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Abstract

The displacement caused in an isotropic elastic half-space by a force localized on or be-

neath its surface is calculated here by a new method. These classical problems are known

as Boussinesq and, respectively, Mindlin problems. The motivation for the present work re-

sides in the fact that the original solutions involve some particular procedures, which may

limit their general application. The solutions presented here are obtained by including in a

generalized Poisson equation the values of the function and its derivatives on the boundary,

and by using in-plane Fourier transforms. This method is general, and it can be extended to

other, similar problems.
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Introduction. As it is well known, the elastic displacement caused in an infinite body by a
localized force was calculated as early as 1848 by Kelvin.[1]-[3] The displacement caused by a
force localized in a point on the plane surface of an elastic half-space is known as the Boussinesq
problem.[4]-[6] Various generalizations of such problems have been worked out,[7]-[11] in order to
estimate the effects of concentrated forces in elastic bodies bounded by closed surfaces.

The displacement of an isotropic elastic half-space caused by a force localized beneath its surface
was tackled as early as 1936 by Mindlin,[12, 13] and reworked in 1953;[14] sometimes it is referred
to as Mindlin problem. The displacement caused in an isotropic elastic body by a force localized
on or beneath its surface is calculated here by a new method. The motivation of undertaking
the present research is derived from some particular devices used in the original solutions, which
may limit their application to other, similar problems.. We derive the solution by using Fourier
transforms with respect to the coordinates parallel to the plane surface of the half-space, which
allow a convenient inclusion of the values of the functions and their derivatives on the surface in
a generalized Poisson equation.

General form of the solution. Consider the equilibrium equation

∆u+
1

1− 2σ
grad · divu = −

2(1 + σ)

E
F (1)

for the displacement u in an isotropic elastic body with Poisson’s ratio σ and Young modulus E,
subjected to a body force with density F. As it is well known, the solution can be written with
Helmholtz potentials ϕ and H as

u = gradϕ+ curlH (2)
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with divH = 0; inserting this solution in equation (1) we get

∆B = −
2(1 + σ)

E
F , (3)

where

B =
2(1− σ)

1− 2σ
gradϕ+ curlH . (4)

Taking the div in equation (4) we are led to

divB =
2(1− σ)

1− 2σ
∆ϕ , (5)

whose general solution is

ϕ =
1− 2σ

4(1− σ)
(rB+ β) , (6)

where

∆β =
2(1 + σ)

E
rF . (7)

It follows that we can represent the solution as

u = B−
1

4(1− σ)
grad(rB+ β) , (8)

in terms of two functions B and β which satisfy Poisson equations (3) and (7); these functions
are sometimes called Grodskii functions.[15]-[17] For a force F = fδ(r) localized at the origin in
an infinite body, by solving equations (3) and (7) and using equation (8), we get the well-known
Kelvin solution

u =
1 + σ

8πE(1− σ)

[

(3− 4σ)f

r
+

[rf ]r

r3

]

. (9)

The problem and the solving method. The problem is to solve the equlibrium equation (1)
for an elastic half-space which occupies the spatial region z < 0, bounded by a plane surface z = 0,
and a force localized on or beneath its surface. We consider first a force localized beneath the
surface. We introduce the notations R = (x, y, z) and r = (x, y) for the position vectors and take
a force F = (fx, fy,, fz)δ(R −R0) localized at R0 = (0, 0, z0), z0 < 0 . The surface z = 0 is free;
consequently, the force Pi = −njσij on the surface z = 0, where n = (0, 0, 1) and σij is the stress
tensor, is vanishing: σiz = 0 for z = 0. The stress tensor is σij = E

1+σ
[uij +

σ
1−2σ

ukkδij], where

uij =
1
2
(∂iuj + ∂jui) is the strain tensor; the boundary conditions read

uxz = uyz = 0 , (1− σ)uzz + σ(uxx + uyy) = 0 , z = 0 . (10)

The usual method of solving this problem is to solve the Poisson equations (3) and (7) for the
functions B and β with the boundary conditions given by equations (10) and to use equation (8) for
getting the displacement. Usually, the Poisson equations are solved by using the Green function
for the laplacian and the Green theorem. Since the boundary conditions (10) are not simply
Dirichlet or von Neumann, their inclusion in the Green theorem requires special elaborations. We
give here a different method, which can lead more directly to solution.

