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Abstract

The faulting seismic source model is re-analyzed and its representation by means of the
seismic moment tensor is re-formulated for spatially localized sources (point sources). A point
volume seismic source is also introduced, related to the pressure exerted in a small spherical
cavity in an elastic body where the source is localized. It is shown that such a volume source
with a δ-pulse time dependence is equivalent with an isotropic faulting source characterized
by a scalar seismic moment. A structure factor of the focal region is discussed in this context,
which can account for time and spatial extension of the seismic sources (or for multiple
sources). The elastic waves produced by point sources with a δ-pulse time dependence are
considered in an isotropic elastic half-space bounded by a plane surface, with sources placed
beneath the surface. Such a half-space may be viewed as an acceptable model for the Earth.
In these circumstances the solution of the elastic waves equation is determined by using
the decomposition in Helmholtz potentials. Particular attention is given to the problem
of "boundary conditions" (usually for a free surface), and the transient regime is identified
for the seismic waves, as a precursor of the stationary regime of vibrations (oscillations).
The spherical waves produced by point seismic sources with a δ-pulse time dependence are
calculated. The interaction of these primary waves with the surface leads to additional
wave sources, lying on the surface, which generate secondary waves (according to Huygens
principle). The secondary waves, which may be viewed as waves scattered from the surface,
are estimated. It is shown that the secondary waves contribute to the long tail recorded in
seismograms.

Good for “boundary conditions”;

Introduction. It may be widely accepted that the main problem in Seismology is the generation
and propagation of the seismic waves. It gives information about processes occurring in the
earthquake focal region, the nature and structure of the Earth’s interior, and the effect of the
seismic waves on the Earth’s surface. The problem originates with the classical works of Rayleigh,
Lamb and Love.[1]-[3] In a simplified model, the Earth may be viewed as an isotropic elastic half-
space bounded by a plane surface, the seismic sources being localized beneath the surface. For
sufficiently long distances the spatial localization of the seismic sources may be represented by
δ-functions, or their derivatives (point sources). The double-couple representation of point seismic
sources by means of the seismic moment tensor emerged gradually in the first half of the 20th
century.[4]-[17]

The standard way of treating the seismic waves is to employ the (formal) Green function for the
elastic waves equation and the Green theorem (the so-called Betti’s representation) for a general,
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anisotropic, elastic body.[18]-[21] In this treatment the seismic sources are located on internal
surfaces, either as faulting sources or volume sources. The faulting seismic sources are related to
the discontinuity occurring in the displacement across the faulting surface (fault slip, dislocation
model), while the volume sources are related to the dilatational strain.[6, 7] In both cases equivalent
forces are derived for the seismic source representation, and the tensor of the seismic moment is
introduced. The interpretation of the double-couple representation of the seismic moment as an
extended mechanical torque (a couple of forces), while ensuring the vanishing of the net force and
angular momentum, leaves open the question of the uniqueness of the double-couple distribution.
We reformulate here the faulting source and the introduction of the seismic moment tensor, by
resorting to a point mechanical-torque interpretation, and introduce a volume source model related
to the pressure exerted in a small spherical cavity where the source is localized.

The elastic waves equation with localized (point) sources is discussed here for an isotropic half
space bounded by a plane surface; a special attention is given to the problem of "boundary con-
ditions" (usually, for a free surface). The problem of the seismic waves with boundary conditions
is a standard problem of vibrations (oscillations) of the Earth, viewed as an elastic sphere. The
seismic waves produced by a source suffer multiple reflections on the Earth’s surface (or on the
interfaces of the internal Earth’s layers) and the stationary regime of oscillations sets in a finite
time interval. The relevant magnitude of this amount of time is of the order R/c, where R is the
radius of the Earth and c is the wave velocity. For R = 6370km and a mean velocity c = 5km/s
of the elastic waves we get R/c ≃ 1274s; this time interval is much longer than the time taken
by the seismic waves to propagate from the source to the Earth’s surface. We can see that the
effects of the seismic waves on the Earth’s surface are produced in a much shorter time than the
time needed for attaining the stationary regime of vibrations. It follows that we are interested
primarily in the transient regime of the seismic waves, where the boundary conditions are prac-
tically radiation conditions, and the quasi-spherical Earth may be approximated locally by an
elastic half-space. In these circumstances, in a first approximation, the solution consists of P - and
S- (double-shock) spherical waves generated by temporal and spatial δ-pulses from the faulting
source; a volume source produces only P -wave, as expected. For sources with a finite temporal or
spatial extension (or for multiple sources) we discuss the necessity of introducing a structure factor
of the focal region, which may be viewed as an inprint of the focal region in recorded seismograms.
The local seismic waves are usually treated by a variety of methods, like Fourier or Laplace (or
Hilbert) transforms, or the well-known Cagniard-de Hoop method.[22, 23] These methods make
use of the reflection (and refraction) coefficients of the approximate plane waves at the Earth’s
surface (or at interfaces of Earth’s internal layers). While, in principle, they may offer an exact
solution, in practice the results are often approximate, especially due to the approximate character
of the plane waves in comparison with spherical waves generated by localized sources; many such
approximate results are known as surface waves, head (or lateral) waves, cylindrical or conical
waves, leaking waves, inhomogeneous, damped waves, etc.[24]-[34] We present here an alternate
method of treating the local waves by means of the secondary waves generated by the scattering of
the primary spherical P - and S-waves off the surface (or layers interfaces). It is shown that these
secondary waves contribute to the well-known long tail recorded in seismograms. The secondary
waves may be viewed as the next step in the approximate process during which the transient wave
regime becomes gradually a vibrations stationary regime.

