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Abstract

The relativistic, classical motion of free charges in strong laser fields is briefly reviewed.
It is shown that, under certain conditions, strong laser fields in bound quantum assemblies of
particles like atoms, molecules, atomic clusters and atomic nuclei may govern a non-relativistic
motion of the electric charges which preserves the quantum structure of the energy levels while
shifting them by the time-dependent interaction energy. The effect of this interaction is a
fine splitting of the quantum energy levels, which look like a dense distribution of classical
energy continuum; it is the dressed states of the coherent-state formulation of the quasi-
classical approximation. Consequently, fragmentation may occur of such bound assemblies
of particles in strong radiation fields. The fragmentation probability is estimated, as well as
the lifetime of the bound states of quantum particles in strong laser fields.

With the advent of high-power lasers strong electromagnetic fields became available for investigat-
ing atomic, molecular and nuclear dynamics. A laser beam with intensity 10*°w/cm?generates in
its focus an electric field E ~ 10%statvolt/cm (3 x 102V /m, and a similar magnetic field 10°T's);
this is three orders of magnitude higher than the atomic electric fields. The motion of the electric
charges under the action of such fields is relativistic, (quasi-) classsical and (quasi-) free.

Indeed, a classical charge ¢ with mass m, initially at rest, subjected to the action of a radiation
field with the vector potential Ay cos(wt — kx) oriented along the z-axis, performs oscillations
z = —2nAsin(wt — kx) and acquires a drift
_
T =
L+n?

ct + %sin2(wt— kx) (1)

along the z-axis, where n = ¢Ay/2mc?, A = ¢/w being the wavelength of the radiation; its energy is
& = mc?[1+4 2n? cos?(wt — kx)]. A similar characterization holds for quantum Volkov wavepackets
(see also Annex).[1] As we can see, the coupling of the electrical charges to the radiation field
is governed by the parameter n = gAy/2mc?; for an electronic charge in an optical radiation
field with frequency w = 27 - 10'®s and an electric field with the amplitude Ey = 10°statvolt/cm
this parameter acquires the value n = qAy/2mc®> = qEy/2mcw ~ 1. In molecules and atomic
clusters (as well as in atoms) such high-intensity radiation fields are more than sufficient to expel
electrons and to lead to dissociation (fragmentation). Weaker radiation fields generate more
interesting effects in these atomic systems; a non-relativistic approximation is valid in this case.
For instance, a laser beam with intensity 10'® — 10"%w/cm?, generates an electric field E ~
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108statvolt/cm and a magnetic field 10*T's, which correspond to = 0.1 and to a non-relativistic
approximation. In atomic nuclei, a laser beam intensity 10?°w/cm? or more (electric field higher
than E = 10%statvolt/cm) leads to a value of the parameter n much smaller than unity and a
proton coupling (> 1MeV ) comparable to the cohesion energy per nucleon (8 — 10MeV); it
follows that the disrupting effects of a radiation field together with the binding nuclear forces may
be treated in the atomic nuclei in the non-relativistic approximation too. Henceforth, we assume
electrical charges moving in molecules, atomic clusters and atomic nuclei in the non-relativistic
limit.

It is worth noting that, while the motion along the z-axis is performed under the action of the
electric field, with an average velocity ¢Ey/mw = cn (which agrees with the exact solution z =
—2nXsin(wt — kx) given abovel), the motion along the z-axis is due to a combined effect of the
electric and magnetic field; in the non-relativistic limit the drift along the z-axis is vanishing
(¢ = 00, n — 0), while the motion along the z-axis (along the electric field) is preserved; indeed,
the effect of the magnetic field is diminished by the factor v/c in the non-relativistic limit of the
Lorentz force.

With an average (non-relativistic) velocity v = qFy/mw the charge goes over a distance d =
v/w = qEy/mw? = 2n\ in a period w™!, where A = ¢/w is the radiation wavelength; for moderate
fields F ~ 10®statvolt/cm the parameter n acquires the value n = 0.1 (for electron), which gives
d = 0.2); for optical radiation (A = ¢/w = 5 x 107 %cm) this distance is much larger than the
atomic and molecular (or nuclear) dimension; for an ionic charge d is of the order 10~8¢m, which
is comparable to atomic and molecular dimensions; a similar situation occurs in atomic nuclei.
It follows that in one radiation period the charge covers many times the atomic or molecular (or
nuclear) linear dimensions; under these circumstances, the energy of the charge in the radiation
field qAg cos(wt — kx) is added to the (preserved) quantum energy levels E,,, i.e. we may write

W, = E, + qAq cos(wt — k) ; (2)

moreover, for relevant distances much shorter than the radiation wavelength (dipolar approxima-
tion) we may write also

W, = E, + qAgcoswt ; (3)
the corresponding wavefunctions read

77//'n _ e—%(Entﬁ-% Sinwt)gOn(I'l,I‘Q, ) : (4)

where ¢, are the time-independent wavefunctions (spins included).

The wavefunction given by equation (4) can be represented as a series of Bessel functions,

+00
A0\ _i(m,—mhw
Yo=Y Jom <EO> e nlEnmmil s (py,1s00) (5)

in the presence of the radiation field, the wavefunctions become superpositions of wavefunctions
with energies F, — mhw; these superpositions are very dense, because, usually |E,| > hw; we can
see that each energy level F), is splitted in an infinite number of densely-distributed energy levels
mhw, consisting of an undetermined number m of (optical) photons fiw; the external radiation
field both increases and decreases the original energy levels (—oo < m < 400).

