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Abstract

The general solution for the elastic displacement in an isotropic half-space is provided for
point forces of arbitrary orientation and structure, localized either at an inner point (gen-
eralized Mindlin problem) or on the surface (generalized Boussinesq-Cerruti problem). The
starting point is the decomposition of the displacement by means of the Helmholtz poten-
tials and use of a simplified Grodskii-Neuber-Papkovitch procedure, followed by generalized
Poisson equations and in-plane Fourier transforms (i.e., Fourier transforms with respect to
the coordinates parallel with the surface). For inner forces explicit results are given for the
surface displacement. The method is applied to point tensorial forces which may appear from
seismic sources governed by the seismic moment tensor. The application of the method to
other similar problems and an alternate starting point to the general solution are discussed.

Introduction. The static deformation produced in an istropic elastic half-space by point forces,
localized either at an inner point or on the surface, is a well-known classical problem in static
Elasticity and Geotechnics. The deformation of an infinite, isotropic elastic body under the
action of a point force has been calculated as early as 1848 by Kelvin [1, 2]. In the second half
of the 19th century forces localized on the surface of an isotropic elastic half-space have been
studied. In the Boussinesq problem [3]-[6] the point force acts perpendicular to the surface, in
the Cerruti problem [7] the point force is tangential to the surface, while in the Flamant problem
[8] the force perpendicular to the surface is localized along a straight line. The deformation
of an isotropic elastic half-space caused by a point force localized at an inner point has been
calculated by Mindlin between 1936 and 1953 [9]-[13], while the two dimensional version of the
Mindlin problem, known as the Melan problem [14], was solved in 1932. In all these problems
the deformation is calculated by solving the Navier-Cauchy equation of elastic equilibrium with
suitable boundary conditions. The particular approaches vary from a direct application of the
Green theorem to using Kelvin approach to Grodskii-Neuber-Papkovitch [15]-[17], or Helmholtz,
potentials. Various accounts of these problems, at various levels of complexity, can be found in the
classical treatises given in Refs. [18]-[25]. A very interesting, original, heuristic method of solving
these problems is described in Ref. [26], where the method consists in guessing at solution by
using the underlying symmetries. Mindlin and Boussinesq problems have been recently revisited
[27], by using generalized Poisson equations and in-plane Fourier transforms, which are convenient
tools for treating boundary conditions.

We extend here this method to the whole class of point forces of arbitrary orientation and struc-
ture, acting either at an inner point or on the surface of an isotropic elastic half-space. The
starting point of the method is the decomposition of the displacement by means of the Helmholtz
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potentials, followed by a simplified version of the Grodskii-Neuber-Papkovitch procedure. The
main features of the method are the use of the generalized Poisson equations and the in-plane
Fourier transforms (i.e., Fourier transforms with respect to the coordinates parallel with the sur-
face). Beside generalized Mindlin and Boussinesq-Cerruti problems, the method is applied here
to point tensorial forces governed by the seismic moment tensor, which may arise from seismic
sources.

Helmholtz potentials. First part of solution. The equation of elastic equilibrium with the
force density f is [28]

∆u+
1

1− 2σ
grad divu = −

2(1 + σ)

E
f , (1)

where u is the displacement vector (with components ui, i = 1, 2, 3), E is the Young modulus and
σ is the Poisson ratio. The derivatives are taken with respect to the coordinates x1, x2, x3 of a
point with position vector r. Beside the notation x1, x2, x3 for coordinates we use also the notation
x = x1, y = x2, z = x3. In order to simplify the calculations (and notations) it is convenient to
absorb the factor −2(1 + σ)/E in the force density f and re-write (1) as

∆u+
1

1− 2σ
grad divu = f . (2)

We represent the solution as a sum of Helmholtz potentials Φ and a,

u = gradΦ + curl a , div a = 0 , (3)

and introduce the vector

b =
2(1− σ)