Seismic sources. Usually, the seismic sources are concentrated in a small volume, which is the
earthquake’s focus. The linear dimensions of these regions are much smaller than the seismic
wavelengths and distances of interest, so we may view them as point sources, in the first approxi-
mation. In a simplified representation of a faulting source the slip and the associated force occur,
during the earthquake, along one direction, lying on the fault surface, of arbitrary orientation. Let



J. Theor. Phys. 3

f

a

b

Figure 1: The load accumulation in two elements of tectonic plates in (quasi-) equilibrium (a)
may lead to a resistance loss and a localized active focal region f (b).

n be the unit vector along this direction. The seismic load in the focus consists of two opposite
forces, practically at equilbrium, so that the total force and angular momentum are vanishing.
The equilibrium can be reached by successive small, (quasi-) static deformations of the crust and
tectonic plates. During the earthquake, the resistance of the rocks in the focus yields, such that
we have a localized, active distribution of opposite forces which is proportional to ∂δ(R−R0)/∂n,
where R0 is the position of the focus and n is the (dimensionless) coordinate along the unit vector
n. Since the direction of the vector n is arbitrary, the force distribution can also be written as
fli∂iδ(R − R0) = fil∂iδ(R − R0) = flni∂iδ(R −R0), where fi are the components of the force
with magnitude f acting along the direction n and li are the components of the spatial extension
of the focus (summation over repeated labels is assumed); the function δ in these expressions
should be understood as a function localized over the distance of the order l along the direction
n, and, similarly, along the other two transverse directions. The quantity fl is proportional to
the seismic moment M (we may also take f = λA, where λ is the elastic modulus and A is the
area of the fault); we prefer to use the seismic moment divided by density ρ, m = M/ρ; then, the
force distribution per unit mass reads

F(R, t) = m(t)ni∂iδ(R−R0)n , Fi(R, t) = m(t)ninj∂jδ(R−R0) , (1)

where m(t) has a certain time dependence during the earthquake. Usually, this function is localized
over a finite duration T , such that we may use the δ-pulse time dependence m(t) = mTδ(t).

The force distribution given by equation (1) represents a point linear dipole; since a strain oc-
curring along a direction n generates forces directed both along n and along the two directions
perpendicular to n, the force distribution given by equation (1) should be generalized by replacing
m(t)ninj by the symmetric tensor mij(t) of the seismic moment:

Fi(R, t) = mij(t)∂jδ(R−R0) (2)

(the transverse components of the seismic moment involve the shear elastic modulus µ); we can
see that the force generated by a faulting source is a tensorial force. It is easy to see that the total
force and angular momentum associated with the force distribution given by equation (2) are zero
(the latter by the symmetry of the tensor mij). According to our definition, the moment tensor is
positive definite for an "implosion", and negative definite for an "explosion" (in general, it is an
indefinite tensor). A schematic representation of a faulting-source force distribution is shown in
Fig.1.

A more direct derivation of the seismic tensorial forces is obtained by estimated the couple pro-
duced by a force density F(R, t) = f(t)g(R), where f is the force and g(R) is a distribution
function; a point couple along the i-th direction can be represented as

fig(x1 + h1, x2 + h2, x3 + h3)− fig(x1, x2, x3) ≃ fihj∂jg(x1, x2, x3) , (3)
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where hj are the components of an infinitesimal displacement h. The moment fihj are generalized
to a symmetric tensor Mij , which is the seismic moment; in addition, the distribution g(R) is
replaced by δ(R−R0), where δ denotes the Dirac function localized at the point with the position
vector R0. Thus, we get the tensorial force density which is given in equation (2).[35]

Similarly, the force distribution localized in a volume source with a small radius a can be written
as

F(R, t) = p(t)
R−R0

|R−R0|
θ (a− |R−R0|) , (4)

where p(t) = f(t)/a3 is force divided by density per unit volume (force per unit mass) and θ(x) = 1
for x > 0, θ(x) = 0 for x < 0 is the step function. We show in this paper that the waves produced
by this volume source in the limit a → 0 (for a δ-pulse time dependence) can be obtained from
the faulting source given by equation (2) by replacing formally the tensor mij by −mδij , where
the scalar seismic moment is of the order m ≃ fa.

It is worth giving a numerical estimation of the localization length l of the focal region. We note
that the seismic moment M has the dimension of a mechanical work (energy); it is reasonable to
admit that this energy is spent to destroy the elastic consistency of the material which is ruptured
in the focal volume V during the earthquake; this energy density is of the order of the elastic
energy density of the material ρc2, where ρ is the material density and c is a mean value of the
velocity of the elastic waves. Therefore, the equality M/V ≃ ρc2 may hold. For M = 1026dyn · cm
(corresponding to an earthquake magnitude Mw = 7, from the Gutenberg-Richter definition[36]-
[40] lgM = 1.5Mw +16.1), ρ = 5g/cm3 for the average Earth’s density and c = 5km/s for a mean
value of the velocity of the elastic waves we get a volume V = 8× 1013cm3 of the focal region and
a localization length l = V 1/3 ≃ 1km. This spatial uncertainty leads to a time uncertainty in the
spherical waves of the order T = l/c = 0.2s (for a mean velocity c = 5km/s).

Primary P - and S-waves. The equation of the elastic waves reads

ü− c2t∆u− (c2l − c2t )grad · divu = F , (5)

where u is the displacement, cl,t are the wave velocities and F is the force (per unit mass).[41]
We consider this equation in an isotropic elastic half-space extending in the region z < 0 and
bounded by the flat surface z = 0. The faulting source, which generates the force F, is placed at
R0 = (0, 0, z0), z0 < 0; the force is given by equation (2) above with mij(t) = mijTδ(t), where
mij is the seismic moment tensor (divided by density) and T is the duration of the timeδ-impulse.
The coordinates of the position vector R are denoted by (x1, x2, x3); the notation x = x1, y = x2,
z = x3 is also used. We use the Helmholtz decomposition F = gradφ+ curlH (divH = 0), whence

∆φ = divF , ∆H = −curlF ; (6)

similarly, the displacement is decomposed as u = gradΦ+curlA, with u
l = gradΦ and u

t = curlA,
by using the Helmholtz potentials Φ and A (divA = 0); equation (5) is transformed into two
standard wave equations

Φ̈− c2l∆Φ = φ , Ä− c2t∆A = H ; (7)

we can see that the l, t-waves are separated.

