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Abstrat

The Heisenberg time-dependene of quantum-mehanial operators is analyzed within

the quasi-lassial approximation, where the quanta of ation ~ (Plank's onstant) is muh

smaller than the relevant amounts of mehanial ation. It is shown that suh a irum-

stane an provide an approximation by harmoni osillators to some quantum-mehanial

systems, espeialy in ondensed matter. The auray of the approximation is assessed by

estimating the mean power absorbed from an external time-dependent fore; both lassially

and quantum-mehanially this power exhibits a typial resonane behavior. It is shown that

the mean power obtained by means of the harmoni-osillator approximation is the variation

with respet to the quantum number of the total mean power. In most simple ases the

di�erene between the exat result and the approximate one resides in a numerial fator.

A few examples are given for simple quantum-mehanial systems (rigid planar and spatial

rotator endowed with an eletri dipole moment under the ation of an eletri �eld), as well

as the nulear magneti and quadrupole resonanes.

Introdution. It is well known that the quasi-lassial approximation works in QuantumMehan-

is whenever the quanta of ation ~ (Plank's onstant) is muh smaller than the relevant amounts

of mehanial ation; this implies high quantum numbers. The energy levels of the hydrogen atom

beome dense for high values of the quantum number and an be approximated by the energy

provided by the Classial Mehanis. This is the well-known Bohr's priniple of orrespondene.[1℄-

[3℄ When the de Broglie's wavelength is muh smaller than the relevant spatial dimensions and

does not vary too muh, then the wavefuntion may be approximated by a quasi-plane wave

and the motion may have a trajetory, very muh alike the geometrial-optis approximation

for waves. This is known as the quasi-lassial approximation (or the Je�rey-Wentzel-Kramers-

Brillouin - JWKB - approximation).[4℄-[10℄ A superposition of suh plane waves gives a wavepaket

whih simulates spatial loalization (lassial limit).[11, 12℄ In the quasi-lassial limit ~! 0 the

quantum-mehanial ommutator reprodues the orresponding lassial Poisson brakets.[13℄

Another, less known, aspet of the quasi-lassial approximation is desribed here, whih arises

from the Heisenberg's time-dependene of the quantum-mehanial operators.[14, 15℄ It leads to an

approximation by lassial harmoni osillators of some quantum-mehanial systems, espeially

in ondensed matter; suh an approximation may be alled a quasi-lassial dynamis.

Quasi-lassial dynamis. Quantum systems. Let O be a dynamial variable of a quantum-

mehanial motion governed by a hamiltonian H (independent of time); its equation of motion

is

_

O = (i=~)[H;O℄, or

_

O

mn

= (i=~)(E

m

� E

n

)O

mn

, where O

mn

are the matrix elements for the
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states m, n with energies E

m

, E

n

; we assume O

mn

6= 0 for m 6= n. For large values of the

energy levels E

m

and the quantum number m the energy levels are "densely distributed", in the

sense that �E

m

=E

m

= (E

m

� E

n

)=E

m

� 1 for any �nite di�erene �E

m

= E

m

� E

n

; aording

to Bohr's orrespondene priniple, in this ase we are approahing the (quasi-) lassial limit.

Moreover, under the same onditions, the matrix elements O

mn

depend weakly on m and may

fall abruptly to zero with inreasing jm� nj (due to the rapid osillations of the wavefuntions

with large quantum numbers); aording to the equation of motion, the matrix elements O

mn

are

approximated by the Fourier omponents O

n�m

of the lassial quantity O(t). We write n = m+s,

!

n

= E

n

=~ = !

m+s

= !

m

+ s(�!

m

=�m) + ::: and O

mn

= O

m;m+s

' O

s

for small values of s (in

omparison withm, s� m). For a superposition  =

P

m



m

'

m

e

�i!

m

t

of wavefuntions '

m

e

�i!

m

t

,

the mean value of the variable O is

O =

X

mn



�

m



n

O

mn

e

i(!

m

�!

n

)t

'

X

ms



�

m



m

O

s

e

�is(�!

m

=�m)t

'

X

s

O

s

e

�i!

s

t

; (1)

whih is the Fourier transform of the lassial quantity O(t) with frequenies !

s

= s(�!

m

=�m).

The equation of motion for one omponent reads

_

O

s

= �i!

s

O

s

; (2)

for a �xed m.

The nature and meaning of this equation require a few lari�ations. First, we note the ap-

proximate harater of the equation (2), as a result of the approximations involved in deriving

equation (1). Equation (2) is an approximation for the lassial equation of motion of the lassial

quantity O. Indeed, on one hand it retains partially the quantum-mehanial harater of the

motion through !

s

= (E

m+s

� E

m

)=~ and the presene of m in O

s

(not written expliitly); on

the other hand, it refers to a motion whih hanges the energy (E

m

6= E

m+s

), while the las-

sial motion proeeds with the onservation of the energy. For suh reasons, we all equation

(2) the quasi-lassial equation of motion. For instane, writing O

s

= O

(1)

s

+ iO

(2)

s

, we have

_

O

(1)

s

= !

s

O

(2)

s

,

_

O

(2)

s

= �!

s

O

(1)

and

�

O

(1)

s

= �!

2

s

O

(1)

s

,

�

O

(2)

s

= �!

2

s

O

(2)

s

; the lassial quantity is

either O

(1)

s

or O

(2)

s

(O is a real quantity); the lassial equations of motion an be represented

as

_

O

(1)

s

= �H=�P ,

_

P = ��H=�O

(1)

s

,

�

O

(1)

s

= (�=�t)(�H=�P ), where P is a generalized momen-

tum and (�=�t)(�H=�P ) ats as a generalized fore (and similar equations for O

(2)

s

); in general,

the generalized fore (�=�t)(�H=�P ) di�ers from the harmoni-osillator fore �!

2

s

O

(1)

s

. For the

partiular ase of a harmoni osillator with eigenfrequeny !

0

the quasi-lassial equation of mo-

tion is formally the same as the lassial equation of motion, but the former assumes in addition

~!

0

= E

m+1

� E

m

, i.e. the quantum-mehanial ondition for the quantization of the energy.

The quantum-mehanial motion governed by the ommutator with the hamiltonian is equivalent

in the (quasi-) lassial limit ~ ! 0 with the lassial motion governed by the Poisson brakets,

though the quasi-lassial motion is assoiated with the quantum jumps (hange of energy), while

the lassial motion refers to a given orbit (whih implies the energy onservation). In the las-

sial limit ~ ! 0 the quantum jumps disappear and we are left with a lassial motion; but the

lassial equation of motion is not neessarily the equation of motion of a harmoni osillator. It

is a remarkable property of the Quantum Mehanis that the quantum-mehanial motion of any

dynamial variable an be approximated, within ertain limitations as those pointed out here, by

a harmoni-osillator motion in the quasi-lassial limit, as indiated by equation (2).

The quasi-lassial equation of motion (2) implies that the motion is governed by a harmoni-

osillator e�etive hamiltonian

H

eff

=

1

2M

P

2

s

+

1

2

M!

