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Abstract

An estimation is given for the vibration eigenfrequencies of a homogeneous solid sphere

with a large radius, with application to the Earth’s vibrations. The eigenfrequencies of

vibrations of a fluid sphere is derived as a particular case. Various corrections arising from

static and dynamic gravitation, rotation and inhomegeneities are estimated, and a tentative

notion of an earthquake temperature is introduced.
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Introduction. The vibrations of a homogeneous solid sphere have been calculated by Lamb as
early as 1882,[1, 2] by introducing spheroidal and torsional functions and by numerical calculation;
the results were applied to the Earth’s vibrations (oscillations) caused by earthquakes. Subsequent
approaches made extensive use of numerical calculation.[3] In this Note we give an approximate
analytical formula for the eigenfrequencies of a homogeneous solid sphere, which, beside providing
a more transparent physical picture, can be extended to other, more complex, related problems.

Solid sphere. We consider the equation of elastic motion[4]

ρü = µ∆u+ (λ+ µ)grad · divu+ F , (1)

or

ρü = −µcurl · curlu+ (λ+ 2µ)grad · divu+ F (2)

(by curl · curl = −∆+ grad · div), where ρ is the density, u is the displacement field, λ and µ are
the Lame elastic moduli and F denotes an external force. The vibrations of the solid sphere are
described in terms of the functions1

Rlm = Ylmer ,

Slm = ∂Ylm

∂θ
eθ +

1
sin θ

∂Ylm

∂ϕ
eϕ ,

Tlm = 1
sin θ

∂Ylm

∂ϕ
eθ − ∂Ylm

∂θ
eϕ ,

(3)

1H.Lamb, "On the vibrations of an elastic sphere", Proc. London Math. Soc. XIII 189-212 (1882) (see also,
H. Lamb, "On the oscillations of a viscous spheroid", Proc. London Math. Soc. XIII 51-66 (1881)).
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l 6= 0, where Ylm are the spherical harmonics and er,θ,ϕ are the spherical unit vectors. For obvious
reasons, the functions Rlm and Slm are called spheroidal functions, while Tlm are called toroidal
functions. It is easy to see that these function are orthogonal on the sphere,

∫

doRlmRl
′
m

′ = δll′δmm
′ ,

∫

doSlmSl
′
m

′ = l(l + 1)δll′δmm
′ ,

∫

doTlmTl
′
m

′ = l(l + 1)δll′δmm
′

(4)

and
∫

doRlmSl
′
m

′ =
∫

doRlmTl
′
m

′ =
∫

doSlmTl
′
m

′ = 0 . , (5)

where do is the element of the solid angle. We note here a few useful relations:

grad[f(r)Ylm] = f
′

Rlm + f
r
Slm ,

div[f(r)Rlm] =
1
r2

d
dr
(r2f)Ylm , div[f(r)Slm] = −f

r
l(l + 1)Ylm

div[f(r)Tlm] = 0

, (6)

and
curl[f(r)Rlm] =

f
r
Tlm , curl[f(r)Slm] = −1

r
d
dr
(rf)Tlm ,

curl[f(r)Tlm] =
1
r

d
dr
(rf)Slm + f

r
l(l + 1)Rlm

(7)

for any function f(r); equations (6) and (7) are derived by using the expressions of the differential
operators in spherical coordinates.

We prefer to use the form (2) of the equation of the elastic motion; making use of time Fourier
transforms this equation reads

−ρω2u+ µcurl · curlu− (λ+ 2µ)grad · divu = F . (8)

We decompose the force as

F =
∑

lm(F
r
lmRlm + F s

lmSlm + F t
lmTlm) ,

F r
lm =

∫

doFRlm , l(l + 1)F s
lm =

∫

doFSlm

l(l + 1)F t
lm =

∫

doFTlm

(9)

and seek the solution as
u =

∑

lm

(flmRlm + glmSlm + hlmTlm) , (10)

where flm, glm and hlm are functions only of the radius r. Making use of equations (6) and (7),
equation (8) leads to

f
′′
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r
f

′
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1
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′
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h
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′
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h = −F t

µ
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(11)
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where we dropped the suffixes lm.