1− 2σ
gradΦ + curl a (4)

which satisfies the equation
∆b = f , (5)

derived from (2). In addition, by taking the div in equation (4), we get

∆Φ =
1− 2σ

2(1− σ)
divb . (6)

Eliminating curl a from (3) and (4), the solution becomes

u = b−
1

1− 2σ
gradΦ . (7)

Basically, this is the starting point of the Grodskii-Neuber-Papkovitch procedure [15]-[17], which
continues with using the solution

Φ =
1− 2σ

4(1− σ)
(r · b+ ϕ) (8)

of (6), where the potential ϕ satisfies the equation

∆ϕ = −r∆b =− r · f . (9)

Since the formation r · f is not convenient for our use of the Fourier transforms, we prefer to
preserve the potential Φ given by (6). This is what we call a simplified version of the Grodskii-
Neuber-Papkovitch procedure. In the infinite space, for a point force distribution, (5) and (6) lead
immediately to the Kelvin solution. Our strategy for the half-space is to solve (5) for the vector
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potential b, then use b to solve (6) for the Helmholtz scalar potential Φ and, finally, obtain the
solution u from (7). For the domain of definition of these equations we assume an isotropic elastic
half-space occupying the region z < 0 and bounded by the plane surface z = 0.

In order to prepare ourselves for tackling the boundary conditions, it is convenient to extend (5)
to its generalized form [29], by introducing the vector function b = bθ(−z), where θ(z) = 1 for
z > 0 and θ(z) = 0 for z < 0 is the step function. The vector b, which is the restriction of b to
the domain z < 0, is the solution b of the original Poisson equation. It is easy to see, by direct
calculations, that (5) becomes

∆b = f − b(1)δ(z)− b(0)δ
′

(z) (10)

where b(0) = b |z=0, b(1) = ∂b
∂z

|z=0 (the prime on the δ-function denotes the derivative with
respect to z); the superscripts (0) and (1) will be used throughout this paper for the values of the
functions and, respectively, their derivative with respect to z at z = 0. We can see that the Green
theorem is recovered from (10) for the restriction of the function b to the domain z < 0.

It is also convenient to use the projection ρ of the position vector r on the plane z = 0, corre-
sponding to the coordinates x1, x2, and to introduce the in-plane Fourier transforms of the type

b(ρ, z) =
1

(2π)2

∫
dk1dk2 · b̃(k, z)e

ik·ρ , (11)

where the integration is extended to the whole plane of k-vectors; k1, k2 are the components of
the vector k. This is a decomposition in plane waves, where k plays the role of a wavevector; the
wavevector k is the argument of the Fourier transform b̃(k, z), and k denotes the magnitude of
the vector k. These partial (or mixed) Fourier transformations are performed only with respect to
the in-plane coordinates x1, x2 (associated with the vector ρ), while the perpendicular-to-surface
coordinate x3 = z is not affected. As it is well known, the inverse Fourier transform is

b̃(k, z) =
∫

dx1dx2 · b(ρ, z)e
−ik·ρ , (12)

where the integration extends to the whole (x1, x2)-plane (the coordinates of the position vector
ρ). Such type of Fourier transforms are used throughout this paper for various other functions;
symbols endowed with a tilde are Fourier transforms of the type given by (11) and (12).

The in-plane Fourier transform of (10) leads to

d2b̃
dz2

− k2b̃ = f̃ − b̃(1)δ(z)− b̃(0)δ
′

(z) , (13)

where b̃(0) = b̃ |z=0, b̃(1) = ∂b̃
∂z

|z=0; for the sake of simplicity we may omit the arguments
(ρ, z) or (k, z), as they can be easily read from the context of the equations. Beside Roman
labels i, j, l... = 1, 2, 3 for coordinates and vector and tensor components, we use also throughout
the paper Greek suffixes α, β, γ, ... = 1, 2 for the coordinates and components labels 1 and 2,
summation over such repeated labels being implicit. With regard to the Fourier transformations
given above, the derivatives ∂α (with respect to the coordinates xα, α = 1, 2) applied to the
δ-function

