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Abstra
t

The relativisti
, 
lassi
al motion of free 
harges in strong laser �elds is brie�y reviewed.

It is shown that, under 
ertain 
onditions, strong laser �elds in bound quantum assemblies of

parti
les like atoms, mole
ules, atomi
 
lusters and atomi
 nu
lei may govern a non-relativisti


motion of the ele
tri
 
harges whi
h preserves the quantum stru
ture of the energy levels while

shifting them by the time-dependent intera
tion energy. The e�e
t of this intera
tion is a

�ne splitting of the quantum energy levels, whi
h look like a dense distribution of 
lassi
al

energy 
ontinuum; it is the dressed states of the 
oherent-state formulation of the quasi-


lassi
al approximation. Consequently, fragmentation may o

ur of su
h bound assemblies

of parti
les in strong radiation �elds. The fragmentation probability is estimated, as well as

the lifetime of the bound states of quantum parti
les in strong laser �elds.

With the advent of high-power lasers strong ele
tromagneti
 �elds be
ame available for investigat-

ing atomi
, mole
ular and nu
lear dynami
s. A laser beam with intensity 10

20

w=
m

2

generates in

its fo
us an ele
tri
 �eld E ' 10

9

statvolt=
m (3� 10

12

V=m, and a similar magneti
 �eld 10

5

Ts);

this is three orders of magnitude higher than the atomi
 ele
tri
 �elds. The motion of the ele
tri



harges under the a
tion of su
h �elds is relativisti
, (quasi-) 
lasssi
al and (quasi-) free.

Indeed, a 
lassi
al 
harge q with mass m, initially at rest, subje
ted to the a
tion of a radiation

�eld with the ve
tor potential A

0


os(!t � kx) oriented along the z-axis, performs os
illations

z = �2�� sin(!t� kx) and a
quires a drift

x =

�

2

1 + �

2

�


t +

�

2

sin 2(!t� kx)

�

(1)

along the x-axis, where � = qA

0

=2m


2

, � = 
=! being the wavelength of the radiation; its energy is

E = m


2

[1+ 2�

2


os

2

(!t� kx)℄. A similar 
hara
terization holds for quantum Volkov wavepa
kets

(see also Annex).[1℄ As we 
an see, the 
oupling of the ele
tri
al 
harges to the radiation �eld

is governed by the parameter � = qA

0

=2m


2

; for an ele
troni
 
harge in an opti
al radiation

�eld with frequen
y ! = 2� � 10

15

s and an ele
tri
 �eld with the amplitude E

0

= 10

9

statvolt=
m

this parameter a
quires the value � = qA

0

=2m


2

= qE

0

=2m
! ' 1. In mole
ules and atomi



lusters (as well as in atoms) su
h high-intensity radiation �elds are more than su�
ient to expel

ele
trons and to lead to disso
iation (fragmentation). Weaker radiation �elds generate more

interesting e�e
ts in these atomi
 systems; a non-relativisti
 approximation is valid in this 
ase.

For instan
e, a laser beam with intensity 10

18

� 10

19

w=
m

2

, generates an ele
tri
 �eld E '
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10

8

statvolt=
m and a magneti
 �eld 10

4

Ts, whi
h 
orrespond to � = 0:1 and to a non-relativisti


approximation. In atomi
 nu
lei, a laser beam intensity 10

20

w=
m

2

or more (ele
tri
 �eld higher

than E = 10

9

statvolt=
m) leads to a value of the parameter � mu
h smaller than unity and a

proton 
oupling (� 1MeV ) 
omparable to the 
ohesion energy per nu
leon (8 � 10MeV ); it

follows that the disrupting e�e
ts of a radiation �eld together with the binding nu
lear for
es may

be treated in the atomi
 nu
lei in the non-relativisti
 approximation too. Hen
eforth, we assume

ele
tri
al 
harges moving in mole
ules, atomi
 
lusters and atomi
 nu
lei in the non-relativisti


limit.

It is worth noting that, while the motion along the z-axis is performed under the a
tion of the

ele
tri
 �eld, with an average velo
ity qE

0

=m! = 
� (whi
h agrees with the exa
t solution z =

�2�� sin(!t � kx) given above

1

), the motion along the x-axis is due to a 
ombined e�e
t of the

ele
tri
 and magneti
 �eld; in the non-relativisti
 limit the drift along the x-axis is vanishing

(
!1, � ! 0), while the motion along the z-axis (along the ele
tri
 �eld) is preserved; indeed,

the e�e
t of the magneti
 �eld is diminished by the fa
tor v=
 in the non-relativisti
 limit of the

Lorentz for
e.