From equations (6), and making use of the force distribution given by equation (2), we get imme-
diately

φ = − 1
4π
mijTδ(t)

∫
dR

′ 1

|R−R
′|∂

′

i∂
′

jδ(R
′ −R0) =

= − 1
4π
mijTδ(t)∂i∂j

1
|R−R0|

(8)
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and
Hi =

1
4π
εijkmklTδ(t)

∫
dR

′ 1

|R−R
′|∂

′

j∂
′

lδ(R
′ −R0) =

= 1
4π
εijkmklTδ(t)∂j∂l

1
|R−R0|

,

(9)

where εijk is the totally antisymmetric tensor of rank three. Making use of these sources in
equations (7), we get the potentials

Φ = − T
(4πcl)2

mij

∫
dR

′
δ(t−

∣∣∣R−R
′
∣∣∣/cl)

|R−R
′| ∂

′

i∂
′

j
1

|R′
−R0| =

= − T
(4πcl)2

mij∂i∂j
∫
dR

′
δ(t−

∣∣∣R−R
′
∣∣∣/cl)

|R−R
′|

1

|R′−R0|

(10)

and

Ai =
T

(4πct)2
εijkmkl

∫
dR

′
δ(t−

∣∣∣R−R
′
∣∣∣/ct)

|R−R
′| ∂

′

j∂
′

l
1

|R′−R0| =

= T
(4πct)2

εijkmkl∂j∂l
∫
dR

′
δ(t−

∣∣∣R−R
′
∣∣∣/ct)

|R−R
′|

1

|R′
−R0| .

(11)

We extend the integral

I =
∫
dR

′
δ(t−

∣∣∣R−R
′
∣∣∣/c)

|R−R
′|

1

|R′−R0| =

=
∫
dr δ(t−r/c)

r
1

|R−R0−r|

(12)

(where c stands for cl,t) occurring in the above equations to the whole space, where it can be
effected straightforwardly by using spherical coordinates; we get

I = 4πc

[
θ (ct− |R−R0|) +

ct

|R−R0|
θ (|R−R0| − ct)

]
; (13)

inserting this result in equations (10) and (11) we get the Helmholtz potentials

Φ = − T
4πcl

mij∂i∂j
[
θ (clt− |R−R0|) + clt

|R−R0|
θ (|R−R0| − clt)

]
,

Ai =
T

4πct
εijkmkl∂j∂l

[
θ (ctt− |R−R0|) + ctt

|R−R0|
θ (|R−R0| − ctt)

]
.

(14)

Making use of the notation

Fl,t =
T

4πcl,t

[
θ (cl,tt− |R−R0|) +

cl,tt

|R−R0|
θ (|R−R0| − cl,tt)

]
, (15)

the potentials can be written as

Φ = −mij∂i∂jFl , Ai = εijkmkl∂j∂lFt ; (16)

it follows the displacement

ul
i = ∂iΦ = −mjk∂i∂j∂kFl ,

ut
i = εijk∂jAk = mjk∂i∂j∂kFt −mij∂j∆Ft .

(17)
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Figure 2: The functions Ft (a) and Fl (b) vs R1.

We can see that these solutions consist of two parts: spherical waves propagating with velocities cl,t,
given by δ-functions and derivatives of δ-functions (arising from the derivatives of the θ-functions
in equation (15)), and a quasi-static displacement which includes the functions θ(|R−R0| − cl,tt)
and extends over the distance ∆R1 = (cl − ct)t (R1 = R −R0). The quasi-static contributions,
being proportional to third-order derivatives of t/R1, are solutions of homogeneous wave equations.
In the transient regime, the quasi-static contributions are omitted, and we limit ourselves to the δ-
functions and derivatives of δ-functions arising from the derivatives of the θ-functions in equation
(15). Outside the support of the δ-functions and their derivatives (i.e., for R1 = |R−R0| 6= cl,tt)
the displacement is zero. This point can be made more technical by the following considerations.

For R1 6= ctt the function Ft in equation (15) is either T/4πct or T t/4πR1; in both cases the term
with the laplacian in the second equation (17) cancels out, and u

t acquires the same expression as
−ul

i with cl replaced by ct. Therefore, in what follows we may restrict ourselves to only one kind
of solution, for instance u

l; for simplicity, we give up for the moment the label l in u
l, Fl and cl,

and write simply u, F and c. The functions Fl,t(R1) are shown in Fig.2.

The strain tensor is
uij = ∂jui = −mkn∂i∂j∂k∂nF (18)

(the moment tensor mij is symmetric) and the trace of the strain tensor reads

uii = −∂k∂nmkn∆F ; (19)

for R1 6= ct, the laplacian in equation (19) is zero; it follows that the trace of the strain tensor is
vanishing (uii = 0). The boundary conditions for a free surface z = 0 are ui3 = 0 for i = 1, 2 and
(1− 2σ)u33 + σuii = 0 for z = 0 (where σ is Poisson’s ratio), i.e. ui3 = 0 for i = 1, 2, 3 and z = 0
(since uii = 0); we get

ui3|z=0 = − mkn∂i∂3∂k∂nF |z=0 = 0 . (20)

It is worth noting that for R1 < ct (behind the wavefront), F = T/4πc and equation (20) is
satisfied (actually, it is satisfied outside the region ∆R1 = (cl − ct)t, where the displacement is in
fact vanishing). For R1 > ct (beyond the wavefront; actually inside the region ∆R1 = (cl − ct)t)
it is convenient to introduce Greek labels α, β, γ for the coordinates i = 1, 2; we have mkn∂k∂n =
mβγ∂β∂γ + 2mβ3∂β∂3 +m33∂

2
33 and

uα3|z=0 = − (mβγ∂α∂β∂γ∂3 + 2mβ3∂α∂β∂
2
3 +m33∂α∂

3
33)F |z=0 = 0 ,

u33|z=0 = − (mβγ∂β∂γ∂
2
3 + 2mβ3∂β∂

3
3 +m33∂

4
33)F |z=0 = 0 .