δ(ρ) =
1

(2π)2

∫
dkxdky · e

ik·ρ (14)

(or, in general, to Fourier transforms) yield factors ikα, while the Laplacian ∂2
α = ∂α∂α generates a

factor −k2 in the Fourier transform; for example, ∂2
α = ∂α∂α applied to b given by (11) generates

−k2b̃.
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It is well known that the Green function of the one-dimensional Helmholtz operator on the left of
(13) is −(1/2k)e−k|z|. Making use of this Green function, we get the solution

b̃ = − 1
2k
c̃+ b̃(0)e−k|z| , (15)

where

c̃ =
∫ 0

−∞
dz

′

f̃(z
′

)

[
e
−k

∣∣∣z−z
′
∣∣∣
− e

−k

∣∣∣z+z
′
∣∣∣
]

(16)

and

b̃(1) = kb(0) + g̃ , g̃ =
∫ 0

−∞
dz

′

f̃(z
′

)e
−k

∣∣∣z′
∣∣∣
; (17)

in addition we have b̃(2) == ∂2b̃

∂z2
|z=0= k2b̃(0) + f̃ (0) directly from (13), where b̃(2) is the second-

order derivative of b̃ with respect to z for z = 0. We can see the occurrence of the image Green

function −(1/2k)e
−k

∣∣∣z+z
′
∣∣∣
, beside the direct Green function −(1/2k)e

−k

∣∣∣z−z
′
∣∣∣
, on the right of (16).

We note also the useful relations c̃(0) = 0, c̃(1) = −2kg and c̃(2) = −2kf̃ (0), which can be obtained
directly from (16).

We turn now to solving (6). It is not necessary to extend this equation to its generalized form,
by introducing the boundary values Φ(0)and Φ(1), since b(0) with its three components (which
play the role of "constants of integration") suffices to satisfy the boundary conditions; indeed,

the boundary conditions consist of three equations, as many as the number of the functions b
(0)
i ,

i = 1, 2, 3; the system of equations generated by the boundary conditions is determined for the
unknowns b

(0)
i ; introducing Φ(0)and Φ(1) would be superfluos. By Fourier transforming (6), with a

technique similar with that used above for (5) and making use of b̃ given by (15), we get

Φ̃ = (1−2σ)ikα
8(1−σ)k2

∫ 0
−∞ dz

′

c̃α(z
′

)e
−k

∣∣∣z−z
′
∣∣∣
−

− 1−2σ
8(1−σ)k

∫ 0
−∞ dz

′

sgn(z − z
′

)c̃3(z
′

)e
−k

∣∣∣z−z
′
∣∣∣
−

− 1−2σ
8(1−σ)k2

(
ikαb̃

(0)
α + b̃

(0)
3

)
(1− 2kz) e−k|z|

(18)

(by Fourier transforming, divb yields ikαb̃α + b̃
′

3, where prime means the derivative with respect
to z). In deriving (18) we use some particular forms of the integrals

J+ =
∫ 0
−∞ dz

′

e
−k

∣∣∣z−z
′
∣∣∣
e
−k

∣∣∣z′+z0

∣∣∣
=

(
1
2k

− z
)
e−k|z+z0| ,

J− =
∫ 0
−∞ dz

′

e
−k

∣∣∣z−z
′
∣∣∣
e
−k

∣∣∣z′−z0

∣∣∣
= 1

k
e−k|z−z0|+

+ |z − z0|
1
k
e−k|z−z0| − 1

2k
e−k|z+z0|

(19)

and

Js
− =

∫ 0
−∞ dz

′

sgn(z
′

− z0)e
−k

∣∣∣z−z
′
∣∣∣
e
−k

∣∣∣z′−z0

∣∣∣
=

= (z − z0) e
−k|z−z0| − 1

2k
e−k|z+z0| ,

Js
0 =

∫ 0
−∞ dz

′

sgn(z − z
′

)e
−k

∣∣∣z−z
′
∣∣∣
e
−k

∣∣∣z′
∣∣∣
=

(
1
2k

+ z
)
e−k|z| ,

(20)
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valid for z ≤ 0 and the parameter z0 ≤ 0.