We turn now to the boundary conditions. The force P acting outward on the surface r = R of
the sphere, where R is the radius of the sphere, with the spherical components Pα (α = r, θ, ϕ) is
Pα = −nβσαβ = −σαr, where the stress tensor is given by σαβ = 2µuαβ + λuγγδαβ ; we get

2µuθr = −Pθ , 2µuϕr = −Pϕ ,

2µurr + λdivu = −Pr ,
(12)

where divu is written in spherical coordinates,

divu =
∑

lm

[

1

r2
d

dr
(r2flm)−

glm
r

l(l + 1)

]

Ylm (13)

(by using equations (6)). We compute the strain tensor uαβ in spherical coordinates[4]

urr =
∂ur

∂r
, uθθ =

1
r
∂uθ

∂θ
+ ur

r
, uϕϕ = 1

r sin θ

∂uϕ

∂ϕ
+ uθ

r
cot θ + ur

r
,

2uθϕ = 1
r

(

∂uϕ

∂θ
− uϕ cot θ

)

+ 1
r sin θ

∂uθ

∂ϕ
, 2urθ =

∂uθ

∂r
− uθ

r
+ 1

r
∂ur

∂θ
,

2uϕr =
1

r sin θ
∂ur

∂ϕ
+ ∂uϕ

∂r
− uϕ

r

(14)

by using the spherical components

ur =
∑

lm flmYlm ,

uθ =
∑

lm glm
∂Ylm

∂θ
+
∑

lm
hlm

sin θ
∂Ylm

∂ϕ
,

uϕ =
∑

lm
glm
sin θ

∂Ylm

∂ϕ
−∑

lm hlm
∂Ylm

∂θ

(15)

of the displacement vector given by equation (10) and the definition of the spheroidal and toroidal
functions. Similarly, we decompose the force P in spheroidal and toroidal functions and identify
its spherical components; the boundary conditions given by equations (12) lead to

2µf
′

+ λ
[

2
r
f + f

′ − g
r
l(l + 1)

]

|r=R= −P r ,

µ
(

g
r
− g

′ − f
r

)

|r=R= P s ,

µ
(

h
r
− h

′
)

|r=R= P t ,

(16)

where we dropped the subscripts lm.

Let us first discuss the toroidal component which implies the function h in equations (11) and (16).
If the volume force F t and the surface force P t are both zero, we have free (toroidal) vibrations
of the sphere; the third equation (11) is the Bessel equation for spherical Bessel functions jl(kr),

k =
√

ρω2/µ = ω/c2, where c2 =
√

µ/ρ is the velocity of the "t-waves". The third equation in the

boundary conditions (16) gives
jl(kR) = kRj

′

l(kR) ; (17)

this equation has an infinity of solutions βln, labelled by integer n, such that we get the eigenfre-
quencies

ωln =
c2
R
βln . (18)
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We can get a representation of the numbers βln by using the asymptotic expression of the spherical
Bessel functions[5]

jl(kr) ≃
1

kr
cos

[

kr − (l + 1)
π

2

]

, kr ≫ 1 ; (19)

for kR ≫ 1 equation (17) becomes

tan
[

kR − (l + 1)
π

2

]

= − 2

kR
, (20)

which have the approximate zeroes

βln ≃ nπ + (l + 1)
π

2
, (21)

where n is any (large) integer. We can see that the frequencies are dense for large R (∆ωln =
πc2/R); the wavelengths are given by λln = 2πR/βln. The toroidal vibrations imply only the shear
modulus µ; their frequencies do not depend on the azimuthal number m. It is worth noting that
the solution h is a superposition of jl(klnr), where kln = ωln/c2, with undetermined coefficients.

If the boundary force P t is different from zero (but the body force F t is still zero), the solution
is Cljl(kr), where the constant Cl is determined from the boundary condition; the vibrations are
driven by the boundary force. If the body force F t is different from zero and the surface force P t

is zero, the third equation (11) is a second-order ordinary differential equation whose solution h(r)
depends on two integration constants; the boundary condition gives a relationship between these
constants; an additional boundary condition, like, for instance, h(0) = 0 , determines completely
the solution; the vibrations are driven by the body force. The same is true for both forces (F t and
P s) diferent from zero; it is worth noting that the full solution of the differential equation implies
also the solution of the homogeneous equation, beside a particular solution of the inhomogeneous
equation.