(21)

In order to satisfy such conditions it is usual to seek a reflected wave[42] given by Φr = −nij∂i∂jF̃ ,

where F̃ is given by equations (15) with R0 replaced by R̃0 = (r,−z0) and nij is a moment tensor
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to be determined. We note that Φr is a solution of the homogeneous wave equation
¨̃
Φ− c2∆Φ̃ = 0

(for z < 0) and preserves the vanishing trace of the strain tensor, since F̃ is either T/4πc or

(T t/4π) 1
R2

, where R2 =
∣∣∣R− R̃0

∣∣∣. It is easy to see that there is no such tensor nij to satisfy

the conditions given by equations (21). For instance, we may choose nβγ = mβγ, n33 = m33 and
nβ3 = −mβ3, and the first equation (21) is satisfied, but the second equation (21) is not satisfied
(except for mβγ = nβγ = 0, m33 = n33 = 0); similarly, we can satisfy this latter equation (21) by
nβγ = −mβγ , n33 = −m33 and nβ3 = mβ3, but not the former (except for mβ3 = nβ3 = 0).

In fact, we note that F = −T/4πc for R1 < ct and F = −T t/4πR1 for R1 > ct generate a

potential Φ = −mij∂i∂jF which is a solution of the homogeneous wave equation Φ̈−c2∆Φ = 0 (in
particular, it is worth noting the linear time dependence in F = −T t/4πR1). Consequently, we
may add F to F , resulting in F +F = 0 (for R1 6= ct) and a displacement ui3+ ui3 which satisfies
the boundary conditions given by equation (21) (obviously, outside the support R1 = ct of the
δ-functions and their derivatives). A similar argument applies to the displacement u

t. Moreover,
it is worth noting that under these conditions the Helmholtz potentials are identically vanishing
everywhere for R1 6= ct, i.e. we have the trivial solution u = 0 in these regions (and the problem
of boundary conditions becomes in fact meaningless, as expected). We have nontrivial solutions
only on the support of the functions δ(cl,t − R1) and their derivatives, as expected.[43]

The solution is given by the potentials in equation (16), provided we leave aside the quasi-static
displacement; we get

ul
i = − T

4πcl
[(mjjxi + 2mijxj)(1− 2clt/R) 1

R3−

−mjkxixjxk(3− 8clt/R) 1
R5 ]δ(R− clt)+

+ T
4πcl

[(mjjxi + 2mijxj)(1− clt/R) 1
R2−

−mjkxixjxk(3− 5ct/R) 1
R4 ]δ

′

(R− clt)+

+ T
4πcl

mjkxixjxk(1− clt/R)δ
′′

(R − clt) ,

(22)

where R1 = R−R0 is denoted here by R = (x1, x2, x3); we may put R = clt in this equation, and
get

ul
i =

T
4πcl

[(mjjxi + 2mijxj)
1
R3 − 5mjkxixjxk

1
R5 ]δ(R− clt)+

+ T
2πcl

mjkxixjxk
1
R4 δ

′

(R− clt) ;
(23)

similarly, from equations (17) we get

ut
i = − T

4πct
[(mjjxi + 2mijxj)

1
R3 − 5mjkxixjxk

1
R5 ]δ(R− ctt)−

− T
2πct

(
mjkxixjxk

1
R4 −mijxj

1
R2

)
δ
′

(R− ctt) .
(24)

We can see that in the far-field region the faulting source generates two (double-shock) spherical
waves (derivatives of the δ-function), propagating with velocities cl,t, given by

uf
i ≃ Tmijxj

2πctR2 δ
′

(R− ctt) +
Tmjkxixjxk

2πR4

[
1
cl
δ
′

(R− clt)− 1
ct
δ
′

(R− ctt)
]
; (25)

these are the leading contributions to the solution in the far-field region.
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The waves propagating with velocity cl are the primary P waves (compressional waves), while the
waves propagating with velocity ct are the primary S-waves (they include the shear contribution).
The second term on the right in equation (25) is longitudinal (∼ R), while the polarization of
the first term depends on the moment tensor. The magnitude of these waves is of the order
uf ≃ mT/cRl2, where m is the seismic moment (divided by density), c is a mean wave velocity
and l = cT is the linear dimension of the localization of the δ-function (linear dimension of the
earthquake’s focus). Making use of a seismic moment M = 1026dyn · cm (earthquake’s magnitude
7), density ρ = 5g/cm3 (m = M/ρ), a mean velocity c = 5km/s, l = 1km, for an earthquake’s
duration T = 0.2s, we get at distance R = 100km a far-field wave uf of the order 1m.

Structure factor. It is worth noting that the spherical-wave character of the displacement
(involving δ- and δ

′

-functions) is closely connected to the localization of the source, i.e. to the
functions δ(t) and δ(R − R0) occurring in the mathematical expression of the source (equation
(6)). For instance, let us assume that we have a succession of shocks in the source, labelled by i,
occurring at times ti, with duration Ti; then, the displacement given by equations (23) and (24)
includes summations of the type

∑

i

Tiδ (R− c(t− ti)) ,
∑

i

Tiδ
′

(R− c(t− ti)) , (26)

where c is a generic notation for the velocities cl,t; for a sufficiently dense distribution of such
shocks, we may replace the summations over i by integrals:

∑
i Tiδ (R− c(t− ti)) =

1
∆T

∫
dt

′

T (t
′

)δ(R− ct+ ct
′

) = 1
c∆T

T (t− R/c) ,

∑
i Tiδ

′

(R − c(t− ti)) =
1

∆T

∫
dt

′

T (t
′

)δ
′

(R− ct+ ct
′

) = − 1
c2∆T

T
′

(t− R/c) ,
(27)

where ∆T is the mean separation between the pulses. We can see that the displacement has not a
spherical-wave character anymore, but instead it is given now by the functions T and its derivative
T

′

(at the retarded time), which play the role of time signatures of the source. A similar analysis
can be done for shocks distributed spatially; we have, for instance

∑
ij Tiδ

′

(|R−Rj| − c(t− ti)) f (R−Rj) =

= − 1
c2∆T∆v

∫
dR

′

T
′

(t−
∣∣∣R−R

′
∣∣∣ /c)f

(
R−R

′
)

,
(28)

where f(R) represents the spatial dependence in equation (25) (except the δ
′

-functions) and ∆v
is the mean volume associated with individual shocks. The integral in equation (28) reflects the
time-space structure of the earthquake’s focal region. The factor 1/∆v can be replaced by a
spatial distribution weight ws(R

