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Abstrat

The relativisti, lassial motion of free harges in strong laser �elds is brie�y reviewed.

It is shown that, under ertain onditions, strong laser �elds in bound quantum assemblies of

partiles like atoms, moleules, atomi lusters and atomi nulei may govern a non-relativisti

motion of the eletri harges whih preserves the quantum struture of the energy levels while

shifting them by the time-dependent interation energy. The e�et of this interation is a

�ne splitting of the quantum energy levels, whih look like a dense distribution of lassial

energy ontinuum; it is the dressed states of the oherent-state formulation of the quasi-

lassial approximation. Consequently, fragmentation may our of suh bound assemblies

of partiles in strong radiation �elds. The fragmentation probability is estimated, as well as

the lifetime of the bound states of quantum partiles in strong laser �elds.

With the advent of high-power lasers strong eletromagneti �elds beame available for investigat-

ing atomi, moleular and nulear dynamis. A laser beam with intensity 10

20

w=m

2

generates in

its fous an eletri �eld E ' 10

9

statvolt=m (3� 10

12

V=m, and a similar magneti �eld 10

5

Ts);

this is three orders of magnitude higher than the atomi eletri �elds. The motion of the eletri

harges under the ation of suh �elds is relativisti, (quasi-) lasssial and (quasi-) free.

Indeed, a lassial harge q with mass m, initially at rest, subjeted to the ation of a radiation

�eld with the vetor potential A

0

os(!t � kx) oriented along the z-axis, performs osillations

z = �2�� sin(!t� kx) and aquires a drift

x =

�

2

1 + �

2

�

t +

�

2

sin 2(!t� kx)

�

(1)

along the x-axis, where � = qA

0

=2m

2

, � = =! being the wavelength of the radiation; its energy is

E = m

2

[1+ 2�

2

os

2

(!t� kx)℄. A similar haraterization holds for quantum Volkov wavepakets

(see also Annex).[1℄ As we an see, the oupling of the eletrial harges to the radiation �eld

is governed by the parameter � = qA

0

=2m

2

; for an eletroni harge in an optial radiation

�eld with frequeny ! = 2� � 10

15

s and an eletri �eld with the amplitude E

0

= 10

9

statvolt=m

this parameter aquires the value � = qA

0

=2m

2

= qE

0

=2m! ' 1. In moleules and atomi

lusters (as well as in atoms) suh high-intensity radiation �elds are more than su�ient to expel

eletrons and to lead to dissoiation (fragmentation). Weaker radiation �elds generate more

interesting e�ets in these atomi systems; a non-relativisti approximation is valid in this ase.

For instane, a laser beam with intensity 10

18

� 10

19

w=m

2

, generates an eletri �eld E '
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10

8

statvolt=m and a magneti �eld 10

4

Ts, whih orrespond to � = 0:1 and to a non-relativisti

approximation. In atomi nulei, a laser beam intensity 10

20

w=m

2

or more (eletri �eld higher

than E = 10

9

statvolt=m) leads to a value of the parameter � muh smaller than unity and a

proton oupling (� 1MeV ) omparable to the ohesion energy per nuleon (8 � 10MeV ); it

follows that the disrupting e�ets of a radiation �eld together with the binding nulear fores may

be treated in the atomi nulei in the non-relativisti approximation too. Heneforth, we assume

eletrial harges moving in moleules, atomi lusters and atomi nulei in the non-relativisti

limit.

It is worth noting that, while the motion along the z-axis is performed under the ation of the

eletri �eld, with an average veloity qE

0

=m! = � (whih agrees with the exat solution z =

�2�� sin(!t � kx) given above

1

), the motion along the x-axis is due to a ombined e�et of the

eletri and magneti �eld; in the non-relativisti limit the drift along the x-axis is vanishing

(!1, � ! 0), while the motion along the z-axis (along the eletri �eld) is preserved; indeed,

the e�et of the magneti �eld is diminished by the fator v= in the non-relativisti limit of the

Lorentz fore.

With an average (non-relativisti) veloity v = qE

0

=m! the harge goes over a distane d =

v=! = qE

0

=m!

2

= 2�� in a period !