Consider the Poisson equation

∆v = F (11)
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in the domain D bounded by the closed surface S. We introduce the function w = vED, where
ED is the support function of the domain D; it is easy to see, by direct calculations, that

∆w = ∆v · ED −
∂v

∂n
|S δ(n− ns)− v |S

∂

∂n
δ(n− nS) , (12)

where n is the coordinate along the normal nS to the surface and nS is the value of n on the
surface. Making use of equation (11) we get

∆v = F −
∂v

∂n
|S δ(n− ns)− v |S

∂

∂n
δ(n− nS) (13)

in the closed domain D, where we have re-introduced the notation v for w. Equation (13) provides
a generalized form of the original Poisson equation (11). Using the Green function G, ∆G =
−4πδ(R−R

′

), we recover the Green theorem

v(R) = −
1

4π

∫

D
dR

′

G(R−R
′

)F (R
′

)+
1

4π

∫

S
dS

′

[

G(R−R
′

)
∂v(R

′

)

∂n′ − v(R
′

)
∂G(R −R

′

)

∂n′

]

(14)

from equation (13).

We apply this method to the Poisson equation (11) for the half-space z < 0 with the support
function θ(−z) and force F = fδ(R−R0), R0 = (0, 0, z0), z0 < 0, where θ(z) = 1 for z > 0 and
θ(z) = 0 for z < 0 is the step function. It is convenient to use in-plane Fourier transforms of the
type

v(r, z) =
1

(2π)2

∫

dkv(k, z)eikr ; (15)

the Poisson equation becomes

∆v = F − v(1)δ(z)− v(0)δ
′

(z) , (16)

or
d2v

dz2
− k2v = fδ(z − z0)− v(1)δ(z)− v(0)δ

′

(z) , (17)

where v(0) = v |z=0, v(1) = ∂v
∂z

|z=0 or their Fourier transforms; for the sake of the simplicity
we may omit the arguments (r, z) or (k, z), as they can be easily read from the context of the
equations. It is known that the Green function for the Helmholtz equation d2g/dz2 − k2g = δ(z)
in one dimension is g = −(1/2k)e−k|z|, so the solution of equation (17) reads

v = −
1

2k
fe−k|z−z0| +

1

2k
v(1)e−k|z| +

1

2
v(0)e−k|z| (18)

for z < 0; we eliminate v(1) from this equation and get

v = − 1
2k
f
(

e−k|z−z0| − e−k|z+z0|
)

+ v(0)e−k|z| ,

v(1) = fe−k|z0| + kv(0) ;

(19)

we recognize here the Green function for the Helmholtz equation in one dimension vanishing on
the surface z = 0.

We use the representation given by equation (19) for the solutions B and β of the Poisson equations
(3) and (7) and derive the functions and their derivatives (of the form v(0) and v(1) in equation
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(19)) from the boundary conditions; in addition, we note that the second-order derivative on the
surface is v(2) = k2v(0), as it follows immediately from equation (17).

Using the representation given by equation (19) for the solutions of equations (3) and (7) we get

B = (1+σ)
E

f

k

(

e−k|z−z0| − e−k|z+z0|
)

+B
(0)e−k|z| ,

β = (1+σ)
E

|z0|fz
k

(

e−k|z−z0| − e−k|z+z0|
)

+ β(0)e−k|z| ;

(20)

in addition, we have the relations

B
(1) = −2(1+σ)

E
fe−k|z0| + kB(0) , B

(2) = k2
B

(0) ,

β(1) = −2(1+σ)
E

|z0| fze
−k|z0| + kβ(0) , β(2) = k2β(0) .