′

), a procedure which is also valid for the factor 1/∆T , which may
be replaced by a weight function wt(t

′

); a more general situation would imply a weight function
w(t

′

,R
′

) instead Ti/∆T∆v, which plays the role of a structure factor for the focal region; then,
the displacement can be represented as

∫
dR

′

dt
′

w(t
′

,R
′

)δ
′
(∣∣∣R−R

′
∣∣∣− c(t− t

′

)
)
f
(
R−R

′
)
=

= − 1
c2

∫
dR

′

w
′

(t−
∣∣∣R−R

′
∣∣∣ /c,R′

)f
(
R−R

′
)

,

(29)

where the weight function w is localized over the focal region and over the time duration of the
earthquake; such weight functions can be derived, in principle, from recorded seismograms, as
an inprint of the structure of the focal region, by de-convoluting equations of the type given
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by equation (29). The occurence of shocks in succession is reflected in the irregular oscillations
exhibited usually by the weight function (and by the displacement, velocity and acceleration
recorded in seismograms). The succession (i, j) of shocks arising at ti and Rj , of the form δ(t −
ti)δ(R−Rj), may be viewed as a series of elementary (primitive) earthquakes.[3, 44]

Energy balance. Multiplying the wave equation (5) by u̇ we get the energy conservation law

∂E
∂t

= −divS+ w , (30)

where

E =
1

2
u̇2
i +

1

2
c2t (∂jui)

2 +
1

2
(c2l − c2t )(∂iui)

2 (31)

is the energy density (per unit mass),

Si = −c2t (u̇j∂iuj)− (c2l − c2t )(u̇i∂juj) (32)

are the components of the energy flux density (per unit mass) and w = u̇iFi is the density of the
mechanical work done by the external force F per unit time (and unit mass). It is easy to see
that for a force localized in the focal point the mechanical work w is nonvanishing only at this
point and for a short time T , while for a spherical wave the continuity equation ∂E + divS = 0
is satisfied identically at any point outside the focus, the energy density E and the energy flux
density S being zero outside the support of the wave. The mechanical work done by the external
force for a short period of time in the focus is transferred to the wave energy, which is carried
through the space by the propagating wave without loss.

In order to have a numerical estimate we use F ≃ M/ρl4 for the force given by equation (2)
and u ≃ M/ρc2Rl for a spherical wave of the form u = (MT/ρcR)δ

′

(R − ct), with l = cT .
The density of the mechanical work per unit time is w ≃ M2/ρ2cl7 and the total mechanical
work is W ≃ M2/ρc2l3. The energy density is E ≃ M2/ρ2c2R2l4 and the total energy is E0 =
M2/ρc2l3 = W (similarly, the energy flux density is S ≃ M2/ρ2cR2l4, divS ≃ M2/ρ2cR2l5, and we
can check the continuity equation ∂E/∂t+ divS = 0). It is worth noting that the energy E0 = W
transferred to the waves is smaller than the energy M released in the focal region by the factor
W/M = M/ρc2l3 = u0/l, where u0 = M/ρc2l2 is the displacement in the focal region (at distance
R = l). Making use of M = 1026dyn · cm, ρ = 5g/cm3, c = 5km/s and l = 1km, we get a focal
displacement of the order u0 ≃ 80m.

Secondary waves. The primary P - and S-waves given above are only an approximation to our
problem. Without resorting to the formal theory of the generalized functions (distributions),[43]
we may admit that the support of the δ

′

-functions which define the primary P - and S- (double-
shock) waves is small, but finite. For instance, for a duration T we may view the time δ-pulse
as extending over this duration T ; in this case the spatial extension of the primary waves is
∆Rl,t = cl,tT ; for T = 0.2s we may have spatial extensions as large as 0.6km − 1.2km (for
cl = 3km/s and ct = 6km/s).

The wavefront of the spherical waves given by equation (25) intersects the surface x3 = z = 0

along a circular line defined by R = (x1, x2,−z0), R = (r2 + z20)
1/2

, where r = (x2
1 + x2

2)
1/2

is the
distance from the origin (placed on the surface) to the intersection points (we recall that R and
R are in fact R−R0 and R−R0). The radius R moves with velocity c, R = ct, t > |z0| /c, and

the in-plane radius r moves according to the law r =
√
R

2 − z20 =
√
c2t2 − z20 , where c stands for

the velocities cl,t; its velocity v = dr/dt = c2t/r is infinite for r = 0 (R = ct = |z0|) and tends to c
for large distances.
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Figure 3: Spherical wave intersecting the surface z = 0 at P . The notations are given in text.

The finite duration T of the source makes the δ
′

-functions in equation (25) to be viewed as
functions with a finite spread l = ∆R = cT ≪ R; consequently, the intersection line of the waves
with the surface has a finite spread ∆r, which can be calculated from

R
2
= r2 + z20 , (R + l)2 = (r +∆r)2 + z20 ; (33)

hence,

∆r ≃ 2Rl

r +
√
r2 + 2Rl

. (34)

we can see that for r → 0 the width ∆r ≃
√
2 |z0| l of the seismic spot on the surface is much

larger than the width of the spot for large distances ∆r ≃ l (2 |z0| ≫ l). For values of r not too
close to the origin (epicentre) we may use the approximation ∆r ≃ Rl/r.

As long as the spherical wave is fully included in the half-space its total energy E0 is given by
the energy density E integrated over the spherical shell of radius R and thickness l. If the wave
intersects the surface of the half-space, its energy E is given by the energy density integrated over
the spherical sector which subtends the solid angle 2π(1 + cos θ), where cos θ = |z0| /R. It follows
that E = 1

2
E0 (1 + |z0| /ct) for ct > |z0|. We can see that the energy of the wave decreases by the

amount Es = 1
2
E0 (1− |z0| /ct), ct > |z0|. This amount of energy is transferred to the surface,

which generates secondary waves (according to Huygens principle). A spherical wave intersecting
the surface z = 0 is shown in Fig.3.