With an average (non-relativisti
) velo
ity v = qE

0

=m! the 
harge goes over a distan
e d =

v=! = qE

0

=m!

2

= 2�� in a period !

�1

, where � = 
=! is the radiation wavelength; for moderate

�elds E ' 10

8

statvolt=
m the parameter � a
quires the value � = 0:1 (for ele
tron), whi
h gives

d = 0:2�; for opti
al radiation (� = 
=! = 5 � 10

�6


m) this distan
e is mu
h larger than the

atomi
 and mole
ular (or nu
lear) dimension; for an ioni
 
harge d is of the order 10

�8


m, whi
h

is 
omparable to atomi
 and mole
ular dimensions; a similar situation o

urs in atomi
 nu
lei.

It follows that in one radiation period the 
harge 
overs many times the atomi
 or mole
ular (or

nu
lear) linear dimensions; under these 
ir
umstan
es, the energy of the 
harge in the radiation

�eld qA

0


os(!t� kx) is added to the (preserved) quantum energy levels E

n

, i.e. we may write

W

n

= E

n

+ qA

0


os(!t� kx) ; (2)

moreover, for relevant distan
es mu
h shorter than the radiation wavelength (dipolar approxima-

tion) we may write also

W

n

= E

n

+ qA

0


os!t ; (3)

the 
orresponding wavefun
tions read

 

n

= e

�

i

~

(E

n

t+

qA

0

!

sin!t)

'

n

(r

1

; r

2

; :::) ; (4)

where '

n

are the time-independent wavefun
tions (spins in
luded).

The wavefun
tion given by equation (4) 
an be represented as a series of Bessel fun
tions,

 

n

=

+1

X

m=�1

J

�m

�

qA

0

~!

�

e

�

i

~

(E

n

�m~!)t

'

n

(r

1

; r

2;

:::) ; (5)

in the presen
e of the radiation �eld, the wavefun
tions be
ome superpositions of wavefun
tions

with energies E

n

�m~!; these superpositions are very dense, be
ause, usually jE

n

j � ~!; we 
an

see that ea
h energy level E

n

is splitted in an in�nite number of densely-distributed energy levels

m~!, 
onsisting of an undetermined number m of (opti
al) photons ~!; the external radiation

�eld both in
reases and de
reases the original energy levels (�1 < m < +1).

1

For z = f(t; x) the velo
ity is 
al
ulated by v

z

=

dz

dt

=

�z

�t

+v

x

�f

�x

, and similarly for v

x

for a fun
tion x = g(t; x).
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The original energy levels are negative, E

n

< 0, as for any bound assembly of parti
les. Among

the new energy levels E

n

� m~! there exist energies E

nf

+ Q

nf

, where E

nf

< 0 is the binding

energy of free fragments and Q

nf

> 0 is the released energy, su
h as

E

n

�m~! = E

nf

+Q

nf

; (6)

or

m = �

E

nf

� E

n

+Q

nf

~!

; (7)

we note that thism depends on the original state n. Usually, E

nf

� E

n

, so thatm < 0. We assume

that the energy levels E

n

and the wavefun
tions '

n

(r

1

; r

2;

; :::) 
orrespond to N nu
leons for atomi


nu
lei, or to N atoms in atomi
 
lusters, or to N ele
trons for mole
ules or atoms; we assume

further that an atomi
 nu
lei with N nu
leons may �ssion in a number of fragments with N

1

, N

2

,

... nu
leons, N = N

1

+ N

2

+ :::, with wavefun
tions '

1

(r

1

; r

2

; :::r

N

1

), '

2

(r

N

1

+1

; r

N

1

+2

; :::r

N

1

+N

2

),

and so on; a similar partition may exist for mole
ules, where, in general, we may in
lude the nu
lei


oordinates; for atoms there exist only two su
h wavefun
tions, one 
orresponding to a number

of released ele
trons, the other 
orresponding to the resulting ion. For identi
al fragments the


orresponding wavefun
tions are properly symmetrized. Under these 
ir
umstan
es, the amplitude

of fragmentation is given by

A

nf

= J

�m

�

qA

0

~!

�

e

�

i

~

(E

n

�E

nf

�Q

nf

�m~!)t

F

nf

= J

�m

�

qA

0

~!

�

F

nf

; (8)

where

F

nf

=

Z

dr

1

dr

2

:::dr

N

'

�

1

(r

1

; r

2

; :::r

N

1

)'

�

2

(r

N

1

+1

; r

N

1

+2

; :::r

N

1

+N

2

):::'

n

(r

1

; r

2;

:::) (9)

is the fragmentation matrix element. Sin
e, usually, qA

0

� ~! we 
an use the asymptoti
 expres-

sion for the Bessel fun
tion, and get

A

nf

=

s

2~!