2

s

O

2

s

; (3)



J. Theor. Phys. 3

where P

s

is the anonial-onjugate momentum for the "oordinate" O

s

and M is a "mass"

parameter.

In the presene of a time-dependent, external interation given by a hamiltonianH

int

(t) = h os!t,

the hange in time of the quantity O

s

aquires a new ontribution, whih we write as

_

O

l

; equation

(2) beomes

_

O

s

= �i!

s

O

s

+

_

O

l

; (4)

the new term

_

O

l

denotes that part of the time derivative of the lassial quantity O, denoted

O

l

, whih arises from the external interation. At this moment, we may drop out the su�x s

in equation (4) and denote !

0

= !

s

. With O = O

(1)

+ iO

(2)

we get from equation (4)

_

O

(1)

=

!

0

O

(2)

+

_

O

l

,

_

O

(2)

= �!

0

O

(1)

and

�

O

(1)

+ !

2

0

O

(1)

= [(�=�t)

_

O

l

℄

int

; (5)

the su�x int in equation (5) indiates that we retain only the ontribution of the external in-

teration. Equation (5) is the equation of motion of a harmoni osillator under the ation of a

generalized fore [(�=�t)

_

O

l

℄

int

; a similar equation is obtained for O

(2)

; we may drop out the labels

(1), (2) and write simply

�

O + !

2

0

O = [(�=�t)

_

O

l

℄

int

: (6)

We are interested in the partiular solution of equation (6), whih is generated by the interation.

Within the quasi-lassial dynamis the interation produes small e�ets, so that we may denote

ÆO the partiular solution of equation (6); it is the variation of the quantity O for small hanges

s� m in the quantum numbers m; equation (6) beomes

Æ

�

O + !

2

0

ÆO = [(�=�t)

_

O

l

℄

int

; (7)

if present in the rhs of this equation, ÆO should be negleted there, in order to preserve the

perturbation harater of the interation. A damping term an be introdued in equation (7) (the

oe�ient �), whih beomes

Æ

�

O + !

2

0

ÆO + 2�Æ

_

O = (�=�t)(

_

O

l

)

int

; (8)

where �! 0

+

; multiplying by Æ

_

O we get a onservation law,

d

dt

�

1

2

(Æ

_

O)

2

+

1

2

!

2

0

(ÆO)

2

�

+ 2�(Æ

_

O)

2

= Æ

_

O[(�=�t)

_

O

l

℄

int

; (9)

whih is related to the energy onservation.

The alulation of the generalized fore [(�=�t)

_

O

l

℄

int

is arried out by means of the Poisson

brakets. For the lassial dynamis of the variable O we have

_

O = fO;H

eff

g+ fO;H

int

g and

(�=�t)

_

O = ffO;H

eff

g; H

eff

g+ ffO;H

eff

g; H

int

g+

+ffO;H

int

g; H

eff

g+ ffO;H

int

g; H

int

g ;

(10)

the �rst term in the rhs of equation (10) must be left aside sine it does not ontain the interation;

similarly, the last term in equation (10) must be left aside, sine we limit ourselves to the �rst

order of the perturbation theory in H

int

; therefore, we get

(�=�t)(

_

O

l

)

int

= ffO;H

eff

g; H

int

g+ ffO;H

int

g; H

eff

g (11)
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for the generalized fore appearing in equation (7). We note that the e�etive hamiltonianH

eff

is

used in equation (11), and not the lassial ounterpart of the original hamiltionianH, in order to

preserve the onsisteny of the quasi-lassial approximation. For speial forms of the interation

hamiltonian the generalized fore given by equation (11) may ontain O and P generated by

H

eff

(or expressions ontaining suh O and P ); let us denote them by O

0

and P

0

. The lassial

behaviour of these quantities implies undetermined onstants (arising from initial onditions),

beside a time dependene. If the external interation proeeds at a slower time sale than the the

motion of these quantities, we may take the time average of the lassial O

0

and P

0

. In ondensed

matter at thermal equilibrium O

0

and P

0

an be determined by their thermal averages. We may

also take approximately for O

0

and P

0

the mean values for the quantum state m. All these

proedures introdue an additional approximate harater in the solution of the quasi-lassial

equation (8). It is also worth stressing the fat that there might be ases (like the motion of

the magnetization in ondensed matter) where we have equations of motion but not neessarily

a (lassial) hamiltonian formalism; in that ase the time derivative �=�t in equation (7) retains

only its basi meaning, that of a derivative with respet to the time.

Assuming that h depends only on O in H

int

(t) = h os!t and using the hamiltonian given by

equation (3) we get

_

O

l

= P=M and

[(�=�t)

_

O

l

℄

int

= (

_

P=M)

int

= �(�H

int

=�O)=M = �(1=M)(�h=�O) os!t ; (12)

equation (8) beomes

Æ

�

O + !

2

0

ÆO + 2�Æ

_

O = �

1

M

�

�h

�O

os!t (13)

with solution

ÆO = a os!t+ b sin!t ; (14)

where

a =

1

M

�

�h

�O

�

!

2

�!

2

0

(!

2

�!

2

0

)

2

+4!

2

�

2

'

1

2M!

0

�

�h

�O

�

!�!

0

(!�!

0

)

2

+�

2

;

b = �

1

M

�

�h

�O

�

2!�

(!

2

�!

2

0

)

2

+4!

2

�

2

' �

1

2M!

0

�

�h

�O

�

�

(!�!

0

)

2

+�

2

;

(15)

for ! near !

0

. The mean "power" dissipated (absorbed) by the osillator is

ÆP

os

= MÆ

_

O[(�=�t)

_

O

l

℄

int

=

=M(�a! sin!t+ b! os!t)[�(1=M)(�h=�O) os!t)℄ =

= �

1

2

b!

�h

�O

'

(�h=�O)

2

4M

�

�

(!�!

0

)

2

+�

2

!

�(�h=�O)

2

4M

Æ(!

0

� !)

(16)

(for �! 0

+

). As a funtion of !, this is a typial resonane urve. As we shall see immediately,

ÆP

os

is only the variation of the mean absorbed power with respet to the quantum numbers, as

a onsequene of the small e�ets produed by the lassial interation.

Indeed, it is worth omparing this result with the quantum-mehanial theory of perturbation.

Let

 = '

n

e

�

i

~

E

n

t

+

0

X

k



kn

'

k

e

�

i

~

E

k

t

(17)
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be the wavefuntion produed to the �rst order of the perturbation theory by the interation

H

int

(t) = h os!t; from the Shrodinger equation i~� =�t = (H +H

int

) we get

i~ _

kn

=

1

2

h

kn

�

e

i(!

kn

+!)t+�t

+ e

i(!

kn

�!)t+�t

�

; (18)

where the interation is introdued adiabatially (�! 0

+

); hene,



kn

= �

h

kn

2~

�

e

i(!

kn

+!)t+�t

!

kn

+ ! � i�

+

e

i(!

kn

�!)t+�t

!

kn

� ! � i�

�

: (19)

The transition from the state n to the state k with the absorption of the quanta of energy ~!

kn

=

E

k

� E

n

orresponds to the oe�ient



kn

' �

h

kn

2~

�

e

i(!

kn

�!)t+�t

!

kn

� ! � i�

; (20)

it produes

R =

� j

kn

j

2

�t

=

jh

kn

j

2

2~

2

�

�

(!

kn

� !)