(21)

Force perpendicular to the surface. Now we specialize to the case of a force perpendicular
to the surface, i.e. we take fx = fy = 0 and fz = f ; due to the symmetry of the problem we may
also take Bx = By = 0. Using the Fourier transforms, the boundary conditions from equations
(10) are given by

(1− 2σ)B(0)
z − β(1) = 0 , 2(1− σ)B(1)

z − k2β(0) = 0 , (22)

whence, by using relations (21), we get

B(0)
z = 2(1+σ)f

E

[

2(1−σ)
k

− z0
]

e−k|z0| ,

β(0) = 4(1−σ)(1+σ)f
E

(

1−2σ
k2

− z0
k

)

e−k|z0| .

(23)

Making use of equations (20), (23) and

1

2π

∫

dk
eikr

k
e−k|z| =

1

(r2 + z2)1/2
, (24)

we get, by inverse Fourier transformation,

Bz =
(1 + σ)f

2πE

[

1

R
+

3− 4σ

R
+

2z0(z + z0)

R
3

]

, (25)

where

R =
[

r2 + (z − z0)
2
]1/2

, R =
[

r2 + (z + z0)
2
]1/2

; (26)

we can see the contribution of the "image" solution corresponding to z0 → −z0. Similarly, we get
from equations (20) and (23)

β =
(1 + σ)f

2πE

[

|z0|

R
+

(3− 4σ) |z0|

R
+ 4(1− σ)(1− 2σ)G

]

, (27)

where

G =
1

2π

∫

dk
1

k2
eikre−k|z+z0| . (28)

In the original solution[14] the function G is replaced by ln(R + |z + z0|), which can be obtained
by integration of the derivative ∂G/∂ |z + z0| (a minus sign should be included for the half-space
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z < 0 in comparison with the half-space z > 0). For the displacement functions ux,y,z given by
equation (8) we need gradβ and, therefore, gradG. The derivatives of the function G can be
calculated from equation (28) by using Bessel functions. For example, it is easy to get

∂G

∂r
= −

(

1−
|z + z0|

R

)

r

r2
= −

r

R
(

R + |z + z0|
) . (29)

We give here the displacement of the surface z = 0, calculated from equation (8) by using Bz

given by equation (25) and the derivatives of the function β and function G :

ur =
(1+σ)f
2πE

(

|z0|
R2

0

+ 1−2σ
R0+|z0|

)

r
R0

,

uz =
(1+σ)f
2πE

[

2(1− σ) +
z2
0

R2

0

]

1
R0

,

(30)

where ur is the radial component of the displacement (along r) and R0 = [r2 + z20 ]
1/2

. We can
see that the radial component of the displacement ur has a maximum of the order ≃ f/E |z0| for
distances of the order r ≃ |z0| , while the z-component uz of the displacement attains its maximum
value ≃ f/E |z0| for r = 0.

Force parallel to the surface. We consider now a force parallel to the x-axis fx = f , fy = fz = 0;
due to the symmetry of the problem we take also By = 0. We introduce the function C = xBx+β
and the boundary conditions (10) become

2(1− σ)B(1)
x + i(1 − 2σ)kxB

(0)
z − ikxC

(1) = 0 ,

(1− 2σ)B(0)
z − C(1) = 0 ,

2(1− σ)(1− 2σ)B(1)
z − (1− σ)C(2) + 4iσ(1− σ)kxB

(0)
x + σk2C(0) = 0 .

(31)

Making use of the Fourier transform C = i∂Bx/∂kx + β and equations (21) we get the solutions
of the system of equations (31) The solutions of the boundary conditions (10) are

B(0)
x = 2(1+σ)f

E
1
k
e−k|z0| ,

B(0)
z = 2(1+σ)f

E
(1− 2σ − k |z0|)

ikx
k2
e−k|z0| ,

β(0) = 2(1+σ)(1−2σ)f
E

(1− 2σ − k |z0|)
ikx
k3
e−k|z0| .