In the seismic spot of width ∆r generated on the surface by the far-field primary P - and S-waves
given by equation (25) we may expect a reaction of the (free) surface, such as to compensate the
force exerted by the incoming spherical waves. This localized reaction force generates secondary
waves, distinct from the incoming, primary spherical waves. The secondary waves can be viewed
as waves scattered from the surface. Strictly speaking, if the reaction force is limited to the zero-
thickness surface (as, for instance, a surface force), it would not give rise to waves, since its source
has a zero integration measure. We assume that this reaction appears in a surface layer of thickness
∆z (∆z ≪ |z0|), where it is produced by volume forces. The thickness ∆z of the superficial layer
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activated by the incoming primary wave can be estimated from ∆z = l cos θ = l |z0| /R, where

R = ct > |z0|, or ∆z = l |z0| / (r2 + z20)
1/2

. We can see that ∆z depends on ct = R (and on r).
For a limited range of variation of r about |z0|, and in virtue of its small values, we may assume
the parameter ∆z as being a constant of the order l.

The volume force per unit mass is given by ∂jσij/ρ, where σij = ρ [2c2tuij + (c2l − 2c2t )ukkδij ] is the
stress tensor, uij is the strain tensor and ρ is the density of the body. At the surface we may take
approximately the reaction force which compensates the elastic force as

fi = −∂jσij/ρ = −∂j
[
2c2tuij + (c2l − 2c2t )ukkδij

]
. (35)

The strain tensor calculated from the displacement given by equation (25) (in the far-field region)
is

uij ≃ T
4πct

mikxjxk+mjkxixk

R3 δ
′′

(R− ctt)+

+ T
2π

mknxixjxkxn

R5

[
1
cl
δ
′′

(R− clt)− 1
ct
δ
′′

(R− ctt)
]

,

(36)

and its trace is

uii =
T

2πcl

mijxixj

R3
δ
′′

(R− clt) . (37)

In order to compute the secondary waves we use the decomposition in Helmholtz potentials. We
denote by u

′

the displacement in the secondary waves, and introduce the Helmholtz potentials
Φ and A (divA = 0) by u

′

= gradΦ + curlA; then, we decompose the force f according to
f = gradϕ + curlH (divH = 0), where ∆ϕ = divf and ∆H = −curlf ; by the equation of the
elastic waves, the Helmholtz potentials satisfy the wave equations Φ̈− c2l∆Φ = ϕ, Ä− c2t∆A = H.
From the force given by equation (35) we get by straightforward calculations

ϕ = −c2l uii , H = c2t curlu . (38)

Secondary l- and t-waves. Let us focus first on the potential ϕ, given by equations (37) and
(38),

ϕ = −cT

2π

mijxixj

R3
δ
′′

(R− ct) , (39)

where, for simplicity, we put c instead of cl. The potential ϕ is limited to a surface layer of
thickness ∆z at the surface z = 0, such that we introduce

ϕ = −∆z
cT

2π

mijxixj

R3

∣∣∣∣
z=0

δ
′′

(R− ct)δ(z) , (40)

which can also be written as

ϕ = −∆z
cT

2π

mαβxαxβ − 2mα3xαz0 +m33z
2
0

R
3 δ

′′

(R− ct)δ(z) , (41)

where α, β = 1, 2. From the wave equation Φ̈− c2l∆Φ = ϕ we have the Kirchhoff solution

Φ = −∆z T
8π2c

∫
dR

′ mαβx
′

αx
′

β
−2mα3x

′

αz0+m33z20

R
′3|R−R

′| δ
′′

(R
′

− ct
′

)δ(z
′

) =

= −∆z T
8π2c

∫
dr

′ mαβx
′

αx
′

β
−2mα3x

′

αz0+m33z20

R
′3
∣∣∣R−R

′
∣∣∣

δ
′′

(R
′

− ct
′

) ,

(42)
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where t
′

= t−
∣∣∣∣R−R

′
∣∣∣∣ /c.[45]

The point of localization of the function δ
′′

(R
′

−ct
′

) in equation (42) gives the propagation equation

ct
′

= ct−
∣∣∣∣R−R

′
∣∣∣∣ = R

′

. (43)

The distances R,

∣∣∣∣R−R
′
∣∣∣∣ and R

′

are the sides of a triangle; we can see that the secondary waves

have to go along the distance
∣∣∣∣R−R

′
∣∣∣∣+R

′

up to the observation point R, which is longer than the

distance R covered by the primary waves (except for R
′

= R). Let us take an observation point at
R = (r,−z0) on the surface z = 0; for |z0| < ct < R the primary wave intersects the plane z = 0

along a circle with radius rP < r (rP =
√
c2t2 − z20). The primary wave has passed through all the

points inside this circle, so all these points may act as sources of secondary waves. However, it is

easy to see that the propagation condition (43) is not fulfilled for these points (R
′

+

∣∣∣∣R−R
′
∣∣∣∣ > R,

triangle inequality). On the contrary, for ct > R there exist points on the surface which satisfy the
propagation condition. It follows that for t > ta = R/c secondary waves may begin to arrive at the
observation point; we note that the moment of arrival of the secondary waves at the observation
point is delayed in comparison with the moment the primary wave passes over the observation
point, since the velocity v of the primary waves on the surface is higher than velocity c. Since the
wavefront of the secondary waves arriving at the observation point is produced by sources in the
proximity of the observation point, we may expect a large contribution at the arrival moment. This
is the main shock, well documented in all seismic records.[3, 46] The secondary waves continue to
arrive at the observation point at all the later times. Such a long tail of the seismic waves is also
well documented (see, for instance, Refs. [18, 44, 47]).