2

+ �

2

!

� jh

kn

j

2

2~

2

Æ(!

kn

� !) (21)

transitions per unit time and absorbs (dissipates) a power

P =

jh

kn

j

2

2~

!

kn

�

(!

kn

� !)

2

+ �

2

!

� jh

kn

j

2

2~

!

kn

Æ(!

kn

� !) : (22)

We set n! m and k ! m+ s and get

P =

jh

s

j

2

2~

!

0

�

(!

0

� !)

2

+ �

2

!

� jh

s

j

2

2~

!

0

Æ(!

0

� !) : (23)

We ompare ÆP given by equation (23) with ÆP

os

given by equation (16); for these two quantities

be equal we should have

Æ

 

jh

s

j

2

2~

!

0

!

=

(�h=�O)

2

4M

; (24)

suh an equality is not ful�lled in general; it gives the deviation of the quasi-lassial approximation

(based on harmoni osillators) from the quantum-mehanial dynamis. Equation (24) is satis�ed

for a harmoni osillator, as expeted; indeed, we have

Æ

 

jh

s

j

2

2~

!

0

!

=

h

s

Æh

s

~

!

0

=

h

s

(�h

s

=�O)ÆO

~

!

0

=

(�h=�O)

2

4M

; (25)

or

hÆO =

~

4M!

0

(�h=�O) ; (26)

where we dropped out the su�x s and assumed a onstant !

0

. Equation (26) an also be written

as

hÆO =

~

4M!

0

s

�

�h

�O

Æn ; (27)

for h = f

r

O

r

we get O =

p

(~r=2M!

0

s)n from equation (27), whih, for r = s = 1, is the matrix

element of the displaement operator for a harmoni osillator with massM and frequeny !

0

. For

h = fO, we get ÆP

os

= (�f

2

=4M)Æ(!

0

� !) from equation (16) and P

os

= (�f

2

=4M)nÆ(!

0

� !),
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whih oinides with equation (23) for large n. This is preisely the result obtained by means of the

�rst-order theoretial-perturbation alulation using the e�etive harmoni-osillator hamiltonian

given by equation (3) and the interation hamiltonian H

int

= fO os!t in the limit of large n.

In general, for interations of the form h = fO, we get from equation (24) Æ(O

2

!

0

) = ~=2M , or

Æ(O

_

O) = ~=2M , Æ(OP ) = ~=2, whih orresponds to the unertainty relations ÆPÆO ' ~=2. As

we shall see from examples below, for most simple ases the di�erene between P and P

os

is only

a numerial fator of the order of the unity.

Similarly, the mean value of an operator O for the wavefuntion  given by equation (17) is

O = O

nn

+

0

X

k

�



kn

O

�

kn

e

�i!

kn

t

+ 

�

kn

O

kn

e

i!

kn

t

�

; (28)

hene, we may see that the hange brought about by the interation in the (quasi-) lassial matrix

elements of an operator are inluded in

h

2~

O

�

e

�i!t

�! + i�

+ ::

�

=

h

~

O

�! � os!t� � sin!t

(�!)

2

+ �

2

; (29)

where �! = !

0

�!, the interation has been removed adiabatially from t to t!1 (in aordane

with the relaxation term in the harmoni-osillator equation) and irrelevant phase fators have

been left aside. Now we ompare the variation of this hange with the lassial solution given by

equation (14),

2

h

~

ÆO =

(�h=�O)

2M!

0

; (30)

whih is idential with equation (26) (the fator 2 in the lhs of equation (30) omes from the fat

that the �nal state k is both n+ s and n� s).

Example 1. Planar rotator. Consider a dipole d, onsisting of a harge q with mass m, whih

an rotate freely in plane at a distane l form its axis (plane rotator); sine l = l(os'; sin') and

_

l = l _'(� sin'; os'), we get the hamiltonian

H =

1

2

ml

2

_'

2

=

1

2ml

2

L

2

; (31)

where L = ml

2

_' is the angular moment and I = ml

2

is the moment of inertia. Sine L = �i~

�

�'

,

we get the wavefuntions  

l

=

1

p

2�

e

il'

and the energy levels E

l

= ~

2

l

2

=2I, l = 0; 1; 2; ::: (l denotes

here both the quantum number and the dipole length); the matrix elements of the dipole moment

d involve only states l and l � 1, with the frequeny !

l�1;l

= (E

l�1

� E

l

)=~=

~

I

(�l +

1

2

).

The angle ' is not a dynamial variable, so it is not suitable for a quasi-lassial dynamis (though

for large l there exists the lassial limit, in the sense that ' an be loalized by wavepakets with

a high auray). Indeed, from the ommutation relation [L; '℄ = �i~ we get (l� l

0

)'

ll

0

= �iÆ

ll

0

,

and '

ll

0

= 0 for l 6= l

0

, while '

ll

is undetermined. This result an be veri�ed diretly on the matrix

elements

'

ll

0

=

1

2�

Z

d' � 'e

i(l

0

�l)'

=

�

�[i(l

0

� l)℄

1

2�

Z

d'e

i(l

0

�l)'

= 0 ; l 6= l

0

; (32)

similarly, _' = (i=~)[H;'℄ = L=I, _'

ll

0

= (i=~)(E

l

� E

l

0

)'

ll

0

= (~l=I)Æ

ll

0

and _'

ll

0

= 0 for l 6= l

0

; the

lassial motion proeeds with _' = L=I = onst.

1

1

The diret alulation by parts of the integral in equation (32) requires the dismissal of the "surfae" term,

aording to the rules of the Quantum Mehanis regarding orthogonal sets of eigenfuntions (see, for instane,

Ref. [16℄).
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The projetion of the dipole on an axis an play the role of a dynamial variable. Suh an axis an

be provided by an external eletri �eld E(t) = E os!t. The orientation of the rotator is given

by the diretion of its angular momentum L. In a loal referene frame we may take L direted

along the z axis; then, the eletri �eld has the omponents E = E(sin �; 0; os �) and the dipole

an be written as d = d(os'; sin'; 0). The interation hamiltonian reads

H

int

(t) = �dE os!t = �dE sin � os' os!t ; (33)

we take x = l os' as a dynamial variable and write the interation hamiltonian as

H

int

(t) = �(dE=l)x sin � os!t = �qEx sin � os!t : (34)

We an see that the matrix elements x

ll

0

are non-vanishing for l

0

= l � 1; therefore we an write

�x

s

+ !