(32)

Hence, by using equations (20), we get

Bx = (1+σ)f
E

1
k

(

e−k|z−z0| + e−k|z+z0|
)

,

Bz =
2(1+σ)f

E
(1− 2σ − k |z0|)

ikx
k2
e−k|z+z0| ,

β = 2(1+σ)(1−2σ)f
E

(1− 2σ − k |z0|)
ikx
k3
e−k|z+z0| ,

(33)

and
Bx = (1+σ)f

2πE

(

1
R
+ 1

R

)

,

Bz =
(1+σ)f
πE

(

|z0|

R
2 − 1−2σ

R+|z+z0|

)

x
R
,

β = (1+σ)(1−2σ)f
πE

[

|z0|

R
− (1− 2σ)

]

x
R+|z+z0|

;

(34)
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in equations (34) the function

H =
1

2π

∫

dk
ikx
k3

eikre−k|z+z0| (35)

has been calculated by integrating the derivative ∂H/∂ |z + z0| (H = −x/
(

R + |z + z0|
)

). The

results given in equations (34) coincide with the original Mindlin’s results[14], (except the sign of
Bz).

Having known the functions Bx.z and β, we can calculate the displacement by using equation (8).
We give here the displacement uz on the surface z = 0

uz =
(1 + σ)f

2πE

(

|z0|

R2
0

−
1− 2σ

R0 + |z0|

)

x

R0

(36)

and the asymptotic behaviour of ux,y on the surface

ux ≃ (1+σ)(3−2σ)f
4πE

1
|z0|

, uy ≃
(1+σ)(3+2σ)f

8πE
xy

|z0|
3 , r ≪ |z0| ,

ux ≃ (1+σ)(1−σ)f
πE

1
r
, uy ≃

σ(1+σ)f
πE

xy
r3

, r ≫ |z0| ;

(37)

for y = 0 and |x| ≫ |z0| ux ≃ [(3 − 4σ)(1 + σ)f/4πE(1 − σ)]/ |x|. We can see that ux has a
maximum value of the order ≃ f/E |z0| for r → 0, while uy ∼ xy/|z0|

3, uz ∼ x/z20 for r → 0 and
attains a maximum value ≃ f/E |z0| for r of the order |z0|. It is worth noting that uz is vanishing
for a distance r of the order of |z0|.

Force acting on the surface. We consider now a force F = (0, 0, f)δ(r) acting on the surface
z = 0 at the origin. Equations (20) and (21) for the Grodskii functions are now free of body force,
but the surface force appears in the boundary conditions which read, in Fourier transforms,

(1− 2σ)B(0)
z − β(1) = 0 ,

2(1− σ)B(1)
z − k2β(0) = −4(1 + σ)(1− σ) f

E
.

(38)

Making use of relations (20) and (21) this system of equations is solved immediately, leading to

Bz = −2(1−σ2)f
πE

1
R
,

β = −2(1−σ2)(1−2σ)f
πE

G ,

(39)

where R = (r2 + z2)
1/2

and G is the function given by equation (28) for z0 = 0. From equations
(8) we get the well-known displacement for the Boussinesq problem[5, 6]

ur = − (1+σ)f
2πE

(

z
R2 +

1−2σ
R+|z|

)

r
R
,

uz = − (1+σ)f
2πE

[

z2

R2 + 2(1− σ)
]

1
R
.

(40)

The case of a force parallel to the surface can be treated in the same manner.

Conclusion. In conclusion, we may say that the displacement of an isotropic elastic half-space
has been calculated in this paper, as caused by a force localized on or beneath the surface, by a new
method. The original solution of these problems, known as Boussinesq and, respectively, Mindlin
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problems,[4, 5],[12]-[14] include some artificial devices. The solution given here is obtained by using
in-plane Fourier transforms and by including the values of the functions and their derivatives on
the boundary in a generalized Poisson equation. This method can be extended to other problems
boundary-value problems, like a half-space with fixed surface,[18, 19] or elastic (thick) plates, or
elastic bodies with cylindrical or spherical geometry, etc.
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