
M, + w2 M, + as M, = wown H cos wt
(62)

M, + WM, + ayM, = —ww,, H sinwt

for ay < wy,wp,, which are equations of motion of damped harmonic oscillators, in accordance
with their quasi-classical nature. The particular solution of equations (61) is given by

M, = acoswt + bsinwt ,

(63)
M, = 7_0“?"“2 sinwt + 24992 cog )t
0 wo
where s e
a = _WOWmH(w2,:,Jg::§);ij2a% )
(64)
b= wome(w27w§3:§a)22+4w2a% :
We can simplify these solutions by using oy < wp, w;, and assuming w close to wy. We get
M, ~ acoswt+bsinwt , M, ~ —asinwt + bcoswt , (65)
where
~_1 _ w-wo ~ 1 S
a =~ 2me(w_w0)20_|_a§ 9 b — 2me(w_w0§2+a% . (66)
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These solutions are obtained also from the oscillator equations (62) with as — as/2 in equations
(66). From equations (63) we can see that the magnetization performs a Larmor precession about
the z-axis with frequency w (the frequency of the external field); the transverse magnetization
rotates with constant magnitude M2 + M7 = a* + b* ~ (wnH/205)*. The power absorbed from
the field and dissipated by the motion of the transverse magnetization can be obtained from
equations (62), through

% (%Mg + %W(%Mg) + 042]\-/[5 = wowm H M, cos wt | (67)
We get
P,..= HM,coswt = —Hbw = —w,, H* e 2 (68)
2 4 (w—wo)?+ 03
or -
Posc = ZmeOH2(5(w — u)[)) , Qg — 0" (CYQ <K (,4)0) . (69)

These are typical solutions of damped harmonic oscillators exhibiting resonance for w = wqy. This
is the typical solution of the magnetic resonance.[22|-[24| As it is well known, equations (59) and
(60) are called Bloch equations.|25]

Let us calculate now the power absorbed in magnetic resonance by quantum-mechanical transitions
m, — m, + 1 caused by the interaction hamiltonian H;,(t) = —yhl,H coswt (we denote the
nuclear spin by I); each of these transitions proceeds with the absorption or emission of the
quanta of energy hwy; these transitions release and absorb energy, and we are interested in the
net energy absorption rate per unit time.

In the presence of the longitudinal field Hy the energy levels are given by —vhAHym, = —hwom,;
the lowest energy level has m, = I and the highest energy level has m, = —I. The energy
absorption proceeds from m, to m, — 1, where m, =1, I — 1,... — I + 1, with the rate

d |em. 1| 1 9 a

27172
—-v'H Iz m;—1,m ) 70
the energy emission implies transitions from m, to m, + 1, where m, =1 — 1, [ — 2, ... — I; the
rate of these transitions is given by
Olemral” 1 5 2 @
——F— =7V H |(I;)m m ) 71
the matrix elements of the spin component I, are[10]
(I:L‘)mzfl,mz = %[(I +m.)(I —m, + 1)]1/2 )
(72)

(L) m. +1,m. = %[(I —m.) (I +m, + 1)]1/2 _

The transition rates must be weighted by the statistical distribution e?om: / > o, ePhwoms g0 that
the net transition rate is given by

J— 8' Mz — ‘2 8' mz |2 J—
R=% ot Sl (9t+1 - (73)
72H2|II|2 ey

(w—wp)?+a? ?

1
2
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where

L = [0 () v

T ;11:171 (L) m.+1,m. 2] eﬂhwomz/z;i:[ eBhwoms

(74)
=3[ T = m2) = (P T =, =) | Pt 7T o

(here, the net emission rate is equal with the net absorption rate, R in equation (73) being, in
fact, |R|); the rearrangement of the summations in equation (74) lead to

T T

—s 1 1

L] = 5 E m,ePhooms | E ePhwom: QWZ , (75)
1 my=—1

where m, is the thelﬂal average of the quantum number m,. For fhw, < 1 we get m, =
fuwol (I4+1)/3T (and m2 = I(I+1)/3); we note that the average magnetic moment directed along
the z-axis is yhim, = v?*h?HoI(I + 1)/3T while the same average calculated with the classical
statistics is u?Hy /3T = v*h*HyI? /3T (as given above); in the quantum-mechanical statistics 2 is
replaced by I(I + 1), as expected. Inserting |I,|* given by equation (75) in equation (73) we get

the net absorption rate

|
R=7*Hm c (76)

and the power absorbed per unit volume

1
P = nlwoR = ~nhwyy>H*m, 77
n 0 4n O'Y m (C{) _ W[])Q + 052 ) ( )
or ) .
o o
P = —~ywyM,H? = —wnwoH? 78
g /0o (w—wp)? + a? g me (w—wp)?+a?’ (78)

since nyhim, is the magnetization M, along the z-axis (and w,, = yM;). This equation should
be compared with the equation (68) which gives the absorbed power per unit volume within the
classical treatment; we can see that they are the same (near the resonance, with & = ap, up to
I? replaced by I(I + 1) in magnetization and w,,). We note that the perturbation is applied here
adiabatically (for a long time), which warrants the attaining of the thermal equilibrium.