Second part of solution. The boundary conditions. We consider a free surface z = 0.
Consequently, the force (per unit area) with the components pi = −njσij on the surface z = 0,
where n is the unit vector normal to the surface z = 0 (with components 0, 0, 1) and σij is
the stress tensor, is vanishing: σi3 = 0 for z = 0. As it is well-known [28], the stress tensor is
σij =

E
1+σ

[uij+
σ

1−2σ
ukkδij ], where uij =

1
2
(∂iuj+∂jui) is the strain tensor; the boundary conditions

read

uα3 = 0 , (1− σ)u33 + σuαα = 0 , z = 0 . (21)

We calculate the strain tensor from the Fourier transform of (7), by making use of b̃ given by (15)
and Φ̃ given by (18). We give here the boundary values of Φ̃ and its derivatives on the surface
(which enter the expressions of the strain tensor):

Φ̃(0) = (1−2σ)ikα d̃α
8(1−σ)k2

− (1−2σ)d̃3
8(1−σ)k

− 1−2σ
8(1−σ)k2

(
ikαb̃

(0)
α + kb̃

(0)
3

)
,

Φ̃(1) = − (1−2σ)ikα d̃α
8(1−σ)k

+ (1−2σ)d̃3
8(1−σ)

+ 1−2σ
8(1−σ)k

(
ikαb̃

(0)
α + kb̃

(0)
3

)
,

Φ̃(2) = (1−2σ)ikα d̃α
8(1−σ)

− (1−2σ)kd̃3
8(1−σ)

+ (1−2σ)g̃3
2(1−σ)

+

+3(1−2σ)
8(1−σ)

(
ikαb̃

(0)
α + kb̃

(0)
3

)
,

(22)

where

d̃ =
∫ 0

−∞
dz

′

c̃(z
′

)e
−k

∣∣∣z′
∣∣∣
. (23)

Making use of these expressions the boundary conditions become

kb̃(0)α +
kαkβ b̃

(0)
β

4(1−σ)k
+

i(3−4σ)kα b̃
(0)
3

4(1−σ)
= −g̃α +

kαkβ d̃β
4(1−σ)k

+ ikαd̃3
4(1−σ)

,

i(3 − 4σ)kαb̃
(0)
α − (5− 4σ)kb̃

(0)
3 = 4(1− σ)g̃3 − ikαd̃α + kd̃3 .

(24)

The solutions of this algebraic system of equations are given by

ikαb̃
(0)
α = − i(5−4σ)kα g̃α

4k
− (3−4σ)g̃3

4
+ i

2
kαd̃α − 1

2
kd̃3 ,

kb̃
(0)
3 = − i(3−4σ)kα g̃α

4k
− (5−4σ)g̃3

4
+ i

2
kαd̃α − 1

2
kd̃3 ,

b̃(0)α = −
(1−4σ)kαkβ g̃β

4k3
+ i(3−4σ)kα g̃3

4k2
− g̃α

k
+

kαkβ d̃β
2k2

+ ikαd̃3
2k

.

(25)

With the functions b̃
(0)
i given above the solution of the problem, given by (7), (15) and (18), is

completely determined; it remains to perform the reverse Fourier transforms.

Surface displacement. Mindlin general solution. We limit ourselves to give here the surface
displacement

ũ(0)
α = b̃(0)α −

ikαΦ̃
(0)

1− 2σ
, ũ

(0)
3 = b̃

(0)
3 −

Φ̃(1)

1− 2σ
, (26)
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derived from (7). Making use of b̃
(0)
i from (25) and Φ̃(0)and Φ̃(1) from (22), we get

ũ(0)
α = − g̃α

k
+

σkαkβ g̃β
k3

+ i(1−2σ)kα g̃3
2k2

+
kαkβ d̃β
2k2

+ ikαd̃3
2k

,

ũ
(0)
3 = − (1−σ)g̃3

k
− i(1−2σ)kα g̃α

2k2
+ ikαd̃α

2k
− 1

2
d̃3 .