2

s

x

s

= 0, where s = 1 and !

s

= (~=I)(l + 1=2) ' (~=I)l for l � 1 (indeed, we need

~!

s

=E

l

= 2l + 1 � 1, in order to have energy levels densely distributed). It is worth noting that

!

s

= (~=I)l = L=I is the lassial frequeny in x = l os(Lt=I) and, indeed,

...

x

+ (L=I)

2

x = 0.

We drop out the label s in x

s

and denote !

0

= (~=I)l with a �xed l; therefore, the orresponding

quasi-lassial equation of motion reads �x+!

2

0

x = 0 (also, we use x instead of Æx). The fore ating

upon this harmoni osillator is (dE=l) sin � os!t, so that we have the quasi-lassial equation of

motion

�x + !

2

0

x =

qE

m

sin � os!t : (35)

The mean absorbed power is

ÆP

os

= qE _x sin � os!t =

1

2

qEb! sin � =

q

2

E

2

sin

2

�

4m

�

(! � !

0

)

2

+ �

2

: (36)

Aording to equation (23) the power absorbed by quantum-rotation jumps is given by

P =

�d

2

E

2

sin

2

�

8~

!

0

Æ(!

0

� !) ; (37)

sine !

0

= (~=I)l we an see that ÆP = (�q

2

E

2

sin

2

�=8m)Æ(!

0

�!), whih di�ers from ÆP

0s

given

by equation (36) by a fator 1=2. Suh a disrepany re�ets the deviation of the quasi-lassial

approximation, based on harmoni osillators, from the original dynamis.

It is worth noting that for large l we are in the lassial limit, with the hamiltonian L

2

=2I �

dE sin � os' os!t; the equation of motion reads

�' = �

dE

I

sin � sin' os!t ; (38)

we solve this equation by perturbation theory, with a series ' = '

0

+ �'

1

+ :::, where � =

dE sin �=I � 1. With onvenient initial onditions we get

' = !

0

t+

�

2

�

sin(!

0

+ !)t� (!

0

+ !)t

(!

0

+ !)

2

+

sin(!

0

� !)t� (!

0

� !)t

(!

0

� !)

2

�

+ ::: ; (39)

whih indiates a rotation with small osillations. As expeted, this lassial solution is fundamen-

tally di�erent from the quantum-mehanial jumps and from the quasi-lassial approximation.

A frition term an be inluded in '

0

(with the oe�ient � suh as �� � 1), with a similar

onlusion.
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Example 2. Spherial pendulum. The spherial pendulum (spatial, rigid rotator, spherial

top) onsists of a point of mass M whih rotates freely in spae at the end of a radius l =

l(sin � os'; sin � sin'; os �), as desribed by the hamiltonian

H =

1

2

M

_

l

2

=

1

2

Ml

2

(

_

�

2

+ _'

2

sin

2

�) ; (40)

if the point has a harge q, it is a dipole d = ql whih an ouple to an external eletri �eld

E os!t, with an interation hamiltonian H

int

(t) = �dE os � os!t. We take the eletri �eld

direted along the z-axis.

As it is well known, the angular momentum L = M l�

_

l has the omponents L

x

= Ml

2

(�

_

� sin'�

_' sin � os � os'), L

y

= Ml

2

(

_

� os' � _' sin � os � sin'), L

z

= Ml

2

_' sin

2

� and the hamiltonian

an be written as

H =

1

2I

L

2

; (41)

where I =Ml

2

is the moment of inertia. The eigenfuntions are the spherial harmonis Y

lm

with

the eigenvalues ~

2

l(l+1), l = 0; 1; :::. The z-omponent of the angular momentum is L

z

= �i~

�

�'

,

with the same eigenfuntions Y

lm

, L

z

Y

lm

= ~mY

lm

, m = �l;�l + 1; :::l. The energy levels of the

spherial pendulum are E

l

=

~

2

2I

l(l+ 1); they are degenerate with respet to the quantum number

m, whih takes 2l + 1 values. (l denotes here both the length of the dipole and the quantum

number of the angular momentum).

The angles ' and � do no admit a quasi-lasssial approximation, in the sense disussed here for

dynamial variables (this is a typial situation for the free motion). Indeed, the matrix elements

'

lm;lm

0

are vanishing for m 6= m

0

, while the matrix elements �

l;m;l+s;m

do not fall o� rapidly with

inreasing s.

We an take z = l os � as a quasi-lassial variable with s = 1, orresponding to transitions from

l to l + 1; the generalized fore is

(�=�t)( _z

l

) =

qE

M

os!t (42)

and the equation of motion reads

�z + !

2

0

z =

qE

M

os!t : (43)

The mean absorbed power is given by

ÆP

os

=

1

2

qEb!

0

=

q

2

E

2

4M

�

(! � !

0

)

2

+ �

2

; (44)

whih should be multiplied by 2l + 1 ' 2l in order to aount for the degeneray; we get ÆP

os

=

(�q

2

E

2

=2M)lÆ(!

0

� !).

The transition rate of quantum jumps for !

0

= (E

l+1

� E

l

)=~ = (~=I)(l + 1) is

� j

lm

j

2

�t

=

�d

2

E

2

2~

2

j(os �)

lm

j

2

Æ(!

0

� !) ; (45)

where[10℄

(os �)

lm

= (os �)

l+1;m;l;m

= �i

s

(l + 1)

2

�m

2

(2l + 1)(2l + 3)

; (46)
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the absorbed power is

P = ~!

0

P

l

m=�l

�j

lm

j

2

�t

=

�d

2

E

2

2~

!

0

P

l

m=�l

j(os �)

lm

j

2

Æ(!

0

� !) =

=

d

2

E

2

6~

!

0

(l + 1)

�

(!�!

0

)

2

+�

2

=

d

2

E

2

6I

(l + 1)

2

�

(!�!

0

)

2

+�

2

:

(47)

We an see that ÆP = (�d

2

E

2

=3I)lÆ(!

0

-!) (for l � 1), whih di�ers from ÆP

os

given above by a

fator 2=3.

We may onsider the lassial limit of the motion, orresponding to large values of m ' l � 1;

in this ase the '-motion is in the lassial limit (for large m and ~ ! 0 the omponent L

z

remains �nite) and the assoiated Legendre polynomials P

lm

in the spherial harmonis Y

lm

are

loalized near the equator; indeed, P

ll

� sin

l

�. For small variations Æ� around �=2 we have

Æ� ' sin Æ� = os(�=2 � Æ�) = os �, so we have to take the matrix elements of os �, whih are

di�erent from zero for l

0

= l � 1. Consequently, we take Æ# for O in the quasi-lassial equation,

s = 1 and !

0

= (E

l+1

� E

l

)=~ ' (~=I)l, for a �xed l � 1; in addition, os � in the interation

hamiltonian may be approximated by Æ�, where Æ� is the new quasi-lassial variable �

s

; the

equation of quasi-lassial motion is

�

�

s

+ !

2

0

�

s

= �

dE

I

os!t : (48)

The mean absorbed power is given by

ÆP = �dE

_

�

s

os!t = �

1

2

dEb! '

d

2

E

2

4I

�

(!�!