Example 4. Nuclear quadrupole resonance. It may happen that the structure of the
quantum states of the magnetic moment (spin) is not governed by an external field, as Hy in the
case of the magnetic resonance described above, but it is produced by local interactions of the
magnetic moments with their environment. For instance, the hyperfine interaction acts in the case
of paramagnetic (spin) resonance, the quadrupole interaction determines the nuclear quadrupole
resonance, etc. In such cases the direct application of the averages technique in the equations of
motion of the magnetic moment described above is not convenient, since these equations depend
also on external degrees of freedom, or a non-linear. First, we should take into account the effect
of the local interaction with the surrounding medium. The quantum nature of the condensed
matter has certain particularities, which may allow a quasi-classical description.

In normal condensed matter the wavefunctions and energy levels have a limited validity, due, on
one side, to the large number of states densely distributed in energy, to the natural uncertainties
arising from internal, residual interactions and, on the other side, to the inevitable interaction
with the external world, which makes practically impossible the preparation of a pure quantum
state. In fact, mixed states described by the density matrix, or thermodynamic states described



J. Theor. Phys 15

by the statistical matrix are appropriate for condensed matter, exhibiting, to a large extent, a
classical behaviour. These particularities also provide the basis for a quasi-classical dynamics
in some cases in condensed matter. (This is true for usual conditions, which define a "normal"
condensed matter. At low temperatures, we may encounter quantum states for condensed matter,
like superfluidity, superconductivity, ferromagnetism, etc).

The nuclear magnetic moments in solids are affected by the interaction with the surrounding ions,
which generate high gradients of electric field. Consequently, a quadrupole interaction

Vo = 1 Vii, Vij= e 79

27 6 iZjQU Wt Bxaiaxaj ( )
acts on the nuclear magnetic moments, where ();; is the tensor of the quadrupole moment, ® is the
electric potential at the location of the magnetic moment, a denotes the surrounding ions and i, j
are cartesian coordinates. This interaction splits the degeneracy of the energy levels with respect
to the magnetic quantum number m (and shifts the energy levels), such that transitions between
such levels may be induced by an external time-dependent magnetic field (the energy levels can
depend on the temperature). These transitions have a resonance character, and are known as
the nuclear quadrupole resonance.|[26]-[29] (The resonance frequencies are in the radiofrequency
range. The nuclear quadrupole resonance does not appear for nuclear spins I = 0, 1/2, which
give a vanishing quadrupole moment. The average of the quadrupole interaction with respect
to the molecular motion leads to a very weak effective interaction in liquids, so that the nuclear
quadrupole resonance is not observed in liquids, or in gases, where the interaction is very weak).

Let us consider a sample of condensed matter consisting of atomic constituents (not necessarily
identical), like atoms, ions, molecules, spins, magnetic moments, etc (at rest, as in solids, or in
motion as in liquids, gases, etc). As independent entities, each of these atomic constituents has its
own (quantum) dynamics, defined by stationary states and energy levels. Some of these states may
be degenerate, as, for instance, the spin states associated with various spatial orientations of the
spin (the spatial degeneray). The local interaction occurring in condensed matter, between these
atomic constituents, or between them and their environment lead to changes in these quantum
states, or to generation of new quantum states, as, for instance, those occurring by the removal of
the degeneracies. Let us consider a collection of NV such "quatum systems" labelled by i = 1, 2...N,
each with a set of quantum states labelled by quantum numbers n; and energy ¢,,, such as the
total energy of the collection is E,, = €,,, +¢&5, +...+£5,; it is convenient to denote the states of the
collection by n = (ny,ns,...ny). Now we see that another energy F, is obtained by changing at
least by a unity at least one of the quantum numbers n;, for instance E,, = ¢,, + et En ot Eny,
where n; = n; £ 1. Such a change implies a small difference in energy, E, — F,, in comparison with
the energies E, .+, providing N > 1. If the dynamics is such as the change in energy proceeds
in time At, then E,, — E, is of the order /i/At, where /i is Planck’s constant. This indicates a
change in the mechanical action of the order A, which is much smaller that the mechanical action
associated to the whole set of NV systems. Consequently, we may adopt a quasi-classical description
for the dynamics of the assembly of N systems. Moreover, we may take such assemblies in the
vicinity of any position in the sample, and take the average of the physical quantities over such
coarse-graining structures; the number N of systems in each assembly is much larger than unity,
but still sufficiently small at the macroscopic scale as to allow the definition of a coarse-graining
averaged model (possibly continuous) for the macroscopic sample. The physical quantities defined
in this manner are classical quantities wich obey a (quasi-) classical dynamics.