(27)

For the Mindlin problem we assume a point force density of the form

f = f (0)δ(r− r0) = f (0)δ(ρ)δ(z − z0) , (28)

where f
(0)
0 is the force localized at the point with the position vector r0 of coordinates 0, 0, z0,

z0 < 0. The in-plane Fourier transform of this force is

f̃ = f (0)δ(z − z0) . (29)

From (16), (17) and (23) we get

g̃ = f (0)e−k|z0| , c̃ = f (0)
(
e−k|z−z0| − e−k|z+z0|

)
,

d̃ = −f (0)z0e
−k|z0| ;

(30)

the surface displacement given by (27) becomes

ũ(0)
α = −

[
f
(0)
α

k
−

σkαkβf
(0)
β

k3
−

i(1−2σ)kαf
(0)
3

2k2
+

z0kαkβf
(0)
β

2k2
+

iz0kαf
(0)
3

2k

]
e−k|z0| ,

ũ
(0)
3 = −

[
(1−σ)f

(0)
3

k
+ i(1−2σ)kαf

(0)
α

2k2
+ iz0kαf

(0)
α

2k
− 1

2
z0f

(0)
3

]
e−k|z0| ,

(31)

where f (0)
α , α = 1, 2, f

(0)
3 are the components of the force f (0). Since the multiplication by kα of

the Fourier transform is associated with the operator ∂α, it is easy to see that the reverse Fourier
transforms of (31) are given by

2π · u(0)
α = −f (0)

α I(1) − 1
2
f
(0)
β ∂β

[
2σI(3)α − z0I

(2)
α

]
+

+1
2
f
(0)
3

[
(1− 2σ)I(2)α − z0I

(1)
α

]
,

4π · u
(0)
3 = −f

(0)
3

[
2(1− σ)I(1) − z0I

(0)
]
−

−f (0)
α

[
(1− 2σ)I(2)α + z0I

(1)
α

]
,

(32)

where

I(n)α = ∂αI
(n) , I(n) =

1

2π

∫
dk1dk2

eik·ρ

kn
e−k|z0| , n = 0, 1, 2, 3 . (33)

The integral I(1) = 1/r1 is the Sommerfeld integral [30], where r1 = (ρ2 + z20)
1/2 (ρ being the

magnitude of the vector ρ). By differentiating I(1) with respect to z0 we get I(0) = −z0/r
3
1. The

integral I(2) is singular; in Ref. [13] the function − ln (r1 + |z0|) is used for it. However, we need
I(2)α , which is finite and can be computed by means of the Bessel function J0(kρ); we get

I(2)α = −
xα

r1 (r1 + |z0|)
. (34)
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Similarly, the integral I(3) is singular, but I(3)α is finite and can be calculated by means of the
Bessel function J1(kρ); indeed, from (33) we have

I(3)α = 1
2π
∂α

∫
dk1dk2

eik·ρ

k3
e−k|z0| = ∂α

∫∞
0 dk J0(kρ)

k2
e−k|z0| =

= −xα

ρ

∫∞
0 dk J1(kρ)

k
e−k|z0| = − xα

r1+|z0|
,

(35)

the last integral being given in Ref. [31]. This completes the solution of the generalized Mindlin
problem given by (32) for the surface displacement. It is easy to recover from (32) the two

particular cases usually presented in literature [13, 27]. Indeed, for f
(0)
3 6= 0, f (0)

α = 0 we get from
(32)

u(0)
ρ = −

f
(0)
3

4π

[
|z0|

r21
+

1− 2σ

r1 + |z0|

]
ρ

r1
, u

(0)
3 = −

f
(0)
3

4π

[
2(1− σ) +

z20
r21

]
1

r1
, (36)

where u(0)
ρ is the radial component of the displacement (along the vector ρ); similarly, for f

(0)
1 6= 0,

f
(0)
2 = f

(0)
3 = 0 we get from (32)

u
(0)
3 = −

f
(0)
1

4π

[
|z0|

r21
−

1− 2σ

r1 + |z0|

]
x

r1
(37)

(it is usual to give only the u
(0)
3 component, because it has a simple expression). The results

(36) and (37) coincide with those given in Refs. [13, 27]. We can see in (32) the separate

contributions of the in-plane components f (0)
α and the perpendicular-to-surface component f

(0)
3 .