_ 0

'For z = f(t,z) the velocity is calculated by v, = % = 22 44, %, and similarly for v, for a function z = g(t, ).
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The original energy levels are negative, F,, < 0, as for any bound assembly of particles. Among
the new energy levels F,, — mhw there exist energies F,; + @, where E,; < 0 is the binding
energy of free fragments and ),y > 0 is the released energy, such as

E, —mhw = Ep; + Quny , (6)
o E,r—E,+0Q
nf — n + nf
m = — S 7
hw ) ( )

we note that this m depends on the original state n. Usually, £, > E,, so that m < 0. We assume
that the energy levels F,, and the wavefunctions ¢, (ry, 3, ...) correspond to N nucleons for atomic
nuclei, or to N atoms in atomic clusters, or to N electrons for molecules or atoms; we assume
further that an atomic nuclei with N nucleons may fission in a number of fragments with Ny, Ns,

. nucleons, N = Ny + Ny + ..., with wavefunctions ¢1(r1, T2, ...tn,), ©2(TN; 11, TN 12, LNy Ns )5
and so on; a similar partition may exist for molecules, where, in general, we may include the nuclei
coordinates; for atoms there exist only two such wavefunctions, one corresponding to a number
of released electrons, the other corresponding to the resulting ion. For identical fragments the
corresponding wavefunctions are properly symmetrized. Under these circumstances, the amplitude
of fragmentation is given by

QA0  _i(m, B, —Q, r—mhw)t qA4o
A = Jo (o ) e 7By =Qupmmhll e — (S ) Fy 8
f <hw > e r f ol R (8)
where
an :/drldrg...drNgo’{(rl,rz,...er)c,p’Q‘(er+1,er+2,...rN1+N2)...<pn(r1,rg,...) (9)

is the fragmentation matrix element. Since, usually, ¢Ay > hw we can use the asymptotic expres-
sion for the Bessel function, and get

2hw qgAy T T
A, = — — —m—— ) F,;; 1
nf — cos< 5™ 4) nf (10)

we may take E, s = E, and the fragmentation amplitude becomes

oh Ao +7Q,
Ay = WCOS,(M_W

VR, 11
TqAy hw 4) / (11)

A qualitative estimation shows that the fragmentation matrix element F,; (which gives the mo-
mentum conservation) is approximately equal to unity in absolute value. The fragmentation
probability is given by

2hw qAsg+5Quny T 9
A2 = 2 (L0 T 5%l T g g2 12
Aug P = 2 ot (L0 B (12)

For small values of the released energy @,y and |F,s| = 1, the fragmenation probability reads

2hw 2(qA0 7r>: hw [1+1 2qA0} ;

[Anf” = (13)

TqAy TqAp
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we can see that the fragmentation probability in strong radiation fields depends slightly on the
nature and structure of the quantum assemblies; it is almost a universal quantity, which depends
only on the radiation field, as expected.

It is interesting to estimate the total probability of fragmentation; for this, we should sum over all
possible fragmentation configurations in equation (12). The interaction is introduced and removed
in time T = 1/a (and a factor e** should be inserted in the fragmentation amplitude); it produces
an uncertainty ho in the released energy and a number fia/fiw of fragmentation states; the result
of summing up over all these fragmentation configurations is the multiplication by «/w in the
constant contribution to equation (12) (the oscilalting contribution vanishes by summation); we
get

D oAl = ha (14)

TqAy ’

and the lifetime of any assembly of bound quantum particles is 7 = wqAy/ha®. We can see
that a sudden interaction (o > 1) causes a very short lifetime, as expected, while an adiabatic
interaction (v — 0 ) may leave the assembly unafected. In a radiation field which lasts a very
long time (o — 0), the fragmentation probability is very small.
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Annex

The equation of motion of a charge ¢ with mass m under the action of an electromagnetic field
reads

d mv q
———=qE+ - H 15
dt [; 2 et ¢V (15)
where E = —%% is the electric field, H = curl A is the magnetic field and A is the vector potential
(and ¢ denotes the speed of light). Since
dA  0A
— == d)A 16
= =22+ (vgrad) (16)

and (vgrad)A + v x curl A = grad(vA), equation () can be recast as

d
Y pIA) = ggrad(vA) ; (17)

dt [{ 2 ¢ c
c2

on the other hand, multiplying equation () by v we get the energy equation

———— =¢gvE . (18)
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For a vector potential A = (0, 0, Ag cos(wt—Fkx)), an electric field E = —(1/¢)0A /0t = (0,0, Apk sin(wt—
kx)) and a magnetic field H = curlA = (0, — Ak sin(wt — kz)) we get from equation ()

4 Tﬁ—i = 1k Agv, sin(wt — kx)
7 =0 (19)
% <\/TOT§ + LA cos(wt — k:):)) =0;
B = —2ncos(wt — kx) , (20)
(21)

we may take v, = 0 and
V11— 32
2n cos(wt — k) JI-F
1-p2,

P: = V1 + 412 cos?(wt — kx)
(22)

or
where (,, = v,,/c and n = qAg/2mc?. The first equation () can be written as
21w sin 2(wt — kx)
V1=52;

V1 + 412 cos?(wt — kx)

d  fu

— ———— = 2nwp,sin(wt — kx) =
according to this equation [, has a constant component beside oscillating contributions; it goes
like n? for n — 0 and goes to unity for n — oo; it follows that the constant component of the 3,

is B, = n*/(1 + n?), i.e. the drift velocity along the wave propagation direction.
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