If the perturbation hamiltonian is given by Hj,(t) = —gZHcoswt, where 77 is the (quasi-)
classical magnetic moment, the quasi-classical dynamics for a frequency wy; = wyq is governed by
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the quasi-classical equations of motion

: —
W= —iwy  +vp x Heoswt (80)

where 7 is the gyromagnetic factor; in this equation ﬁ is the magnetic moment generated by the

magnetic field H coswt (particular solution) and p may have a non-vanishing part ;TS generated
by the statistical distribution over the states whose energies are denoted fuw(m); hwy is one of the

differences hg(m’) — hw(m), according to the selection rules; it is these contributions 7z which are
retained in p. Equations (80) for the real part of the moment 7 become

ﬁ +w§ﬁ — —ywig x Hsinwt . (81)

We may assume that the thermal average of the magnetic moment is vanishing in the absence of

the interaction,
=S Bt et —0, 2

where 3 = 1/T is the inverse of the temperature 7. In the presence of the interaction which
produces the energy levels iw(m) the mean value of the magnetic moment is

T = S e 0 37 ) o TG &

for Bhw(m) < 1; it is differences of the type hiw(m') — fw(m) which matters in this mean value,
so we may write conveniently ugw(m) = cuwp, where ¢ is an undetermined numerical vectorial

coefficient directed along the mean magnetization (magnetic moment ﬁ) and g is the magnetic
moment. Now, equations (81) can be written for magnetization (including damping) as

M + wiM + 2aM = ww,c x Hsinwt | (84)

where wp, = ynu(hwe/T), n being the density of magnetic moments; My = nfhuwoc = (wm/7v)c
is a static magnetization. We can see now that the situation is very much similar with the nuclear
magnetic resonance ; in fact, the classical equations (84) apply also to the nuclear magnetic with
c = e,. We note the occurrence of the vector ¢ in the nuclear quadrupole resonance, which
indicates the anisotropy of the magnetization.

The (particular) solution of equations (84) is

M = ¢ x H(asinwt + bcoswt) , (85)
where 1 1
W — wp «
— b= —=wm 86
¢ 2% (w—wp)? + a? 2% (w—wp)? + a? (86)

(for w near the resonance frequency wy); the absorbed (mean) power (per unit volume) is given
by

Q
(W—wy)2+a?’

P = (c x HMsinwt = —%wob(c x H)? = iwmwo(c x H)? (87)
The magnetization induced by the external field H coswt performs a rotation about H in the
plane perpendicular to H and ¢ with the angular frequency w. The power computed by means
of the quantum transitions of the interaction hamiltonian H;,(t) = —ﬁH coswt coincides with
the absorbed power given by equation (87), providing the numerical vector ¢ is determined from
the matrix elements of the magnetic moment ﬁ (the thermal average of the transition rate being
taken). We emphasize again that the considerations made above assume the thermal equilibrium
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which requires times longer than the damping (relaxation) times; for short pulses of the external
field the magnetization suffers a sudden nutation and precession; the mean value can be com-
puted by means of the perturbation theory; it is of the order nu multiplied by a reduction factor
|Hint| /hAw ~ vH/Aw, where Aw is the bandwidth generated by the pulse (the inverse of the
duration of the pulse); this estimation may be taken as My in the damped free-oscillation solution
(free induction) of the harmonic oscillator equation.

The quadrupole interaction V5 exhibits, in general, an anisotropy; its diagonalization, which leads
to eigenfreqencies denoted by wg in the quasi-classical approximation, defines an ellipsoid (the
principal axes of the quadratic form); the external radiofrequency field H may have an arbitrary
orientation with respect to these axes, as expressed by the vectorial product ¢ x H in equation
(85). If the sample is an amorphous solid, or it is impurified, or it is a powder, etc, an average must

be taken over the orientations of the sample, as given by sin?# in the equation for the absorbed
power, where # is the angle between H and c.

An external, uniform magnetic field H, can be applied in NQR experiments; it produces energy
levels fiw(m) = yhmH,y, which combine now with the energy levels produced by the quadrupole
interaction V5 to give the frequencies wy.

Discussion and conclusions. The time dependence of the quantum-mechanical operators
(Heisenberg representation) has been investigated here in the quasi-classical approxmation, where
the energy levels are densely distributed. It has been shown, in these circumstances, that physical
quantities behave approximately as classical harmonic oscillators, with eigenfrequencies given by
the difference in energy levels. Under the action of a time-dependent external field these clas-
sical oscillators absorb (dissipate) energy, which approximates the variation, with respect to the
quantum numbers, of the energy absorbed in quantum-mechanical transitions. Two examples of
simple quantum-mechanical systems are given in this respect (planar and spatial rigid rotators
endowed with an electric dipole moment), which may serve to further enlighten the details of
the approximation involved. In condensed matter the coarse graining average provides a natu-
ral means for the quasi-classical approximation. This approximation has been illustrated here
for magnetic resonance and the nuclear quadrupole resonance. The quasi-classical equations of
motion presented in this paper may shed further light upon the relationship between Quantum
Mechanics and Classical Mechanics.
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