0

)

2

+�

2

;

(49)

whih oinides with equation (44) and the m = l-omponent of ÆP in equation (47), as expeted

(up to the degeneray fator).

Extension to some problems in ondensed matter. In ondensed matter the energy levels

have a limited meaning, as a onsequene of the interation between the atomi onstituents.

A oarse graining is meaningful in this ase, whih onsists in taking a number N of atomi

onstituents, labelled by i = 1; 2; :::N , around eah point in the sample, suh that N � 1, but

N is still muh smaller than the total number of atomi onstituents in the sample. The oarse

graining implies averages of the type O = (1=N)

P

N

i=1

O

i

for any physial quantity O, so that any

hange ÆO is of the order ÆO � ÆO

i

=N (for an inoherent motion, like in "normal" ondensed

matter), or ÆO=ÆO

i

� 1=N � 1; therefore, the quantum states (and the energy levels) are

densely distributed and the quasi-lassial approximation an be applied. Moreover, the quantum-

mehanial states for eah atomi onstituent i are usually limited in number (like magneti-

moment states, for instane), so that the omparison between the quasi-lassial approximation

and the quantum-mehanial omputations involve small quantum numbers; in this ase ÆO is

pratially O, and P

os

is pratially P , up to numerial fators of the order of unity. Usually,

the (normal) ondensed matter is at �nite temperatures, whih implies both diret and reverse

quantum transitions (jumps). Making use of equation (22), the temperature-dependent power an

be written as

P

th

=

�

2~

!

0

�

P

0

n

�

�

�

h

P

m(n)

jh

n+s;n

(m)j

2

e

��E

n

�

P

m(n+s)

jh

n;n+s

(m)j

2

e

��E

n+s

i

Æ(!

0

� !)=Z ;

(50)

where (

P

0

n

) stands for the summation over those states n whih are separated by the same

frequeny !

0

from states n + s;

P

m(n)

indiates a summation over possible degenerate states
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labelled by m(n) for n (and m(n + s) for n + s), whih may a�et the matrix elements of the

interation hamiltonian h; � = 1=T is the reiproal of the temperature T ; and

Z =

X

n

X

m(n)

e

��E

n

(51)

is the partition funtion. In the quasi-lassial approximation equation (50) an be written ap-

proximately as

P

th

=

�

P

0

n

�

�jh

s

j

2

2~

!

0

(�~!

0

)f(n)e

��E

n

Æ(!

0

� !)=Z =

=

�

P

0

n

�

P (n)(�~!

0

)f(n)e

��E

n

=Z ;

(52)

where jh

s

j

2

f(n) is the approximate result of the summation

P

m(n)

jh

n+s;n

(m)j

2

and �~!

0

was

assumed to be muh smaller than unity. In equation (52) P

os

may be used approximately for

P (n), aording to the disussion above. For the partiular ase of a harmoni osillator there

is no degeneray and summation in equation (52) extends over all the states (P (n) � n). The

partition funtion is Z =

P

n=o

e

��~!

0

n

' 1=�~!

0

and

P

n=0

ne

��~!

0

n

= 1=(�~!

0

)

2

, so that P

th

is

independent of temperature.

Example 3. Nulear magneti resonane. We onsider the motion of a magneti moment

�!

�

in a onstant (stati) and uniform magneti �eld H

0

direted along the z-axis (the longitudinal

�eld) and an osillating magneti �eld H(t) = H os!t, direted along the x-axis (the transverse

�eld), where ! is the osillation frequeny. The interation hamiltonian an be written as

H

int

= �

�!

� [H

0

e

z

+H(t)e

x

℄ ; (53)

where e

x;z

are the orresponding unit vetors. The Larmor equation

_

�!

� = 

�!

� � [H

0

e

z

+H(t)e

x

℄

reads

_�

x

= �

y

H

0

;

_�

y

= ��

x

H

0

+ �

z

H os!t ;

_�

z

= ��

y

H os!t ;

(54)

where  is the gyromagneti fator.

The magneti moment in the equations written above is a quantum-mehanial operator; it is

related by the quantum-mehanial operator of the angular momentum J (spin) by

�!

� = g�

B

J =

~J, where g is a Lande fator, �

B

is a Bohr magneton (atomi or nulear) and  is a gyromagneti

fator (the magneti moment of a partile, or ensembly of partiles, is given by � = g�

B

J = ~J ; it

is onvenient to use a su�x for this magneti moment, and write, for instane, �

p

= g�

B

J = ~J ,

where the su�x p stands for "partile", in order to distinguish it from the magnitude [(

�!

� )

2

℄

1=2

of the operator

�!

� ). Making use of the ommutation relations [J

i

; J

j

℄ = i"

ijk

J

k

of the operators

of the angular momentum, the Larmor equations of motion written above are obtained from the

quantum-mehanial equation of motion

_

�!

� = (i=~)[H

int

;

�!

� ℄. The interation �

�!

�H

0

= ��

z

H

0

=

�~J

z

H

0

splits the degenerate level aording to �~m

z

H

0

, where m

z

= �J; �J + 1; :::J is the

quantum number of the omponent J

z

; it is onvenient to introdue the frequeny !

0

= H

0

and

write the energy levels as �~!

0

m

z

. The states labelled bym

z

are eigenstates of the operator J

z

and

�

z

; for eah of these states J

z

and �

z

are onstant, while �

x;y

(and J

x;y

) are undetermined; the mean

value of �

x;y

(and J

x;y

) over any state m

z

is vanishing. The interation �

�!

�H(t) = �~J

x

H(t)

produes transitions between the states m

z

and m

z

� 1, so it mixes up suh states; onsequently,

we measure mean (average) values (expetation values) of the operators

�!

� = (�

x

,�

y

; �

z

).
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Therefore, we take the average of the magneti moment over the quantum motion in equations

(54) (quantum-mehanial averages); this means that we an replae the operator

�!

� = ~J by

its average, denoted

�!

�

av

and given by

�!

�

av

=

X

��

0

Z

dr 

�

�

0

(

�!

� )

�

0

�

 

�

; (55)

where  

�

is the spinor orresponding to the angular momentum J;

�!

�

av

is now a lassial vari-

able whih an be measured. It is this quantity whih is often viewed as the magneti moment,

espeially for ensemblies of partiles (a similar average J

av

an be introdued for the angular

momentum, so we an preserve the equation

�!

�

av

= ~J

av

); we note that equations (55) de�ne

also a density of magneti moment (magnetization). For a sample of ondensed matter

�!

�

av

an

arry a position label r

i

, denoting the position of the i-th partile with this magneti moment; in

a ourse-graining average, spei� to the ontinuum models of matter, the label r

i

, may beome

the ontinuous, loal position r, so that the orresponding average magneti moment

�!

�

av

may be

a funtion

�!

�

av

(t; r) of the time t and position r. Moreover, the measurable quantities in ondensed

matter are statistial averages, so that we may assume that we have a loal thermodynami equi-

librium and

�!

�

av

(t; r) is also averaged over suh a statistial distribution, whih an be written as

�!

