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Abstract

The rotation molecular spectra, generated by the coupling of the molecular electric-dipole
moments to an external time-dependent electric field, are discussed in a few particular con-
ditions which can be of some experimental interest. First, the spherical-pendulum molecular
model is reviewed, with the aim of introducing an approximate method which consists in the
separation of the azimuthal and zenithal motions. Second, rotation spectra are considered
in the presence of an external static electric field. Two particular cases are analyzed, corre-
sponding to strong and weak fields. In both cases the dipoles perform rotations and vibrations
around equilibrium positions, which may exhibit parametric resonances. For strong fields a
large macroscopic electric polarization appears. This situation may be relevant for polar
matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid.
The dipolar interaction is analyzed in polar condensed matter, where it is shown that new
polarization modes appear for a spontaneous macroscopic electric polarization (these modes
are tentatively called "dipolons"); one of the polarization modes is related to parametric
resonances. The extension of these considerations to magnetic dipoles is briefly discussed.
The treatment is extended to strong electric fields which oscillate with a high frequency, as
those provided by high-power lasers. It is shown that the effect of such fields on molecular
dynamics is governed by a much weaker, effective, renormalized, static electric field.
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polarization; highly-oscillating electric fields

PACS: 33.20.Sn; 45.20.dc; 33.20.Xx; 42.65.Yj;77.80.-e

Introduction. Usually, the molecular dynamics in the presence of static electric fields is limited
to weak fields, as those produced currently in the laboratory. A small, orientational polarization
of the electric-dipole moments is well known in this case, governed by the Curie-Langevin-Debye
law. Comparatively, more information is available for the dynamics of the magnetic moments in
the presence of static magnetic fields available in the laboratory, although the magnetic moments
are much smaller than the electric-dipole moments. Orientation, deflection, trapping of polar
molecular beams in static electric fiels are also known.[1]-[7]

With the advent of high-power lasers, the interest for the molecular dynamics in strong electric
fields may be revived. Although the electric fields produced in the laser beams are oscillating
in time, we show in this paper that their effect on the molecular dynamics is that of weaker,
renormalized, static fields, as a consequence of their much higher frequency in comparison with
the molecular rotation or vibration frequencies.
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First, we review briefly the spherical-pendulum molecular model with the aim of defining our
working method, which consists in the separation of the azimuthal and zenithal motions. The
method is valid for heavy molecules. Second, we apply this metod to strong static electric fields,
where parametric resonances are highlighted in the rotation molecular spectra. Similar results
are briefly discussed for weak electric fields. Further, the dipolar interaction is analyzed in polar
matter, where it may produce a spontaneous polarization. A continuous model is introduced for
the motion of this polarization, whose excitations are tentatively called "dipolons"; it is shown
that their interaction with a time-dependent electric field may also exhibit parametric resonances.
Such arguments are briefly extended to similar features exhibited by magnetic moments.

Free rotations. In many cases the free molecular rotations are described satisfactorily by a
spherical-pendulum model (spatial, rigid rotator, spherical top).[8, 9] A spherical pendulum con-
sists of a point of mass M which rotates freely in space at the end of a radius
r = r(sin θ cosϕ, sin θ sinϕ, cos θ), as described by the hamiltonian

H =
1

2
M ṙ

2 =
1

2
Mr2(θ̇2 + ϕ̇2 sin2 θ) ; (1)

if the point has a charge q, then there is a dipole d = qr which can couple to an external electric
field E cosωt, with an interaction hamiltonian Hint(t) = −dE cos θ cosωt. We take the electric field
directed along the z-axis. As it is well known, the hamiltonian given by equation (1) can be writen
as H = L2/2I, where L is the angular momentum and I = Mr2 is the moment of inertia. The
eigenfunctions are the spherical harmonics, with the energy levels El = ~2l(l + 1)/2I, l = 0, 1, ....

In the first-order of the perturbation theory for the interaction Hint(t) = −dE cos θ cosωt the
transition rate of quantum jumps with frequency ω0 = (El+1 − El)/~ = (~/I)(l + 1) is

∂ |clm|2
∂t

=
πd2E2

2~2
|(cos θ)lm|2 δ(ω0 − ω) , (2)

where

(cos θ)lm = (cos θ)l+1,m;l,m = −i

√
(l + 1)2 −m2

(2l + 1)(2l + 3)
, (3)

clm being the coefficients of the superposition of the wavefunctions and m being the quantum
number of the component Lz of the angular momentum. The absorbed power (the spectrum) is

P = ~ω0

∑l
m=−l

∂|clm|2

∂t
= πd2E2

2~
ω0

∑l
m=−l |(cos θ)lm|

2 δ(ω0 − ω) =

= πd2E2

6~
ω0(l + 1)δ(ω0 − ω) = πd2E2

6I
(l + 1)2δ(ω0 − ω)

(4)

and the net absorbed power at finite temperatures is given by

Pth = πd2E2

2~
ω0×

×∑l
m=−l |(cos θ)lm|

2
[
e−β~2l(l+1)/2I − e−β~2(l+1)(l+2)/2I

]
δ(ω0 − ω)/Z ,

(5)

where
Z =

∑

l=0

(2l + 1)e−β~2l(l+1)/2I =
2I

β~2
(6)

is the partition function and β = 1/T is the reciprocal of the temperature T ; we get

Pth = πd2E2

12I
(l + 1)3

(
β~2

I

)2

e−β~2l(l+1)/2Iδ(ω0 − ω) =

= 1
2
P (l + 1)

(
β~2

I

)2

e−β~2l(l+1)/2I .