Using cartesian coordinates R = (x, 0,−z0), R
′

= (x
′

, y
′

,−z0), the propagation condition (43)
leads to the equation of a displaced ellipse

(x
′ − x0)

2

a2
+

y
′2

b2
= 1 , (44)

where
x0 =

A2x
c2t2−x2 , a2 = c2t2(c2t2−R2)2

4(c2t2−x2)2
,

b2 = (c2t2−R2)2

4(c2t2−x2)
, 2A2 = c2t2 − x2 + z20 ;

(45)

the eccentricity parameter of this ellipse is

e =
√
1− b2/a2 = |x| /ct . (46)

The points of this ellipse are sources of the secondary waves. The ellipse of the secondary waves
sources is shown in Fig. 4

For long times, ct ≫ R, the ellipse given by equation (44) becomes a circle, with a = b ≃ ct/2,

and the distance R
′

tends to large values R0, R
′

→ R0 = ct/2; in this case, the propagation
condition does not depend anymore on the angle of integration in equation (42). Since the largest

part of the integration domain corresponds to R
′

≃ R0, we use this approximation to estimate the
integral in equation (42).
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xx0O

−b

b

x0 + ax0 − a

xP

Py′

x′

Figure 4: The ellipse of the secondary waves sources. The observation point on the surface is at
(x, 0) and the primary spherical wave P intersects the surface on a circle of radius xP = rP =

(c2t2 − z20)
1/2

, for large ct. The rest of notations are given in text.

It is convenient to use the displacement u
′

= gradΦ from equation (42); in the far-field region we
get

u
′ ≃ −∆z T

8π2c

∫
dr

′ mαβx
′

αx
′

β
−2mα3x

′

αz0+m33z20

R
′3
∣∣∣R−R

′
∣∣∣

R−R

′

∣∣∣R−R
′
∣∣∣
δ
′′′

(R
′

− ct
′

) ≃

≃ ∆z T
8π2c

∫
dr

′ mαβx
′

αx
′

β
−2mα3x

′

αz0+m33z20

R
′5 R

′

δ
′′′

(R
′

− ct
′

) ;

(47)

the integration over the angle gives

u
′

α = ∆z T |z0|
4πc

mα3

∫
dr

′ · r′ r
′
2

R
′5 δ

′′′

(R
′

− ct
′

) ,

u
′

3 = ∆z T |z0|
8πc

∫
dr

′ · r′ r
′
2(m11+m22)+2z2

0
m33

R
′5 δ

′′′

(R
′

− ct
′

) .

(48)

The integration with respect to the variable r
′

is performed in the vicinity of r0 =
√
R2

0 − z20 ; to

this end we insert r
′

= r0 + ρ in the argument R
′

− ct
′

of the function δ
′′′

and expand it in powers
of ρ; we get

R
′

− ct
′

= R
′

− ct+

∣∣∣∣R−R
′
∣∣∣∣ ≃

≃ 2
√
(r0 + ρ)2 + z20 − ct ≃ 2r0

R0
ρ ;

(49)

the function δ
′′′

(R
′

− ct
′

) becomes

δ
′′′

(R
′

− ct
′

) ≃ δ
′′′

(2r0ρ/R0) =
R4

0

16r40

d3

dρ3
δ(ρ) . (50)

Similarly, we put r
′

= r0 + ρ in the rest of the integrands in equations (47) and expand these
functions in powers of ρ; for integration we need to carry out this expansion up to the third order.
Making use of

R
′

≃
∣∣∣∣R−R

′
∣∣∣∣ = R0 +

r0
R0
ρ+

z2
0

2R3

0

ρ2 + ... , (51)
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we get finally

u
′

α = ∆z 3T |z0|mα3

32πcr4
0
R0

A , u
′

3 = ∆z 3T |z0|(m11+m22)
64πcr4

0
R0

A+∆z 15T |z0|
3m33

64πcr4
0
R3

0

B , (52)

where
A =

105r6
0

2R6

0

+
35r4

0

R4

0

+
15r2

0

2R2

0

− 1 ,

B =
35r4

0

R4

0

− 14r2
0

R2

0

+ 1 .

(53)

An estimation of the order of magnitude of the displacement u
′

can be obtained by noticing that
the brackets in equation (53) have a weak variation with R0 ≃ r0 ≃ ct/2 ≫ |z0|; we get

u
′

α ≃ ∆z 282Tmα3

πc
|z0|
(ct)5

,

u
′

3 ≃ ∆z 3T
πc

|z0|
(ct)5

[
47(m11 +m22) + 220m33

z2
0

c2t2

]
;

(54)

we can see that the displacement in the secondary waves has a long tail (t−5-dependence). The
greatest value of the displacement may be estimated by extending the above calculations to the
time given by cta = R, when R0 is of the order R (and r0 ≃ r); for r ≪ |z0| we get

u
′

α ≃ −∆z 3Tmα3

32πcr4
,

u
′

3 ≃ −∆z 3T
64πcr4

(m11 +m22 − 5m33) .
(55)

In order to get a numerical estimation for the magnitude of the secondary waves we may take
the thickness ∆z of the order l = cT ; then, making use of a seismic moment M = 1026dyn · cm
(earthquake’s magnitude 7), density ρ = 5g/cm3 (m = M/ρ), a mean velocity c = 5km/s,
r = 50km, for an earthquake’s duration T = 0.2s, we get a displacement of the order 10−3cm.
It is worth noting that the inclusion of the structure factor of the seismic source leads to larger
displacements and to irregular oscillations in the amplitude of the secondary waves, corresponding
to the succession of shocks in the focal region.

The secondary t-waves are derived in the same manner, by using the ptential H given by equation
(38) (and the displacement given by equation (25)). We get

Hi =
cT

2π

εijkmklxjxl

R3
δ
′′

(R− ct) (56)

and

H i = ∆z
cT

2π

Ci

R
3 δ

′′

(R− ct)δ(z) , (57)

where
Ci = εiαkmkβxαxβ − (εiαkmk3 + εi3kmkα)xαz0 + εi3kmk3z

2
0 (58)

and c stands for ct; the solution of the wave equationÄ − c2∆A = H is

Ai = ∆z T
8π2c

∫
dr

′ C
′

i

R
′3
∣∣∣R−R

′
∣∣∣
δ
′′

(R
′

− ct
′

) . (59)

In the expression of the displacement u
′

= curlA we perform the integrations over ϕ
′

and r
′

and
get

u
′

i = ∆z
3T |z0|

64πcr40R0

(3mi3 − δi3mjj)A+∆z
15T |z0|3
64πcr40R

3
0

(mi3 − δi3m33)B , (60)
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where A and B are given by equations (53). By comparing equations (60) with equations (52),
we can see that the displacement in the secondary l, t-waves is of the same order of magnitude.