�

av

. If we are not interested in the spatial variations (whih may imply di�usion of the moments),

we may leave aside the r-dependene; for simpli�ation we may also leave aside the average bars

and the su�x av, and write simply

�!

� for this lassial quantity; in fat, it is more onvenient to

use the magnetizationM (the magneti moment of the unit volume, aordingly averaged), whih

obeys the equations of motion

_

M

x

= M

y

H

0

;

_

M

y

= �M

x

H

0

+ M

z

H os!t ;

_

M

z

= �M

y

H os!t ;

(56)

derived from equations (55) by the suession of averages desribed above (quantum-mehanial,

oarse-graining, statistial). We onsider here the partiular situation of magneti moments as-

soiated with atomi nulei, but the proedure desribed above is more general and an also

be applied to other magneti moments. The average proedure desribed here for the magneti

moments in ondensed matter is the quasi-lassial approximation as presented in this paper.

At thermal equilibrium the statistial average of the magnetization is zero; applying the magneti

�eld H

0

an interation �

�!

�H

0

appears, whih restores the thermal equilibrium with a non-zero

average magneti moment direted along the longitudinal �eld H

0

. Sine the interation energy

�H

0

is muh smaller than the temperature T , we may use the distribution � e

�!

�H

0

=T

of the

lassial statistis; we get the statistial average of the magneti moment �

z

= �

2

H

0

=3T and

the longitudinal magnetization M

0

= n�

z

= n�

2

H

0

=3T , where n is the density of partiles; the

transverse omponents of the magnetization are vanishing (M

x;y

= 0); here � is the "magneti

moment of the partile" (� = �

p

= ~J). As it is well known, this is the Curie-Langevin-Debye

law.[17℄-[20℄ The relaxation of the longitudinal magnetization is governed by the kineti equation

dM

z

dt

= �

1

(M

0

�M

z

) ; (57)

where �

1

is a (longitudinal) damping oe�ient; the solution isM

z

= M

0

(1�e

��

1

t

), for zero initial

magnetization. The average transverse magnetization is vanishing; if, by external means, we take
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the transverse magnetization out of equilibrium (M

x;y0

6= 0 initially), it will relax aording to

dM

x

dt

= ��

2

M

x

;

dM

y

dt

= ��

2

M

y

; (58)

where �

2

is a transverse damping oe�ient. The solution is M

x;y

= M

x;y0

e

��

2

t

(for more de-

tails regarding the relaxation oe�ients, see, for instane, Ref. [21℄). Inluding these damping

oe�ients equations (56) beome

_

M

x

= M

y

H

0

� �

2

M

x

;

_

M

y

= �M

x

H

0

+ M

z

H os!t� �

2

M

y

;

_

M

z

= �M

y

H os!t� �

1

(M

z

�M

0

) ;

(59)

for small values of the �eld H we may put approximatelyM

z

'M

0

in these equations and neglet

the time-dependene of the longitudinal omponentM

z

of the magnetization; then, equations (59)

an be approximated by

_

M

x

' M

y

H

0

� �

2

M

x

;

_

M

y

' �M

x

H

0

+ M

0

H os!t� �

2

M

y

;

(60)

or

_

M

x

' !

0

M

y

� �

2

M

x

;

_

M

y

' �!

0

M

x

+ !

m

H os!t� �

2

M

y

;

(61)

where !

0

= H

0

and !

m

= M

0

. These equations an be transformed into

�

M

x

+ !

2

0

M

x

+ �

2

_

M

x

= !

0

!

m

H os!t ;

�

M

y

+ !

2

0

M

y

+ �

2

_

M

y

= �!!

m

H sin!t ;

(62)

for �

2

� !

0

; !

m

, whih are equations of motion of damped harmoni osillators, in aordane

with their quasi-lassial nature. The partiular solution of equations (61) is given by

M

x

= a os!t+ b sin!t ;

M

y

=

�a!+b�

2

!

0

sin!t+

b!+a�

2

!

0

os!t ;

(63)

where

a = �!

0

!

m

H

!

2

�!

2

0

��

2

2

(!

2

�!

2

0

��

2

2

)

2

+4!

2

�

2

2

;

b = !

0

!

m

H

2!�

2

(!

2

�!

2

0

��

2

2

)

2

+4!

2

�

2

2

:

(64)

We an simplify these solutions by using �

2

� !

0

, !

m

and assuming ! lose to !

0

. We get

M

x

' a os!t+ b sin!t ; M

y

' �a sin!t+ b os!t ; (65)

where

a ' �

1

2

!

m

H

!�!

0

(!�!

0

)

2

+�

2

2

; b '

1

2

!

m

H

�

2

(!�!

0

)

2

+�

2

2

:

(66)
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These solutions are obtained also from the osillator equations (62) with �

2

! �

2

=2 in equations

(66). From equations (63) we an see that the magnetization performs a Larmor preession about

the z-axis with frequeny ! (the frequeny of the external �eld); the transverse magnetization

rotates with onstant magnitude M

2

x

+M

2

y

= a

2

+ b

2

' (!

m

H=2�

2

)

2

. The power absorbed from

the �eld and dissipated by the motion of the transverse magnetization an be obtained from

equations (62), through

d

dt

�

1

2

_

M

2

x

+

1

2

!

2

0

M

2

x

�

+ �

2

_

M

2

x

= !

0

!

m

H

_

M

x

os!t ; (67)

We get

P

os

= H

_

M

x

os!t =

1

2

Hb! =

1

4

!

m

H

2

!�

2

(! � !

0

)

2

+ �

2

2

; (68)

or

P

os

=

�

4

!

m

!

0

H

2

Æ(! � !

0

) ; �

2

! 0

+

(�

2

� !

0

) : (69)

These are typial solutions of damped harmoni osillators exhibiting resonane for ! = !

0

. This

is the typial solution of the magneti resonane.[22℄-[24℄ As it is well known, equations (59) and

(60) are alled Bloh equations.[25℄

Let us alulate now the power absorbed in magneti resonane by quantum-mehanial transitions

m

z

! m

z

� 1 aused by the interation hamiltonian H

int

(t) = �~I

x

H os!t (we denote the

nulear spin by I); eah of these transitions proeeds with the absorption or emission of the

quanta of energy ~!

0

; these transitions release and absorb energy, and we are interested in the

net energy absorption rate per unit time.

In the presene of the longitudinal �eld H

0

the energy levels are given by �~H

0

m

z

= �~!

0

m

z

;

the lowest energy level has m

z

= I and the highest energy level has m

z

= �I. The energy

absorption proeeds from m

z

to m

z

� 1, where m

z

= I; I � 1; :::� I + 1, with the rate

� j

m

z

�1

j

2

�t

=

1

2



2

H

2

j(I

x

)

m

z

�1;m

z

j

2

�

(! � !

0

)

2

+ �

2

; (70)

the energy emission implies transitions from m

z

to m

z

+ 1, where m

z

= I � 1; I � 2; :::� I; the

rate of these transitions is given by

� j

m

z

+1

j

2

�t

=

1

2



2

H

2

j(I

x

)

m

z

+1;m

z

j

2

�

(! � !