(7)
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Fir illustrative purposes we use I = 10−38g · cm2, which is a typical numerical value for the
molecular moment of inertia (molecular mass M = 105 electronic mass me = 10−27g (heavy
molecules), the dipole length r = 10−8cm (1Å)), and get ~/I = 1011s−1 ≃ 1K (ω0 = ~(l + 1)/I);
at room temperature there are many levels occupied, and we may use β~2(l + 1)/I ≪ 1).

The classical dynamics of the free motion is governed by the equations

θ̈ = ϕ̇2 sin θ cos θ , I
d

dt
(ϕ̇ sin2 θ) = 0 ; (8)

from the second equation (8) we get ϕ̇ = Lz/I sin
2 θ, which indicates the conservation of the

component Lz of the angular momentum (as it is well known, the angular momentum is conserved
in free rotations). The hamiltonian given by equation (1) can be written as

H =
1

2
Iθ̇2 +

L2
z

2I sin2 θ
; (9)

we can see that an effective potential function Ueff = L2
z/2I sin

2 θ appears, which has a minimum
for θ = π/2. The motion may be limited to small oscillations about the equatorial plane θ = π/2.
Introducing δϑ = θ − π/2 we get

L2
z

2I sin2 θ
=

L2
z

2I
+

L2
z

2I
δθ2 + ... (10)

and

H ≃ 1

2
Iδθ̇2 +

L2
z

2I
δθ2 +

L2
z

2I
. (11)

We can see that there is a precession ϕ = ω0t about the z-axis and an oscillation δθ = A cos(ω0t+δ),
where A is an undetermined amplitude and δ is an undetermined phase, according to the small
oscillations guverned by the hamiltonian given by equation (11); the frequency ω0 is given by
ω0 = Lz/I. We can check easily that the angular momentum is conserved (L̇ = 0); the components
of the angular momentum are Lx = IAω0 cos δ, Ly = IAω0 sin δ, and Lz = Iω0. We can rotate
the equatorial plane θ = π/2 by an angle given by sinα = IAω0/

√
I2ω2

0 + I2A2ω2
0 ≃ A, such that

the motion will be an in-plane motion.[10, 11] This approximation corresponds to Lz ≃ L (m ≃ l,
L2
x + L2

y ≪ L2
z ≃ L2).

The δθ-motion governed by the harmonic-oscillator hamiltonian given by equation (11) can be
quantized, the energy levels being ~ω0(n + 1/2), n = 0, 1, 2..., where ω0 = Lz/I = ~m/I, m =
0, 1, 2...; the harmonic-oscillator frequency ω0 = ~m/I corresponds to the quantum-mechanical
frequency ω0 = (El+1 − El)/~ = (~/I)(l + 1). The interaction Hint(t) = −dE cos θ cosωt, where
θ = π/2 + δθ produces transitions of the type n → n + 1, with an absorbed power

Pn =
πd2E2

4I
(n+ 1)δ(ω0 − ω) (12)

(where the harmonic-oscillator matrix elements (δθ)n+1,n =
√

~(n+ 1)/2Iω0 are used). The total
power is obtained by summing Pn with respect to n up to some value N given by

(δθ)N+1,N =

√
~(N + 1)

2Iω0

=

√
N + 1

2m
≪ 1 , (13)

which gives

Posc =

N∑

n=0

Pn =
πd2E2

2I
m(m+ 1/2)δ(ω0 − ω) (14)
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for N = 2m− 1; for large m and l this result compares well with the exact absorbed power given
by equation (4) (up to a numerical factor 1/3). We conclude that the separation of the azimuthal
and zenithal motions is a satisfactory harmonic-oscillator approximation for the molecular spectra
(for heavy molecules).

Strong static electric field. Consider a constant, uniform electric field E0 = E0(0, 0, 1) oriented
along the z-axis; the potential energy of an electric dipole d = d(sin θ cosϕ, sin θ sinϕ, cos θ) of
arbitrary orientation θ, ϕ is U = −dE0 cos θ. The hamiltonian of rotations in this field is given by

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ)− dE0 cos θ (15)

(for the Schrodinger equation with this hamiltonian see Refs. [12, 13]). The component Lz of the
angular momentum is conserved, ϕ̇ sin2 θ = Lz/I; consequently, an effective potential function