Volume source. For a volume source of the form F = p(t)(R/R)θ (a− R) (equation (4)) we
have curlF = 0; therefore, H = 0 and ut = 0. For such a volume force we have only l-waves
(dilatational waves), given by ül − c2l∆ul = gradφ, where ∆φ = divF; we may take gradφ = F,
such that we have

ul =
pT

4πc2l

∫
dR

′ δ
(
t−

∣∣∣R−R
′
∣∣∣ /cl

)

|R−R
′|

R
′

R′ θ(a−R
′

) (61)

for p(t) = pTδ(t). It is easy to see that ul = ulR/R, i.e. a volume source generates only
longitudinal waves, as expected. From equation (61) we get

ul =
pT

2c2l

∫ a

0
dR

′

R
′2
∫ 1

−1
du · u

δ
(
t−

√
R2 +R′2 − 2RR′u/cl

)

√
R2 +R′2 − 2RR′u

. (62)

The argument of the δ-function has a zero for

−1 ≤ u0 =
R2 +R

′2 − c2l t
2

2RR′ ≤ 1 , (63)

which gives

ul =
pT

4clR2

∫
dR

′

(R2 +R
′2 − c2l t

2) . (64)

The function u0(R
′

) given by equation (63) has a minimum for R
′

=
√
R2 − c2l t

2 for R > clt and

u0(R
′

) = 1 for R
′

= R ∓ clt; for R < clt the function u0(R
′

) has a zero for R
′

=
√
c2l t

2 − R2 and

u0(R
′

) = ∓1 for R
′

= clt∓R; taking into account these conditions, we get

ul =
pT

4clR2 [
1
3
a3 + (R2 − c2l t

2)a− (R2 − c2l t
2) |R− clt| −

−1
3
|R − clt|3]θ (a− |R− clt|) .

(65)

This wave extends within the region −a < R − clt < a and exhibits a wavefront which moves
with velocity cl (R = clt). The function in the brackets has two extrema ∓(a3/24 − 2cta2) at
R − clt = ∓a/2. Making use of p = f/a3 (where f is force divided by density), it is easy to see
that in the limit a → 0 the displacement ul given by equation (65) may be approximated by

ul ≃ − mT

2πclR
δ
′

(R− clt) , (66)

where we introduced the scalar seismic moment m (of the order m ≃ fa). We can see that the
displacement caused by such a volume source can be obtained from the far-field displacement
caused by a faulting source (equations (25)) by replacing formally in the latter the tensor mij

of the seimic moment by an isotropic (scalar) seismic moment m, mij → −mδij . The secondary
waves produced by a volume source are obtained from those produced by a faulting source by the
same formal procedure.

Secondary waves from plane waves. The calculations described above can be repeated for incident
plane waves of the form vei(KR−ωt); the secondary waves displacement is given by

u
′

=
i(Kv)Kl

2κl
∆zei(KlR−ωt) − iKt × (K× v)

2κt
∆zei(KtR−ωt) , (67)
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where Kl = (k,−κl) and Kt = (k,−κt). We can see that for a longitudinal incident (primary)
wave (K×v = 0) the secondary (scattered, reflected) wave is also longitudinal; and for a transverse
incident wave the secondary wave is transverse. This is different from the reflection of the plane
waves from a flat surface, where the reflected wave has in general mixed polarizations. At the
same time, the reflection coefficients given by equation (67) are different from the plane wave
reflection coefficients. However, if the incident beam is sufficiently narrow to be approximated by
a pulse, the results given by equation (67) hold. The absence of the mixed polarization is caused
by the fact that in a very narrow pulse on a free surface the other polarization component has
not enough time to develop. For a fixed surface mixed polarization occurs; the fixed surface is
extended, while the free surface takes the localized shape of the pulse.

Discussion and conclusions. The point faulting seismic source (spatially localized source) is
re-formulated in this paper, by using its localized nature and the symmetry of the seismic moment
tensor. The expression obtained this way for the faulting force, by means of the spatial derivatives
of the δ-function, is more convenient for the calculation of the seismic waves. Similarly, the volume
seismic source is represented in this paper by means of the pressure developed in a small spherical
cavity where the source is localized. It is shown that such a volume source is formally equivalent
with faulting source with an isotropic (scalar) seismic moment for a δ-pulse time dependence.
For extended sources, both in space and time, a structure factor of the focal region is discussed,
which is responsible to a large extent for the detailed, complex structure (fine structure) of the
seismograms.

For spatially localized sources with a δ-pulse time dependence the seismic waves are calculated in
the transient regime (prior to the setting-up of the stationary vibrations regime), by decomposing
both the displacement and the forces in the elastic waves equation by means of the Helmholtz
potentials; the calculations are carried out for an isotropic elastic half-space bounded by a plane
surface, which may be viewed as an approximate model for the Earth. Particular attention is paid
to the problem of boundary conditions. It is shown that, for such a faulting source, the primary
waves are double-shock P - and S-spherical waves, propagating with elastic wave velocities cl and,
respectively, ct (primary l, t-waves); as expected, a volume source produces only longitudinal l-
waves. The Dirac δ-function and its derivatives, appearing in the expression of these waves, are
only approximate representations of functions with a small, but finite extension in space and time.
On the Earth’s surface the spherical waves generate a circular seismic spot of finite spread. It
is shown here that the interaction of the primary waves with the surface in this region, affected
by the primary waves (and propagating on the Earth’s surface), the surface reaction produces
additional waves sources, localized on a superficial layer, which generate secondary waves. The
l, t-secondary waves have been explicitly calculated. They can be viewed as waves scattered from
the Earth’s surface (or from interfaces of Earth’s internal layers). It is shown that the secondary
waves contribute a long tail to the seismic movement, which is a well-known feature of the recorded
seismograms.

The paper puts forward convenient mathematical expressions for point faulting and volume seismic
sources, and the solution of the seismic wave equation in an elastic isotropic half-space in the
transient-wave time interval in two steps: primary spherical waves (P - and S-waves) and the
secondary waves generated by the primary waves by their interaction with the surface (waves
scattered by the surface), for sources with a δ-pulse time dependence.
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