For a full comparison we note that the force f (0) in the equations given above includes the factor
−2(1 + σ)/E.

Tensorial force. In Seismology we need concentrated load distributions which have a total
vanishing force and angular momentum. In a simplified model, the Earth may be viewed as
an isotropic elastic half-space bounded by a plane surface, the seismic sources being localized
beneath the surface. For sufficiently long distances the spatially localized seismic sources may
be represented as point sources. The "double-couple" representation of point seismic sources by
means of the seismic moment tensor emerged gradually in the first half of the 20th century [32]-
[44]. Let f(r) = f0w(r) be a force density, where f0 is the force, w(r) is a distribution function
and r is the position vector of a point with coordinates x1, x2, x3; a point couple along the i-th
direction (i = 1, 2, 3) can be represented as

f 0
i w(x1 + h1, x2 + h2, x3 + h3)− f 0

i w(x1, x2, x3) ≃ f 0
i hj∂jw(x1, x2, x3) , (38)

where f 0
i , i = 1, 2, 3, are the components of the force, hj, j = 1, 2, 3, are the components of

an infinitesimal displacement h, ∂j denotes the derivative with respect to the coordinate xj and
summation over repeated labels is assumed. The moment f 0

i hj is generalized to a symmetric
tensor Mij , which in Seismology is called the seismic moment [43]; in addition, the distribution
w(r) is replaced by δ(r − r0), where δ denotes the Dirac function localized at the point with the
position vector r0. Thus, we get a tensorial force density with the components

fi = Mij∂jδ(r− r0) ; (39)

we can check immediately that the total force is vanishing and so is the total angular momentum
(due to the symmetry of the tensor Mij).

We apply the results obtained above to compute the surface displacement of the isotropic elastic
half-space under the action of this tensorial force. We note that the solution can be obtained by



8 J. Theor. Phys.

the indirect method of taking the moment of forces as given by (38) in the solution of the Mindin
problem of point forces. Beside the particular character of this method, which requires calcula-
tions for each component of the force moment, it may be unpracticable, due to the calculation
complexity. This is why we prefer to use here the direct method described above, which leads to
an elegant and compact form of solution.

The tensorial force given by (39), placed at the point with the position vector r0 of coordinates
0, 0, z0, z0 < 0, has the components

fj = Mjl∂lδ(r− r0) = Mjα∂αδ(ρ)δ(z − z0) +Mj3δ(ρ)δ
′

(z − z0) ; (40)

their in-plane Fourier transform are

f̃j = iMjαkαδ(z − z0) +Mj3δ
′

(z − z0) . (41)

From (16), (17) and (23) we get

g̃j = (iMjαkα −Mj3k) e
−k|z0| ,

c̃j = iMjαkα
(
e−k|z−z0| − e−k|z+z0|

)
−

−Mj3k
[
sgn(z − z0)e

−k|z−z0| − e−k|z+z0|
]
,

d̃j = [−iz0Mjαkα +Mj3(1 + kz0)] e
−k|z0| .