Ueff =
L2
z

2I sin2 θ
− dE0 cos θ (16)

appears in the hamiltonian. We assume that the dipole energy dE0 is much greater than the rota-
tion energy L2

z/I, which is of the order of the temperature T . For typical value d = 10−18statcoulomb·
cm and temperature T = 300K ≃ 4×10−14erg this condition requires an electric field E0 ≫ T/d =
4× 104statvolt/cm ≃ 1.2× 109V/m. This is a high electric field; for comparison, the electric field
created by an electron charge at distance 1Å = 10−8cm is 4.8×10−10/10−16 = 4.8×106statvolt/cm
(atomic fields). Such a high static electric field may appear as an internal field in polar condensed
matter (e.g., pyroelectrics, ferroelectrics). At low temperatures the free molecular rotations may
be hindered, and the dipoles get quenched in parallel, equilibrium positions; they may only per-
form small rotations and vibrations around these equilibrium positions. The transitions from free
rotations to small vibrations around quenched positions in polar matter is seen in the curve of
the heat capacity vs temperature.[14, 15] The electric field produced by the nearest neighbours,
averaged over their small vibrations and rotations, gives rise to a local, static (mean) electric
field, which can be as high as the atomic fields. The condition E0 ≫ T/d shows also that at
lower temperatures (and high values of the electric dipoles) the field E0 may be weaker. Similarly,
high static electric fields may appear locally near polar impurities with large moments of inertia,
embedded in polar matter. Under such conditions the effective potential given by equation (16)
has a minimum value for θ0 ≃ (L2

z/IdE0)
1/4 ≃ (T/dE0)

1/4 ≪ 1; it can be expanded in powers of
δθ = θ − θ0 around this minimum value,

Ueff ≃ −dE0 + 2dE0δθ
2 ; (17)

the hamiltonian given by equation (15) becomes

H ≃ 1

2
Iδθ̇2 +

1

2
Iω2

0δθ
2 − dE0 , (18)

where ω0 = 2
√
dE0/I is sometimes known as Rabi’s frequency;[16, 17] according to our condition

of strong field, we have ω0 ≫ 1012s−1 (we consider electric fields that are not as high as to produce
rotation frequencies comparable with the molecular vibration frequencies). Therefore, the dipoles
exhibit quenched equilibrium positions in the static electric field E0, where they perform small
oscillations and rotations. The angle ϕ rotates freely with the frequency ϕ̇ ≃ Lz/I sin

2 θ0 = 1
2
ω0

(ϕ = 1
2
ω0t). It is worth noting that the frequency ω0 is given by the external field E0.

Consider an external time-dependent field E(t) = E(t)(sinα, 0, cosα), E(t) = E cosωt, which
makes an angle α with the z-axis; its interaction with the dipole is

Hint = −dE(t)(sinα sin θ cosϕ + cosα cos θ) , (19)
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which provides two relevant interaction hamiltonians:

H1int = −1
2
dE sinα

[
cos(ω + 1

2
ω0)t+ cos(ω − 1

2
ω0)t

]
δθ ,

H2int =
1
2
dE cosα cosωt · δθ2 .

(20)

The interaction hamiltonian H1int produces transitions between the harmonic-oscillator states n
and n+1 with the resonance frequency Ω = 1

2
ω0,

3
2
ω0. In general, for an interaction Hint = h cosωt,

the rate of transition between two states n and n+ s, with energies En, En+s is

∂ |cn+s,n|2
∂t

=
π

2~2
|hn+s,n|2 δ(ωn;s − ω) (21)

in the first order of the perturbation theory, where ωn;s = (En+s − En)/~ and cn+s,n are the
coefficients of the superposition of the wavefunctions. For H1int we get

∂ |cn+1,n|2
∂t

=
π

16~Iω0
d2E2(n+ 1) sin2 αδ(ω − Ω) (22)

and the absorbed power

P = ~Ω
∂|cn+1,n|

2

∂t
= π

16Iω0
d2E2Ω(n + 1) sin2 αδ(ω − Ω) =

= π
16Iω0

d2E2Ω(n + 1) sin2 αδ(ω − Ω) .

(23)

In order to compute the mean power the thermal weigths e−β~ω0n/
∑

e−β~ω0n should be inserted,
where β = 1/T is the inverse of the temperature T ; in addition, the reverse transitions must be
taken into account. Since β~ω0 ≫ 1, only the lowest states n are excited by interaction. The
temperature dependence is given by

Pth = π
16Iω0

d2E2Ω
∑

n=0(n+ 1)
[
e−β~ω0n − e−β~ω0(n+1)

]
×

× sin2 αδ(ω − Ω)/
∑

n=0 e
−β~ω0n ,

(24)

where the summation over n is, in principle, limited.

We should limit ourselevs to the lowest states of the harmonic oscillator, since the oscillation ampli-
tude δθ must be much smaller than the angle θ0. The matrix element (δθ)n+1,n =

√
~(n + 1)/2Iω0

for the harmonic oscillator should be much smaller than θ0 ≃ (L2
z/IdE0)

1/4, which implies
~(n + 1) ≪ 4Lz ≃ 4

√
IT ; for typical values I = 10−38g · cm2 we get n ≪ 80 for T = 300K

(and n ≪ 8 for T = 3K). Consequently, for β~ω0 ≫ 1 we may extend the summation in equation
(24) to large values of n; we get Pth independent of temperature. Making use of the expressions
for the transverse components Lx,y of the angular momentum we get Lx ≃ −(1/2)Iω0θ0 cosωot/2
and Ly ≃ −(1/2)Iω0θ0 sinωot/2, which show that the high-field approximation corresponds to
L2
x + L2

y ≃ L2 ≫ L2
z (small values of the component Lz).