0

)

2

+ �

2

; (71)

the matrix elements of the spin omponent I

x

are[10℄

(I

x

)

m

z

�1;m

z

=

1

2

[(I +m

z

)(I �m

z

+ 1)℄

1=2

;

(I

x

)

m

z

+1;m

z

=

1

2

[(I �m

z

)(I +m

z

+ 1)℄

1=2

:

(72)

The transition rates must be weighted by the statistial distribution e

�~!

0

m

z

=

P

m

z

e

�~!

0

m

z

, so that

the net transition rate is given by

R =

�j

m

z

�1

j

2

�t

�

�j

m

z

+1

j

2

�t

=

=

1

2



2

H

2

jI

x

j

2

�

(!�!

0

)

2

+�

2

;

(73)
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where

jI

x

j

2

=

h

P

�I+1

m

z

=I

j(I

x

)

m

z

�1;m

z

j

2

�

P

�I

m

z

=I�1

j(I

x

)

m

z

+1;m

z

j

2

i

e

�~!

0

m

z

=

P

�I

m

z

=I

e

�~!

0

m

z

=

=

1

4

h

P

�I+1

m

z

=I

(I

2

+ I +m

z

�m

2

z

)�

P

�I

m

z

=I�1

(I

2

+ I �m

z

�m

2

z

)

i

e

�~!

0

m

z

=

P

�I

m

z

=I

e

�~!

0

m

z

(74)

(here, the net emission rate is equal with the net absorption rate, R in equation (73) being, in

fat, jRj); the rearrangement of the summations in equation (74) lead to

jI

x

j

2

=

1

2

I

X

m

z

�I

m

z

e

�~!

0

m

z

=

I

X

m

z

=�I

e

�~!

0

m

z

=

1

2

m

z

; (75)

where m

z

is the thermal average of the quantum number m

z

. For �~!

0

� 1 we get m

z

=

~!

0

I(I+1)=3T (and m

2

z

= I(I+1)=3); we note that the average magneti moment direted along

the z-axis is ~m

z

= 

2

~

2

H

0

I(I + 1)=3T while the same average alulated with the lassial

statistis is �

2

H

0

=3T = 

2

~

2

H

0

I

2

=3T (as given above); in the quantum-mehanial statistis I

2

is

replaed by I(I + 1), as expeted. Inserting jI

x

j

2

given by equation (75) in equation (73) we get

the net absorption rate

R =

1

4



2

H

2

m

z

�

(! � !

0

)

2

+ �

2

(76)

and the power absorbed per unit volume

P = n~!

0

R =

1

4

n~!

0



2

H

2

m

z

�

(! � !

0

)

2

+ �

2

; (77)

or

P =

1

4

!

0

M

0

H

2

�

(! � !

0

)

2

+ �

2

=

1

4

!

m

!

0

H

2

�

(! � !

0

)

2

+ �

2

; (78)

sine n~m

z

is the magnetization M

0

along the z-axis (and !

m

= M

0

). This equation should

be ompared with the equation (68) whih gives the absorbed power per unit volume within the

lassial treatment; we an see that they are the same (near the resonane, with � = �

2

, up to

I

2

replaed by I(I + 1) in magnetization and !

m

). We note that the perturbation is applied here

adiabatially (for a long time), whih warrants the attaining of the thermal equilibrium.

Example 4. Nulear quadrupole resonane. It may happen that the struture of the

quantum states of the magneti moment (spin) is not governed by an external �eld, as H

0

in the

ase of the magneti resonane desribed above, but it is produed by loal interations of the

magneti moments with their environment. For instane, the hyper�ne interation ats in the ase

of paramagneti (spin) resonane, the quadrupole interation determines the nulear quadrupole

resonane, et. In suh ases the diret appliation of the averages tehnique in the equations of

motion of the magneti moment desribed above is not onvenient, sine these equations depend

also on external degrees of freedom, or a non-linear. First, we should take into aount the e�et

of the loal interation with the surrounding medium. The quantum nature of the ondensed

matter has ertain partiularities, whih may allow a quasi-lassial desription.

In normal ondensed matter the wavefuntions and energy levels have a limited validity, due, on

one side, to the large number of states densely distributed in energy, to the natural unertainties

arising from internal, residual interations and, on the other side, to the inevitable interation

with the external world, whih makes pratially impossible the preparation of a pure quantum

state. In fat, mixed states desribed by the density matrix, or thermodynami states desribed
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by the statistial matrix are appropriate for ondensed matter, exhibiting, to a large extent, a

lassial behaviour. These partiularities also provide the basis for a quasi-lassial dynamis

in some ases in ondensed matter. (This is true for usual onditions, whih de�ne a "normal"

ondensed matter. At low temperatures, we may enounter quantum states for ondensed matter,

like super�uidity, superondutivity, ferromagnetism, et).

The nulear magneti moments in solids are a�eted by the interation with the surrounding ions,

whih generate high gradients of eletri �eld. Consequently, a quadrupole interation

V

2

=

1

6

X

ij

Q

ij

V

ij

; V

ij

=

�

2

�

�x

ai

�x

aj

(79)

ats on the nulear magneti moments, where Q

ij

is the tensor of the quadrupole moment, � is the

eletri potential at the loation of the magneti moment, a denotes the surrounding ions and i; j

are artesian oordinates. This interation splits the degeneray of the energy levels with respet

to the magneti quantum number m (and shifts the energy levels), suh that transitions between

suh levels may be indued by an external time-dependent magneti �eld (the energy levels an

depend on the temperature). These transitions have a resonane harater, and are known as

the nulear quadrupole resonane.[26℄-[29℄ (The resonane frequenies are in the radiofrequeny

range. The nulear quadrupole resonane does not appear for nulear spins I = 0; 1=2, whih

give a vanishing quadrupole moment. The average of the quadrupole interation with respet

to the moleular motion leads to a very weak e�etive interation in liquids, so that the nulear

quadrupole resonane is not observed in liquids, or in gases, where the interation is very weak).