(42)

Inserting these quantities in (31) we get

ũ(0)
α = [Mα3 −

iMαβkβ
k

+
iMβγkαkβkγ

2k3
(2σ − kz0)+

+
z0M3βkαkβ

k
+ iM33kα

2k
(2σ + kz0)]e

−k|z0| ,

ũ
(0)
3 = [

Mαβkαkβ
2k2

(1− 2σ + kz0) + iz0M3αkα+

+1
2
M33(1− 2σ − kz0)]e

−k|z0|

(43)

and, with the reverse Fourier transforms,

2π · u(0)
α = −MαβI

(1)
β +Mα3I

(0) − 1
2
Mβγ∂β∂γ [2σI

(3)
α − z0I

(2)
α ]−

−z0M3β∂βI
(1)
α + 1

2
M33[2σI

(1)
α + z0I

(0)
α ] ,

2π · u
(0)
3 = −1

2
Mαβ∂β [(1− 2σ)I(2)α + z0I

(1)
α ]+

+z0M3αI
(0)
α + 1

2
M33[(1− 2σ)I(0) − z0

∂
∂z0

I(0)] .

(44)

Making use of the integrals I(n)α and I(0) given above, we get from (44) the components u(0)
α and

u
(0)
3 of the surface displacement caused by a point tensorial force localized beneath the surface of

an isotropic elastic half-space. We can see from (44) that u(0)
α is vanishing for ρ → 0 and goes like

1/ρ2 for ρ → ∞; it attains a maximum value for distances ρ of the order of |z0|. The component
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u
(0)
3 goes like 1/z20 for ρ → 0 and like 1/ρ2 for ρ → ∞. A simplified version of (44) is obtained for

Mij = Mδij ; noting that ∂2
βI

(n)
α = −I(n−2)

α , we get

u(0)
α = −

1 − 2σ

2π
MI(1)α =

1− 2σ

2π
M

xα

r31
, u

(0)
3 =

1− 2σ

2π
MI(0) =

1− 2σ

2π
M

|z0|

r31
(45)

(in deriving (45) ∂2
αI

(1) occurs, which may be written as −I(−1) = −∂I(0)/∂z0 by extending the
definition of the integrals I(n) to n = −1; the same integral appears also in (44)).

Force acting on the surface. If the force density p is applied on the surface z = 0, (volume)
force terms do not appear anymore in the generalized Poisson equation, but the external loads
appear in the boundary conditions, which read

uα3 = −
1 + σ

E
pα , (1− σ)u33 + σuαα = −

(1 + σ)(1− 2σ)

E
p3 , z = 0 ; (46)

it is convenient to absorb the factor (1 + σ)/E in the force density p. The quantities g̃, c̃ and d̃

introduced above (in (16), (17) and (23)) are vanishing, and the expressions for b̃ and Φ̃ (given by
(15) and, respectively, (18)) are simplified. For a general point force density on the surface given
by p = p(0)δ(ρ), where p(0) is the force, the boundary conditions (24) become

kb̃(0)α +
kαkβ b̃

(0)
β

4(1−σ)k
+

i(3−4σ)kα b̃
(0)
3

4(1−σ)
= −p(0)α ,

i(3 − 4σ)kαb̃
(0)
α − (5− 4σ)kb̃

(0)
3 = 8(1− σ)p

(0)
3 ,

(47)

where pα, α = 1, 2, p3 are the components of the force p0. The solutions of the system of equations
(47) are

ikαb̃
(0)
α = − i(5−4σ)kαp

(0)
α

4k
−

(3−4σ)p
(0)
3

2
,

kb̃
(0)
3 = − i(3−4σ)kαp

(0)
α

4k
−

(5−4σ)p
(0)
3

2
,

b̃(0)α = −p
(0)
α

k
−

(1−4σ)kαkβp
(0)
β

4k3
+

i(3−4σ)kαp
(0)
3

2k2
.