Under the same conditions, the harmonic-oscillator hamiltonian given by equation (18) and the
interaction hamiltonian H2int given by equation (20),

H
′

= H +H2int =
1

2
Iδθ̇2 +

1

2
Iω2

0(1 + h cosωt)δθ2 , (25)

where h = E
2E0

cosα, lead to the classical equation of motion

δθ̈ + ω2
0(1 + h cosωt)δθ = 0 , (26)



6 J. Theor. Phys.

which is the well-known equation of parametric resonance (Mathieu’s equation).[18] As it is well
known, beside periodic solutions, the classical equation (26) has also aperiodic solutions, which
may grow indefinitely with increasing time; these are (parametrically) resonant solutions, which
occur for ω in the neighbourhood of 2ω0/n, n = 1, 2, 3... . As we can see immediately, the
solutions of equation (26) are determined by the initial conditions δθ(t = 0) and δθ̇(t = 0) (as for
any homogeneous equation). The initial conditions are vanishing due to thermal fluctuations, so
the classical solutions of equation (26) are ineffective.

The quantum-mechanical dynamics is different. The interaction hamiltonian H2int produces tran-
sitions between the harmonic-oscillator states n and n+2, due to the matrix elements of δθ2 (this is
an example of a double-quanta process[19]). These transitions have frequency 2ω0, in accordance
with the classical dynamics. The transition rate is

∂ |cn+2,n|2
∂t

=
πh2

128
ω2
0(n+ 1)(n+ 2)δ(2ω0 − ω) (27)

and the absorbed power

P = 2~ω0
∂|cn+2,n|

2

∂t
= πh2

64
~ω3

0(n+ 1)(n+ 2)δ(2ω0 − ω) (28)

where we may restrict, in principle, to the lowest states. The intensity given by equation (28) is
small, because, especially, of the factor (E/E0)

2 (h = E
2E0

cosα). The temperature dependence is
given by

Pth = πh2

64
~ω3

0

∑
n=0(n+ 1)(n+ 2)×

×
[
e−β~ω0(2n+1) − e−β~ω0(2n+3)

]
δ(2ω0 − ω)/

[∑
n=0 e

−β~ω0n
]2

,

(29)

in accordance with the direct transitions n → n + 1 → n + 2 and the corresponding reverse
transitions; Pth is diminished by the thermal factor e−β~ω0 for β~ω0 ≫ 1.

The parametric resonance disappears for α = π
2
, i.e. for the applied field E at right angle with

the quenching field E0. The effect of the parametric resonance depends on the orientation of the
(solid) sample; in amorphous samples the average over angles α should be taken (cos2 α = 1

3
).

In solids, the width of the absorption line (the damping parameter) originates, very likely, in
the dipolar interaction. Since the dipolar interaction is taken mainly in the quenching effect, we
may expect a small damping, and, consequently, rather sharp resonance lines. In liquids, beside
the random distribution of the dipoles (and the average over angle α), we may expect the usual
motional narrowing of the line. In gases the (internal) quenching field is weak, and the parametric
resonance is not likely to occur.

Weak static electric field. Consider now the opposite case, when the field E0 is weak, such
that dE0 ≪ L2

z/I. The effective potential Ueff given by equation (16) has a minimum value for
θ0 ≃ π

2
and the hamiltonian reduces to the free hamiltonian given by equation (11); the field E0

brings only a small correction to the π/2-shift in θ, while its contribution to the hamiltonian is
a second-order effect. The angle ϕ moves freely with angular velocity ϕ̇ = ω0. In contrast with
the high-field case, where the frequency ϕ̇ is fixed by the high static field E0, in the low-field
case we may quantize the ϕ-motion, according to Lz = ~m, m integer, such that ω0 = ~

I
m; the

lowest value of this frequency is ~/I ≃ 1011s−1 for typical values I = 10−38g · cm2.The molecular
rotations are described by a set of harmonic oscillators with frequencies ω0 = ~

I
m, beside the

ϕ-precession (which has the same frequencies ω0). The energy quanta are ~ω0 = ~2

I
m, with the

lowest value ~2

I
= 1K (for our numerical values). The approximation described above is valid for

δθn+1,n =
√
~(n+ 1)/2Iω0 ≪ 1, which leads to ~(n + 1) ≪ 2Lz, or n + 1 ≪ m. Similarly, the
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transverse components of the angular momentum are very small, L2
x + L2

y ≪ L2 ≃ L2
z (m ≃ l); at

room temperature m may acquire as high values as m = 300. All this is practically the same as
for the free rotations.

The interaction hamiltonian given by equation (19) leads to two relevant interactions

H1int = dE cosα cosωt · δθ ,

H2int =
1
4
dE sinα [cos(ω + ω0)t+ cos(ω − ω0)t] · δθ2 .