�1

, where � = =! is the radiation wavelength; for moderate

�elds E ' 10

8

statvolt=m the parameter � aquires the value � = 0:1 (for eletron), whih gives

d = 0:2�; for optial radiation (� = =! = 5 � 10

�6

m) this distane is muh larger than the

atomi and moleular (or nulear) dimension; for an ioni harge d is of the order 10

�8

m, whih

is omparable to atomi and moleular dimensions; a similar situation ours in atomi nulei.

It follows that in one radiation period the harge overs many times the atomi or moleular (or

nulear) linear dimensions; under these irumstanes, the energy of the harge in the radiation

�eld qA

0

os(!t� kx) is added to the (preserved) quantum energy levels E

n

, i.e. we may write

W

n

= E

n

+ qA

0

os(!t� kx) ; (2)

moreover, for relevant distanes muh shorter than the radiation wavelength (dipolar approxima-

tion) we may write also

W

n

= E

n

+ qA

0

os!t ; (3)

the orresponding wavefuntions read

 

n

= e

�

i

~

(E

n

t+

qA

0

!

sin!t)

'

n

(r

1

; r

2

; :::) ; (4)

where '

n

are the time-independent wavefuntions (spins inluded).

The wavefuntion given by equation (4) an be represented as a series of Bessel funtions,

 

n

=

+1

X

m=�1

J

�m

�

qA

0

~!

�

e

�

i

~

(E

n

�m~!)t

'

n

(r

1

; r

2;

:::) ; (5)

in the presene of the radiation �eld, the wavefuntions beome superpositions of wavefuntions

with energies E

n

�m~!; these superpositions are very dense, beause, usually jE

n

j � ~!; we an

see that eah energy level E

n

is splitted in an in�nite number of densely-distributed energy levels

m~!, onsisting of an undetermined number m of (optial) photons ~!; the external radiation

�eld both inreases and dereases the original energy levels (�1 < m < +1).

1

For z = f(t; x) the veloity is alulated by v

z

=

dz

dt

=

�z

�t

+v

x

�f

�x

, and similarly for v

x

for a funtion x = g(t; x).
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The original energy levels are negative, E

n

< 0, as for any bound assembly of partiles. Among

the new energy levels E

n

� m~! there exist energies E

nf

+ Q

nf

, where E

nf

< 0 is the binding

energy of free fragments and Q

nf

> 0 is the released energy, suh as

E

n

�m~! = E

nf

+Q

nf

; (6)

or

m = �

E

nf

� E

n

+Q

nf

~!

; (7)

we note that thism depends on the original state n. Usually, E

nf

� E

n

, so thatm < 0. We assume

that the energy levels E

n

and the wavefuntions '

n

(r

1

; r

2;

; :::) orrespond to N nuleons for atomi

nulei, or to N atoms in atomi lusters, or to N eletrons for moleules or atoms; we assume

further that an atomi nulei with N nuleons may �ssion in a number of fragments with N

1

, N

2

,

... nuleons, N = N

1

+ N

2

+ :::, with wavefuntions '

1

(r

1

; r

2

; :::r

N

1

), '

2

(r

N

1

+1

; r

N

1

+2

; :::r

N

1

+N

2

),

and so on; a similar partition may exist for moleules, where, in general, we may inlude the nulei

oordinates; for atoms there exist only two suh wavefuntions, one orresponding to a number

of released eletrons, the other orresponding to the resulting ion. For idential fragments the

orresponding wavefuntions are properly symmetrized. Under these irumstanes, the amplitude

of fragmentation is given by

A

nf

= J

�m

�

qA

0

~!

�

e

�

i

~

(E

n

�E

nf

�Q

nf

�m~!)t

F

nf

= J

�m

�

qA

0

~!

�

F

nf

; (8)

where

F

nf

=

Z

dr

1

dr

2

:::dr

N

'

�

1

(r

1

; r

2

; :::r

N

1

)'

�

2

(r

N

1

+1

; r

N

1

+2

; :::r

N

1

+N

2

):::'

n

(r

1

; r

2;

:::) (9)

is the fragmentation matrix element. Sine, usually, qA

0

� ~! we an use the asymptoti expres-

sion for the Bessel funtion, and get

A

nf

=

s

2~!

�qA

0

os

�

qA

0

~!