(48)

Making use of b̃ and Φ̃ given by (15) and, respectively, (18), we obtain the Fourier transform of
the displacement

ũα =

[
−p

(0)
α

k
+

σkαkβp
(0)
β

k3
+

i(1−2σ)kαp
(0)
3

k2
+ izkα

2k2

(
ikβp

(0)
β + 2kp

(0)
3

)]
e−k|z| ,

ũ3 =
[
− i(1−2σ)kαp

(0)
α

2k2
−

2(1−σ)p
(0)
3

k
+ z

2k

(
ikαp

(0)
α + 2kp

(0)
3

)]
e−k|z|

(49)

and, by reverse Fourier transforming,

2π · uα = −p(0)α I
(1)

− 1
2
p
(0)
β ∂β

[
2σI

(3)
α − zI

(2)
α

]
+

+p
(0)
3

[
(1− 2σ)I

(2)
α + zI

(1)
α

]
,

2π · u3 = −1
2
p(0)α

[
(1− 2σ)I

(2)
α − zI

(1)
α

]
−

−p
(0)
3

[
2(1− σ)I

(1)
− zI

(0)
]

,

(50)
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where the integrals I
(n)

, I
(n)
α are the corresponding integrals I(n), I(n)α given by (33) with z0

replaced by z. This is the general solution of the Boussinesq-Cerruti problem for a point force
of arbitrary orientation acting on the surface of the half-space. For the particular case p(0)α = 0
(force perpendicular to the surface, Boussinesq problem) we obtain from (50)

uα = −
p
(0)
3

2π

[
(1− 2σ) 1

r+|z|
+ z

r2

]
xα

r
,

u3 = −
p
(0)
3

2π

[
2(1− σ) + z2

r2

]
1
r
,

(51)

where r = (ρ2 + z2)
1/2

, which coincide with the well-known results given in Refs. [19], [27] and

[45]. The solution for the Cerruti problem is obtained from (50) for p
(0)
3 = p

(0)
2 = 0 and p

(0)
1 6= 0.

Discussion and final remarks. The deformation of an isotropic elastic half-space is calculated
in this paper for a point force of arbitrary orientation and structure concentrated either at an inner
point or on the surface. This is a generalization of the well-known Mindlin and Boussinesq-Cerruti
problems. The results are used to get the deformation produced in the half-space by a tensorial
force localized beneath the surface, which may arise from seismic sources. For Mindlin problem
and the tensorial force explicit results are given for surface deformation. The problem is solved by
a special method which implies the generalized Poisson equation and the use of in-plane Fourier
transforms (i.e., Fourier transforms with respect to the coordinates parallel with the surface). The
starting point is the decomposition of the displacement by means of the Helmholtz potentials and
the use of a simplified version of the Grodskii-Neuber-Papkovitch procedure. The method used
here is particularly convenient for accounting for the boundary conditions. For inhomogeneous
boundary conditions, the (volume) force is absent in the generalized Poisson equation, which
includes only the values of the functions and their normal derivatives at the surface as "force"
terms, but the external loads appear in the boundary conditions. In Fourier transforms, the
boundary conditions generate a system of algebraic equations which can be solved for the values
of the functions at the surface, thus providing a completely determined solution. The method can
be extended to other geometries, or other similar problems (like a thick plate, for instance). The
solution to the problems regarding forces concentrated along infinite lines (Melan and Flamant
problems) can be obtained immediately by a direct integration of the solutions of the corresponding
point forces.

Finally we comment upon another starting point to the general solution of equilibrium of the
isotropic elastic half-space. In (2) we introduce the notation

D = divu , (52)

such that (2) becomes

∆u = f −
1

1− 2σ
gradD . (53)

These equations may be considered as an alternate starting point with respect to the simplified
version of the Grodskii-Neuber-Papkovitch procedure used here. In order to satisfy the boundary
conditions it suffices to generalize (53) to

∆u = f −
1

1− 2σ
gradD − u(1)δ(z)− u(0)δ

′

(z) , (54)

while maintaining (52); we solve (54) for u and use this solution to compute D from (52), which
provides a self-consistency relation which gives D and, finally, u. The parameters u(0) (u(1) are
given in terms of u(0) by the solution of (54)) are sufficient to satisfy the boundary conditions,
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which become an algebraic system of equations with unknowns u(0). This D-procedure is entirely
equivalent with the (b,Φ)- procedure used here.
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