(30)

The interaction H1int produces transitions between the harmonic-oscillator states n and n + 1,
with an absorbed power

Pn =
π

4I
d2E2(n+ 1) cos2 αδ(ω0 − ω) . (31)

For n ≪ m we restrict ourselves to small values of n in equation (31) and sum over a few values of
m in δ(ω0 − ω) = δ(~m/I − ω) with the statistical weight e−β~2m2/2I . As long as ~/I ≫ γ, where
γ is the resonance width, the spectrum exhibits a few, distinct absorption lines at frequencies
ω0 = ~m/I (a band of absorption). In general, the temperature dependence is given by

Pth = π
4I
d2E2 cos2 α · C

∑
m>0 e

−β~2m2/2I×

×
{∑

n=0(n+ 1)
[
e−β~ω0n − e−β~ω0(n+1)

]
/
∑

n=0 e
−β~ω0n

}
δ(ω0 − ω) ,

(32)

where ω0 = ~m/I and C
∑

m>0 e
−β~2m2/2I = 1. At room temperature we may extend the summa-

tion over n, m and get the envelope of this function

Pth =
π

4
d2E2 cos2 α

√
2πβ

I
e−βIω2/2 . (33)

The interaction hamiltonian H2int given by equation (30) produces transitions between states n
and n+2 (separated by frequency 2ω0) for external frequencies Ω = ω0, 3ω0. The absorbed power
is

Pn =
π~Ω

128I2ω2
0

d2E2(n+ 1)(n+ 2) sin2 αδ(Ω− ω) . (34)

These parametric resonances, occurring at frequencies Ω = ω0, 3ω0, are superposed over the
transitions produced by H1int. The temperature dependence is given by

Pth = π~
128I2

d2E2 sin2 α · C
∑

m>0
Ω
ω2
0

e−β~2m2/2I×

×
{∑

n=0(n+ 1)(n+ 2)
[
e−β~ω0(2n+1) − e−β~ω0(2n+3)

]
/
[∑

n=0 e
−β~ω0n

]2}
δ(Ω− ω) ;

(35)

summation over n gives

Pth =
π~

64I2
d2E2 sin2 α · C

∑

m>0

Ω

ω2
0

e−β~2m2/2I e−β~ω0

(1 + e−β~ω0)2
δ(Ω− ω) (36)

whence we can get either the band of absorption or the envelope.

It is worth noting that the weak field E0 does not appear explicitly in the above formulae; its role
is that of setting the z-axis, to highlight the directional effect of the interaction field E through the
angle α, and to reduce the conservation of the angular momentum L to the conservation of only
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one component (Lz). In addition, the parametric resonances are a new feature in the presence of
the electric field. It is also worth noting that the expansion of the effective potential function Ueff

in powers of δθ is an approximation to free rotations with Lz = const, instead of L = const.

It is also worth noting that a weak static electric field has an influence on the statistical behaviour,
as it is well known. Indeed, the hamiltonian of rotations

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ) (37)

can also be written as
H =

1

2I
P 2
θ +

1

2I sin2 θ
P 2
ϕ (38)

with the (angular) momenta Pθ = Iθ̇ and Pϕ = Iϕ̇ sin2 θ. The classical statistical distribution is

const · dPθdPϕdθe
−βP 2

θ
/2Ie−βP 2

ϕ/2I sin
2 θ , (39)

or, integrating over momenta, 1
2
sin θdθ. In the presence of the field we have the distribution

≃ 1
2
sin θdθ ·eβdE0 (since βdE0 ≪ 1), which leads, for example, to cos θ = βdE0/3. This is the well-

known Curie-Langevin-Debye law.[20]-[23] In the quantum-mechanical regime, for dE0 ≪ ~2/I, the
interaction −dE0 cos θ brings a second-order contribution to the energy levels El = ~2l(l + 1)/2I,
there appear diagonal matrix elements of (c̃os θ)lm,lm in the first-order of the perturbation theory,

and the mean value is given by cos θ =
∑

(̃cos θ)lm,lm∆(βEl)e
−βEl/

∑
e−βEl = βdE0/3.

Dipolar interaction. Although many molecules possess an electric dipole moment d, even
in their ground state, usually the dipole-dipole interaction is neglected in rarefied condensed
matter, on the ground that the distance between the dipoles is large. In these conditions, at
finite temperatures, the electric dipoles are randomly distributed; they get slightly aligned in the
presence of a static external electric field E0, which provides a small interaction energy, leading
to an induced orientational polarization d = βd2E0/3, as noted above.

For typical values of the dipole moments d = 10−18statcoulomb · cm separated by distance a =
10−8cm (1Å) the interaction energy is ≃ d2/a3 = 10−12erg ≃ 103K (1eV = 1.6× 10−12erg, 1K =
1.38× 10−16erg, 1eV = 1.1× 104K). This is not a small energy (it corresponds approximately to
a frequency 1013Hz), and, apart from special circumstances, the electric dipole-dipole interaction
cannot be neglected. (The estimation given here should take into account the temporal average of
the dipole interaction energy with respect to molecular motion). The corresponding dipolar field
is of the order d/a3 = 106statvolt/cm (i.e., of the order of the atomic fields).