Let us onsider a sample of ondensed matter onsisting of atomi onstituents (not neessarily

idential), like atoms, ions, moleules, spins, magneti moments, et (at rest, as in solids, or in

motion as in liquids, gases, et). As independent entities, eah of these atomi onstituents has its

own (quantum) dynamis, de�ned by stationary states and energy levels. Some of these states may

be degenerate, as, for instane, the spin states assoiated with various spatial orientations of the

spin (the spatial degeneray). The loal interation ourring in ondensed matter, between these

atomi onstituents, or between them and their environment lead to hanges in these quantum

states, or to generation of new quantum states, as, for instane, those ourring by the removal of

the degeneraies. Let us onsider a olletion of N suh "quatum systems" labelled by i = 1; 2:::N ,

eah with a set of quantum states labelled by quantum numbers n

i

and energy "

n

i

, suh as the

total energy of the olletion is E

n

= "

n

1

+"

n

2

+:::+"

n

N

; it is onvenient to denote the states of the

olletion by n = (n

1

; n

2

; :::n

N

). Now we see that another energy E

n

0

is obtained by hanging at

least by a unity at least one of the quantum numbers n

i

, for instane E

n

0

= "

n

1

+ :::+"

n

0

i

+ :::+"

n

N

,

where n

0

i

= n

i

�1. Suh a hange implies a small di�erene in energy, E

n

0

�E

n

in omparison with

the energies E

n;n

0

, providing N � 1. If the dynamis is suh as the hange in energy proeeds

in time �t, then E

n

0

� E

n

is of the order ~=�t, where ~ is Plank's onstant. This indiates a

hange in the mehanial ation of the order ~, whih is muh smaller that the mehanial ation

assoiated to the whole set of N systems. Consequently, we may adopt a quasi-lassial desription

for the dynamis of the assembly of N systems. Moreover, we may take suh assemblies in the

viinity of any position in the sample, and take the average of the physial quantities over suh

oarse-graining strutures; the number N of systems in eah assembly is muh larger than unity,

but still su�iently small at the marosopi sale as to allow the de�nition of a oarse-graining

averaged model (possibly ontinuous) for the marosopi sample. The physial quantities de�ned

in this manner are lassial quantities wih obey a (quasi-) lassial dynamis.

If the perturbation hamiltonian is given by H

int

(t) = �

�!

�H os!t, where

�!

� is the (quasi-)

lassial magneti moment, the quasi-lassial dynamis for a frequeny !

s

= !

0

is governed by
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the quasi-lassial equations of motion

_

�!

� = �i!

0

�!

� + 

�!

�

l

�H os!t ; (80)

where  is the gyromagneti fator; in this equation

�!

� is the magneti moment generated by the

magneti �eld H os!t (partiular solution) and

�!

�

l

may have a non-vanishing part

�!

�

0

generated

by the statistial distribution over the states whose energies are denoted ~!(m); ~!

0

is one of the

di�erenes ~!(m

0

)�~!(m), aording to the seletion rules; it is these ontributions

�!

�

0

whih are

retained in

�!

�

l

. Equations (80) for the real part of the moment

�!

� beome

�

�!

� + !

2

0

�!

� = �!

�!

�

0

�H sin!t : (81)

We may assume that the thermal average of the magneti moment is vanishing in the absene of

the interation,

�!

�

0

=

X

�!

�

0

e

��H

=

X

e

��H

= 0 ; (82)

where � = 1=T is the inverse of the temperature T . In the presene of the interation whih

produes the energy levels ~!(m) the mean value of the magneti moment is

�!

�

0

=

X

�!

�

0

e

��H��~!(m)

=

X

e

��H��~!(m)

' ��~

�!

�

0

!(m) ; (83)

for �~!(m)� 1; it is di�erenes of the type ~!(m

0

)� ~!(m) whih matters in this mean value,

so we may write onveniently

�!

�

0

!(m) = �!

0

, where  is an undetermined numerial vetorial

oe�ient direted along the mean magnetization (magneti moment

�!

�

0

) and � is the magneti

moment. Now, equations (81) an be written for magnetization (inluding damping) as

�

M+ !

2

0

M + 2�

_

M = !!

m

�H sin!t ; (84)

where !

m

= n�(~!

0

=T ), n being the density of magneti moments; M

0

= n�~�!

0

 = (!

m

=)

is a stati magnetization. We an see now that the situation is very muh similar with the nulear

magneti resonane ; in fat, the lassial equations (84) apply also to the nulear magneti with

 = e

z

. We note the ourrene of the vetor  in the nulear quadrupole resonane, whih

indiates the anisotropy of the magnetization.

The (partiular) solution of equations (84) is

M = �H(a sin!t+ b os!t) ; (85)

where

a = �

1

2

!

m

! � !

0

(! � !

0

)

2

+ �

2

; b = �

1

2

!

m

�

(! � !

0

)

2

+ �

2

(86)

(for ! near the resonane frequeny !

0

); the absorbed (mean) power (per unit volume) is given

by

P = (�H)

_

M sin!t = �

1

2

!

0

b(�H)

2

=

1

4

!

m

!

0

(�H)

2

�

(! � !

0

)

2

+ �

2

: (87)

The magnetization indued by the external �eld H os!t performs a rotation about H in the

plane perpendiular to H and  with the angular frequeny !. The power omputed by means

of the quantum transitions of the interation hamiltonian H

int

(t) = �

�!

�H os!t oinides with

the absorbed power given by equation (87), providing the numerial vetor  is determined from

the matrix elements of the magneti moment

�!

� (the thermal average of the transition rate being

taken). We emphasize again that the onsiderations made above assume the thermal equilibrium
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whih requires times longer than the damping (relaxation) times; for short pulses of the external

�eld the magnetization su�ers a sudden nutation and preession; the mean value an be om-

puted by means of the perturbation theory; it is of the order n� multiplied by a redution fator

jH

int

j =~�! ' H=�!, where �! is the bandwidth generated by the pulse (the inverse of the

duration of the pulse); this estimation may be taken as M

0

in the damped free-osillation solution

(free indution) of the harmoni osillator equation.

The quadrupole interation V

2

exhibits, in general, an anisotropy; its diagonalization, whih leads

to eigenfreqenies denoted by !

0

in the quasi-lassial approximation, de�nes an ellipsoid (the

prinipal axes of the quadrati form); the external radiofrequeny �eld H may have an arbitrary

orientation with respet to these axes, as expressed by the vetorial produt  �H in equation

(85). If the sample is an amorphous solid, or it is impuri�ed, or it is a powder, et, an average must

be taken over the orientations of the sample, as given by sin

2

� in the equation for the absorbed

power, where � is the angle between H and .

An external, uniform magneti �eld H

0

an be applied in NQR experiments; it produes energy

levels ~!(m) = ~mH

0

, whih ombine now with the energy levels produed by the quadrupole

interation V

2

to give the frequenies !

0

.

Disussion and onlusions. The time dependene of the quantum-mehanial operators

(Heisenberg representation) has been investigated here in the quasi-lassial approxmation, where

the energy levels are densely distributed. It has been shown, in these irumstanes, that physial

quantities behave approximately as lassial harmoni osillators, with eigenfrequenies given by

the di�erene in energy levels. Under the ation of a time-dependent external �eld these las-

sial osillators absorb (dissipate) energy, whih approximates the variation, with respet to the

quantum numbers, of the energy absorbed in quantum-mehanial transitions. Two examples of

simple quantum-mehanial systems are given in this respet (planar and spatial rigid rotators

endowed with an eletri dipole moment), whih may serve to further enlighten the details of

the approximation involved. In ondensed matter the oarse graining average provides a natu-

ral means for the quasi-lassial approximation. This approximation has been illustrated here

for magneti resonane and the nulear quadrupole resonane. The quasi-lassial equations of

motion presented in this paper may shed further light upon the relationship between Quantum

Mehanis and Classial Mehanis.
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