�qA

0


os

�

qA

0

~!

�

�

2

m�

�

4

�

F

nf

; (10)

we may take E

nf

= E

n

and the fragmentation amplitude be
omes

A

nf

=

s

2~!

�qA

0


os

�

qA

0

+

�

2

Q

nf

~!

�

�

4

�

F

nf

: (11)

A qualitative estimation shows that the fragmentation matrix element F

nf

(whi
h gives the mo-

mentum 
onservation) is approximately equal to unity in absolute value. The fragmentation

probability is given by

jA

nf

j

2

=

2~!

�qA

0


os

2

�

qA

0

+

�

2

Q

nf

~!

�

�

4

�

jF

nf

j

2

: (12)

For small values of the released energy Q

nf

and jF

nf

j = 1, the fragmenation probability reads

jA

nf

j

2

=

2~!

�qA

0


os

2

�

qA

0

~!

�

�

4

�

=

~!

�qA

0

�

1 +

1

2


os

2qA

0

~!

�

; (13)
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we 
an see that the fragmentation probability in strong radiation �elds depends slightly on the

nature and stru
ture of the quantum assemblies; it is almost a universal quantity, whi
h depends

only on the radiation �eld, as expe
ted.

It is interesting to estimate the total probability of fragmentation; for this, we should sum over all

possible fragmentation 
on�gurations in equation (12). The intera
tion is introdu
ed and removed

in time T = 1=� (and a fa
tor e

�jtj

should be inserted in the fragmentation amplitude); it produ
es

an un
ertainty ~� in the released energy and a number ~�=~! of fragmentation states; the result

of summing up over all these fragmentation 
on�gurations is the multipli
ation by �=! in the


onstant 
ontribution to equation (12) (the os
ilalting 
ontribution vanishes by summation); we

get

X

jA

nf

j

2

=

~�

�qA

0

; (14)

and the lifetime of any assembly of bound quantum parti
les is � = �qA

0

=~�

2

. We 
an see

that a sudden intera
tion (� � 1) 
auses a very short lifetime, as expe
ted, while an adiabati


intera
tion (� ! 0 ) may leave the assembly unafe
ted. In a radiation �eld whi
h lasts a very

long time (�! 0), the fragmentation probability is very small.
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Annex

The equation of motion of a 
harge q with mass m under the a
tion of an ele
tromagneti
 �eld

reads

d

dt

mv

q

1�

v

2




2

= qE+

q




v �H ; (15)

where E = �

1




�A

�tt

is the ele
tri
 �eld,H = 
urlA is the magneti
 �eld andA is the ve
tor potential

(and 
 denotes the speed of light). Sin
e

dA

dt

=

�A

�t

+ (vgrad)A (16)

and (vgrad)A+ v � 
urlA = grad(vA), equation () 
an be re
ast as

d

dt

0

�

mv

q

1�

v

2




2

+

q




A

1

A

=

q




grad(vA) ; (17)

on the other hand, multiplying equation () by v we get the energy equation

d

dt

m


2

q

1�

v

2




2

= qvE : (18)
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For a ve
tor potentialA = (0; 0; A

0


os(!t�kx)), an ele
tri
 �eldE = �(1=
)�A=�t = (0; 0; A

0

k sin(!t�

kx)) and a magneti
 �eld H = 
urlA = (0;�A

0

k sin(!t� kx)) we get from equation ()

d

dt

mv

x

q

1�

v

2




2

=

q




kA

0

v

z

sin(!t� kx) ;

d

dt

mv

y

q

1�

v

2




2

= 0 ;

d

dt

�

mv

z

q

1�

v

2




2

+

q




A

0


os(!t� kx)

�

= 0 ;

(19)

we may take v

y

= 0 and

�

z

p

1� �

2

= �2� 
os(!t� kx) ; (20)

or

�

z

=

2� 
os(!t� kx)

p

1 + 4�

2


os

2

(!t� kx)

p

1� �

2

x

; (21)

where �

x;z

= v

x;z

=
 and � = qA

0

=2m


2

. The �rst equation () 
an be written as

d

dt

�

x

p

1� �

2

= 2�!�

z

sin(!t� kx) =

2�

2

! sin 2(!t� kx)

p

1 + 4�

2


os

2

(!t� kx)

p

1� �

2

x

; (22)

a

ording to this equation �

x

has a 
onstant 
omponent beside os
illating 
ontributions; it goes

like �

2

for � ! 0 and goes to unity for � !1; it follows that the 
onstant 
omponent of the �

x

is �

x

= �

2

=(1 + �

2

), i.e. the drift velo
ity along the wave propagation dire
tion.
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