The interaction energy of two dipoles d1 and d2 separated by distance a (much longer than the
dimension of the dipoles) is given by

U = −3(d1d2)a
2 − (d1a)(d2a)

a5
. (40)

We introduce the angles (θ1, ϕ1) and (θ2, ϕ2) for the directions of the two dipoles with respect to
the axis a and the interaction energy becomes

U = −d1d2
a3

[2 cos θ1 cos θ2 + 3 sin θ1 sin θ2 cos(ϕ1 − ϕ2)] ; (41)

this energy has four extrema for θ1 = θ2 = 0, π/2 and ϕ1 − ϕ2 = 0, π; only for θ1 = θ2 = π/2,
ϕ1 − ϕ2 = 0 the interaction energy has a local minimum; in the neighbourhood of this minimum
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value the interaction energy behaves like

U = d1d2
a3

[−3 + 3
2
(δθ21 + δθ22)− 2δθ1δθ2 +

3
2
(δϕ1 − δϕ2)

2] =

= d1d2
a3

[−3 + 1
4
(δθ1 + δθ2)

2 + 5
4
(δθ1 − δθ2)

2 + 3
2
(δϕ1 − δϕ2)

2] ,
(42)

where δθ1,2 = θ1,2 − π/2 are small deviations of the angles θ1,2 from the polarization axis π/2;
similarly, δϕ1,2 are small deviations of the angles ϕ1,2 from their equilibrium values ϕ1,2, subjected
to the condition ϕ1 − ϕ2 = 0. It follows that the electric dipoles exhibit quenched equilibrium
positions θ1 = θ2 = π/2, ϕ1 − ϕ2 = 0, such that they are parallel to each other and perpendicular
to the distance between them; they may perform small rotations and vibrations around these
equilibrium positions. For the other three extrema the interaction energy has either a saddle
point (θ1 = θ2 = 0, ϕ1 − ϕ2 = 0, π) or a maximum (θ1 = θ2 = π/2, ϕ1 − ϕ2 = π). It is
very likely that the structural environment is distorted such as the dipoles take advantage of the
energy minimum. For instance, a structural elongation along the direction θ1 = θ2 = 0 decreases
appreciably the dipolar interaction along this direction (which goes like 1/a3!), such that the
corresponding contribution to the energy may be neglected. Under such circumstances, for not
too high temperatures, we may expect the dipoles to be (spontaneously) aligned along an arbitrary
axis (in isotropic matter), giving rise to an electric (macroscopic) polarization along such an axis.
The neglect of the interaction along the direction θ1 = θ2 = 0 makes this model highly anisotropic,
with a layered structure of the aligned dipoles.

As it is well known, pyroelectrics (or electrets) have a permanent electric polarization;[24] if the
polarization is singular just below a critical temperature and vanishes above, those substances are
called ferroelectrics (in the state above the critical temperature they are also called paraelectrics);
it seems that all these substances are piezoelectric. There are also structural modifications associ-
ated with finite discontinuities in polarization, a typical example being barium titanate (BaTiO3);
the dimension of the elementary cell in the crystal of BaTiO3 is a ≃ 4× 10−8cm (4Å); the dipole
of a cell is d ≃ 5 × 10−18statcoulomb · cm (the saturation polarization - the dipole moment per
unit volume - at room temperature is 8×104statcoulomb · cm); if Ba2+ and T i4+ are displaced by
δ with respect to O2−, then the dipole moment d is achieved for a slight displacement δ = 0.1Å;
we can see that the distance a between the dipoles is much longer than the dimension δ of the
dipoles. In addition, BaTiO3 exhibits several structural modifications (from cubic to tetragonal
to monoclinic to rhombohedral with decreasing temperature), in all polarized phases the structure
being elongated along the direction of polarization.[25]

In a continuum model of polarized substance the dipolar interaction given by equation (42) (with
identical dipoles d) gives the interaction hamiltonian

Hint =
1

a3

∫
dr

[
d2

a3
δθ2 +

5d2

4a
(gradδθ)2 +

3d2

2a
(gradδϕ)2

]
, (43)

which, together with the kinetic part, leads to the full hamiltonian

H = 1
a3

∫
dr[1

2
Iδ̇θ

2
+ 1

2
I ˙δϕ

2
+ 1

2
Iω2

0δθ
2+

+1
2
Iv2θ(gradδθ)

2 + 1
2
Iv2ϕ(gradδϕ)

2 ,

(44)

where I is the moment of inertia of the dipoles and ω2
0 = 2d2/Ia3, v2θ = 5d2/2Ia = 5ω2

0a
2/4,

v2ϕ = 3d2/Ia = 3ω2
0a

2/2. The dipole density 1/a3 should include the number of nearest neighbours;
if we restrict ourselves to the highly anisotropic (layered) model, then the hamiltonian density in
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equation (44) is two-dimensional. We can see that the dipolar interaction may generate dipolar
waves (waves of orientational polarizability), governed by the wave equations

δ̈θ + ω2
0δθ − v2θ∆δθ = 0 , δ̈ϕ− v2ϕ∆δϕ = 0 ; (45)

the spectrum of these dipolar waves is ω2
θ = ω2

0 + v2θk
2 and, respectively, ω2

ϕ = v2ϕk
2 (in the

layered model the wavevector k is two-dimensional); for typical values d = 10−18statcoulomb · cm,
a = 10−8cm and I = 10−38g · cm2 we get the frequency ω0 ≃ 1013s−1 (infrared region) and the
wave velocities vθ,ϕ ≃ 105cm/s (the wavelengths are λθ,ϕ ≃ π

√
5a, π

√
6a). It is worth noting that

the coordinates δθ, δϕ are the tilting angles of the polarization with respect to its equilibrium
direction. Tentatively, we may call these polar-matter modes "dipolons". They contribute to the
anomalous heat-capacity curve vs temperature.