�

�

2

m�

�

4

�

F

nf

; (10)

we may take E

nf

= E

n

and the fragmentation amplitude beomes

A

nf

=

s

2~!

�qA

0

os

�

qA

0

+

�

2

Q

nf

~!

�

�

4

�

F

nf

: (11)

A qualitative estimation shows that the fragmentation matrix element F

nf

(whih gives the mo-

mentum onservation) is approximately equal to unity in absolute value. The fragmentation

probability is given by

jA

nf

j

2

=

2~!

�qA

0

os

2

�

qA

0

+

�

2

Q

nf

~!

�

�

4

�

jF

nf

j

2

: (12)

For small values of the released energy Q

nf

and jF

nf

j = 1, the fragmenation probability reads

jA

nf

j

2

=

2~!

�qA

0

os

2

�

qA

0

~!

�

�

4

�

=

~!

�qA

0

�

1 +

1

2

os

2qA

0

~!

�

; (13)



4 J. Theor. Phys.

we an see that the fragmentation probability in strong radiation �elds depends slightly on the

nature and struture of the quantum assemblies; it is almost a universal quantity, whih depends

only on the radiation �eld, as expeted.

It is interesting to estimate the total probability of fragmentation; for this, we should sum over all

possible fragmentation on�gurations in equation (12). The interation is introdued and removed

in time T = 1=� (and a fator e

�jtj

should be inserted in the fragmentation amplitude); it produes

an unertainty ~� in the released energy and a number ~�=~! of fragmentation states; the result

of summing up over all these fragmentation on�gurations is the multipliation by �=! in the

onstant ontribution to equation (12) (the osilalting ontribution vanishes by summation); we

get

X

jA

nf

j

2

=

~�

�qA

0

; (14)

and the lifetime of any assembly of bound quantum partiles is � = �qA

0

=~�

2

. We an see

that a sudden interation (� � 1) auses a very short lifetime, as expeted, while an adiabati

interation (� ! 0 ) may leave the assembly unafeted. In a radiation �eld whih lasts a very

long time (�! 0), the fragmentation probability is very small.
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Annex

The equation of motion of a harge q with mass m under the ation of an eletromagneti �eld

reads

d

dt

mv

q

1�

v

2



2

= qE+

q



v �H ; (15)

where E = �

1



�A

�tt

is the eletri �eld,H = urlA is the magneti �eld andA is the vetor potential

(and  denotes the speed of light). Sine

dA

dt

=

�A

�t

+ (vgrad)A (16)

and (vgrad)A+ v � urlA = grad(vA), equation () an be reast as

d

dt

0

�

mv

q

1�

v

2



2

+

q



A

1

A

=

q



grad(vA) ; (17)

on the other hand, multiplying equation () by v we get the energy equation

d

dt

m

2

q

1�

v

2



2

= qvE : (18)
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For a vetor potentialA = (0; 0; A

0

os(!t�kx)), an eletri �eldE = �(1=)�A=�t = (0; 0; A

0

k sin(!t�

kx)) and a magneti �eld H = urlA = (0;�A

0

k sin(!t� kx)) we get from equation ()

d

dt

mv

x

q

1�

v

2



2

=

q



kA

0

v

z

sin(!t� kx) ;

d

dt

mv

y

q

1�

v

2



2

= 0 ;

d

dt

�

mv

z

q

1�

v

2



2

+

q



A

0

os(!t� kx)

�

= 0 ;

(19)

we may take v

y

= 0 and

�

z

p

1� �

2

= �2� os(!t� kx) ; (20)

or

�

z

=

2� os(!t� kx)

p

1 + 4�

2

os

2

(!t� kx)

p

1� �

2

x

; (21)

where �

x;z

= v

x;z

= and � = qA

0

=2m

2

. The �rst equation () an be written as

d

dt

�

x

p

1� �

2

= 2�!�

z

sin(!t� kx) =

2�

2

! sin 2(!t� kx)

p

1 + 4�

2

os

2

(!t� kx)

p

1� �

2

x

; (22)

aording to this equation �

x

has a onstant omponent beside osillating ontributions; it goes

like �

2

for � ! 0 and goes to unity for � !1; it follows that the onstant omponent of the �

x

is �

x

= �

2

=(1 + �

2

), i.e. the drift veloity along the wave propagation diretion.
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