The dipolar waves can couple to an external time-dependent electric field. Let E(r, t) = E cos(ωt−
kr) be a radiation electric field (plane wave) which makes an angle α with the polarization direc-
tion; the interaction hamiltonian is

H
′

= − 1

a3

∫
drdE cos(ωt−kr) , (46)

where E = E(sinα cosϕ
′

, sinα sinϕ
′

, cosα) and d = d(sin δθ cosϕ, sin δθ sinϕ, cos δθ); we may
limit ourselves to ϕ = ϕ

′

, and get

H
′

= − 1

a3

∫
drdE(δθ sinα− 1

2
δθ2 cosα)cos(ωt−kr) (47)

(up to irrelevant terms); we can see that the ϕ-waves do not couple to the external electric field
(within the present approximation). Moreover, since the wavelength of the radiation field is much
longer than the wavelength of the dipolar interaction (vθ,ϕ ≪ c, where c is the speed of light),
we may drop out the spatial dependence (spatial dispersion) both in equation (45) and in the
interaction hamiltonian H

′

; we are left with the equation of motion of a harmonic oscillator under
the action of an external force,

δ̈θ + ω2
0δθ =

dE

I
sinα cosωt− dE

I
δθ cosα cosωt . (48)

The first interaction term gives

δ̈θ1 + ω2
0δθ1 + 2γδ̇θ1 =

dE

I
sinα cosωt , (49)

where a damping term (γ coefficient) has been introduced; this is the equation of motion of a
harmonic oscillator under the action of a harmonic force; the (particular) solution is

δθ1 = a cosωt+ b sinωt , (50)

where

a = − dE

2Iω0
sinα

ω − ω0

(ω − ω0)2 + γ2
, b =

dE

2Iω0
sinα

γ

(ω − ω0)2 + γ2
(51)

for ω near ω0; we get a resonance for ω = ω0; the absorbed mean power is

P = dE sinαcosωtδ̇θ1 =
1

2
dE sinα · bω0 =

π

4I
d2E2 sin2 αδ(ω0 − ω) . (52)
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The second interaction term in equation (48) gives the Mathieu’s equation

δ̈θ2 + ω2
0(1 + h cosωt)δθ2 = 0 , (53)

where h = (dE/Iω2
0) cosα (a damping term can be included). As it was discussed before the

thermal fluctuations wipe out the parametric resonances associated with this equation. All the
above considerations are valid for a classical dynamics. The quantization of the hamiltonians H
and H

′

given by equations (44) and (47) (which is performed according to the well-known standard
rules), leads to standard absorption and emission processes, and to quantum transitions (jumps)
similar with equations (27)-(29). It is worth noting that the static electric field E0 in equations
(27)-(29) is replaced here by E0 = d/2a3 (by comparing the frequencies ω0 given in equations (18)
and, respectively, (44)), as expected for a (high) electric field generated by a dipolar interaction.

The spontaneous polarization caused by the dipolar interaction as described above may appear
in polarization domains, randomly distributed in polar matter (pyroelectrics, ferroelectrics), or in
granular matter, where charges may accumulate at the interfaces.[26]-[32] This is known as the
Maxwell-Wagner-Sillars effect (an average over the angle α should then be taken in the absorbed
power). In the latter case the distance between the dipoles is much larger than the atomic
distances and, consequently, the characteristic frequency ω0 is much lower; for instance, for a
distance a = 1µm (104Å) we get a frequency ω0 ≃ 10MHz.

Highly-oscillating electric fields. High-power lasers may provide strong electric fields which
oscillate in time with a frequency ωh much higher than the frequencies of molecular rotations
or vibrations. Usually, the frequency ωh is in the optical range, ωh = 2π × 1015s−1, and the
strength of the electric field may attain values as high as E0 = 109statvolt/cm for laser intensities
1020w/cm2. Under the action of such strong fields the molecules are usually ionized, but the
molecular ions retain their electric dipoles which perform a non-relativistic motion. (Indeed, the
non-relativistic approximation is ensured by the inequality η = qA0/2Mc2 ≪ 1, where q is the
charge of the particle with masss M and A0 is the amplitude of the vector potential; for a proton
in a potential A0 = 5 × 103statvolt, corresponding to the field amplitude E0 = 109statvolt/cm,
we get η = 10−3 ≪ 1).

Consider an electric field E0 cosωht oriented along the z-axis. An electric dipole d acted by this
field performs rapid oscillations of an angle α about, in general, a certain angle θ measured with
respect to the z-axis; the angle θ may perform slow oscillations; we assume α ≪ θ. The equation
of motion can be written as

Iα̈ = −dE0 sin(θ + α) cosωht ≃ −dE0 sin θ cosωht ; (54)

the corresponding kinetic energy is Ekin = Iα̇2/2 = (d2E2
0/2Iω

2
h) sin

2 θ sin2 ωht; its time average

Ekin =
d2E2

0

4Iω2
h

sin2 θ (55)

replaces the interaction energy −dE0 cos θ of the static field in the effective potential energy Ueff

given by equation (16); the effective potential becomes

Ueff =
L2
z

2I sin2 θ
+

d2E2
0

4Iω2
h

sin2 θ . (56)

This function has a minimum value for θ̃0 = arcsin θ0/R
1/4 and θ̃′

0 = π− θ̃0, where R = dE0/2Iω
2
h

is a renormalization factor and θ0 = (L2
z/IdE0)

1/4 < R1/4, i.e. for strong fields; it is worth noting
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that there are two values of the equilibrium angle: θ̃0 and π − θ̃0. The dipole may perform
small vibrations about these equilibrium angles with the frequency ω̃0 = ω0

√
3R/4, where ω0 =

2
√
dE0/I is the frequency for strong static fields given in equation (18) (forθ̃0 ≪ 1). We can see

that for highly-oscillating electric fields we get the results for static fields renormalized according
to E0 → Ẽ0 = E0R.

From θ0/R
1/4 < 1 and α = (dE0/Iω

2
h)θ̃0 ≪ θ̃0 we get the inequalities

L2
z

IdE0
<

dE0

2Iω2
h

≪ 1 (57)

(which are compatible because Lz ≪ Iωh); these inequalities imply
√
2Lzωh

d
< E0 ≪

2Iω2
h

d
. (58)

For L2
z/I = T and our numerical parameters I = 10−38g · cm2, T = 300K = 4 × 10−14erg,

d = 10−18statcoulomb · cm and ωh = 2π · 1015s−1 we get approximately 108statvolt/cm < E0 ≪
1010statvolt/cm, which corresponds to a renormalization parameter R = 10−10E0/8π

2 ≪ 1. We
conclude that in strong, highly-oscillating electric fields, like those provided by high-power lasers,
the molecular rotation spectra are affected in the same manner as in static electric field, providing
the time-dependent field strength is renormalized by the factor R ≪ 1 introduced here. It is
worth noting that the interaction −dE0 cos θ cosωht linear in the field is replaced by an effective
interaction which is quadratic in the field, as shown in equation (56); while this effective interaction
affects the slow rotations, it does not couple to the (slow) translation motion.

Discussion and conclusions. We have shown here that the rotations of a heavy molecule (viewed
as a spherical pendulum) can be approximated by azimuthal rotations and zenithal oscillations.
The molecular electric-dipole moment couples to a time-dependent external electric field and
gives rise to rotation (and vibration) molecular spectra. Arguments have been given that in
polar matter there could appear local, strong, static electric fields, which can lead to quenched
equilibrium positions for the dipoles and a macroscopic electric polarization. The small rotations
and oscillations which these dipoles may perform around their equilibrium positions give rise
to special features in the spectrum, in particular to parametric resonances. Similar parametric
resonances appear in the presence of weak static electric fields. It was shown that the dipole-dipole
interaction can lead to an equilibrium state of quenched dipoles, which possesses a macroscopic
polarization; the motion of this macroscopic polarization proceeds by particular modes which have
been tentatively called "dipolons" (polarization waves). The excitation of these modes may also
lead to parametric resonances. It was also shown that a strong, highly-oscillating electric field,
like the fields provided by the high-power lasers, behaves in the same manner as static electric
fields, provided they are renormalized by factors much smaller than unity (factor R above).

All the discussion made in this paper for electric dipole moments can also be applied to magnetic
moments, magnetic fields, magnetization and magnetic matter (e.g., ferromagnetics). The main
difference is the magnitude; the nuclear magnetic moments are five orders of magnitude smaller
than the electric dipole moments (µ ≃ 10−23erg/Gs); if the magnetic moments are in thermal
equilibrium, their interaction energy µ2/a3 ≃ 10−6K is effective at much lower temperatures;
the characteristic frequency of "electric dipolons" ω0 =

√
2d2/Ia3 ≃ 1013s−1 becomes ω0 =√

2µ2/Ia3 ≃ 108s−1 for "magnetic dipolons". For electronic magnetic moments µ ≃ 10−20erg/Gs
the interaction energy is ≃ 1K and the characteristic frequency is ω0 ≃ 1011s−1. If the magnetic
moment is higher by a factor of, say, 5 and the number of nearest neighbours is 4, then the effective
magnetic dipolar energy (for electronic moments) increases to ≃ 100K, which is of the order of
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magnitude of usual ferromagnetic transition temperatures; then, the "magnetic dipolons" become
magnons (ferromagnetic resonances).[25] The dipole interaction as source of ferromagnetism is
different from the Weiss mean field approach; it resembles more the Bloch theory of magnons.[33]
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