We turn now to the spheroidal component which involves the functions f and g in equations (11)
and (16). We note that the two coupled equations (11) for the functions f and g include Bessel
operators for spherical Bessel functions. We can get a simplified picture of these equations for
large values of r. First, let us consider the Bessel equation

j
′′

l +
2

r
j
′

l + k2jl −
l(l + 1)

r2
jl = 0 (22)

and assume the form

jl =
1

kr
Jl (23)

for its solution; we get
J

′′

l

r
+ k2Jl

r
− l(l + 1)

r3
Jl = 0 , (24)

which shows that Jl = cos(kr + ϕl) for large values of r, where ϕl is an undetermined phase;
indeed, this is the asymptotic expression of the spherical Bessel functions. We define the velocities

c1 =
√

(λ+ 2µ)/ρ and c2 =
√

µ/ρ and k1,2 = ω/c1,2 and assume the asymptotic expressions

f =
1

k1r
F , g =

1

k2r
G ; (25)

the two equations (11) for f and g read

F
′′

+ k2
1F = −k1rF

r

λ+2µ
, G

′′

+ k2
2G = −k2rF

s

µ
, (26)
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up to corrections of the order 1/r; similarly, the corresponding boundary conditions (16) become

ρc21
F

′

k1R
|r=R= −P r , ρc22

G
′

k2R
|r=R= −P s (27)

up to corrections of the order 1/R2. Now we can see that for free oscillations the asymptotic func-
tions F and G are F = cos(k1r+ϕ1) and G = cos(k2r+ϕ2) (and the solutions are approximately
spherical Bessel functions), where the phases ϕ1,2 remain undetermined; the frequencies are given
approximately by

ω
(1)
nl ≃ c1

R
(nπ − ϕ1l) , ω

(2)
nl ≃ c2

R
(nπ − ϕ2l) , (28)

where we have restored the suffix l (the frequencies do not depend on the suffix m). We can see
that there are two branches of spheroidal eigenfrequencies (corresponding to the velocities c1,2),
which are dense (continuous) for large R, very similar with the infinite space (as expected for large
R); the ω(2)-branch, although close to the toroidal branch, is distinct (there is a total of three
branches of eigenfrequencies, corresponding to the three degrees of freedom; in the limit of the
rotations of the sphere as a whole their frequencies go to zero (acoustic modes)). For non-vanishing
forces we have spheroidal vibrations driven by these forces, as discussed for the previous cases.
Equations (26) and (27) can be used to compute approximately such vibrations for large values
of the radius R of the sphere. The set of all eigenfrequencies is called the (seismic) spectrum.
Earth’s eigenmodes with eigenfrequencies of the order 10−3 − 10−4s−1, excited by earthquakes,
have been discussed in Refs. [6]-[8].

The numerical solution of equations (11) indicates that the lowest mode (the fundamental mode)

is Slm with l = 2 and n = 0 (therefore, we may denote it as S
(n=0)
l=2,m);[3] it is denoted by 0S2, and its

eigenfrequency is denoted ω20; the corresponding period is approximately 1 hour. Much later, the
Earth’s crust was modelled as a series of superposed layers, with welded interfaces; the vibrations
of such a stack of layers can be computed and long periods of the fundamental modes have been
obtained; the dispersion relation of these modes (i.e., the dependence of the frequency on their
label n) can give information about the inner crustal structure.[9, 10] The first observation of
"free oscillations of the Earth as a whole" was made for the Kamchatka earthquake of November
4, 1952;[11] they were followed by many observations of the Earth’s vibrations caused by the great
Chile earthquake of May 22, 1960[12]-[14] (with magnitude greater than 8, which saturated the
scales[15]). Today, eigenoscillations of the Earth can be recorded even for small earthquakes.[16]

From studies of propagation of the seismic waves it was inferred the Earth’s solid inner core[17,
18] of radius ≃ 1000km and the outer liquid core of radius ≃ 2000km. The inner-outer core
discontinuity is called the Bullen, or Lehmann, discontinuity. The temperature of the inner core
is ≃ 6000K (iron and nickel) and the pressure is ≃ 1012dyn/cm2. The buoyancy at this boundary
could be the source of convection currents which generate the Earth’s magnetic field (geodynamo
effect). The next layers are a viscous mantle of thickness ≃ 3000km and the solid crust of thickness
≃ 70km. The boundary between mantle and crust is known as the Mohorovic discontinuity.

Fluid Sphere. For a fluid sphere the shear modulus µ is zero (µ = 0); equations (11) become

f
′′

+ 2
r
f

′

+ k2f − 2
r2
f − d

dr

[

l(l+1)g
r

]

= −F r

λ

1
r
f

′

+ 2
r2
f − l(l+1)

r2
g + k2g = −F s

λ
,

(29)

where k2 = ρω2/λ = ω2/c2; the boundary condition reads

[

2

r
f + f

′ − g

r
l(l + 1)

]

|r=R= −P r

λ
. (30)
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Let us introduce divu, given by equation (13), which, analyzed with respect to the subscripts lm,
amounts to

d = f
′

+
2

r
f − g

r
l(l + 1) . (31)

Then the boundary condition becomes

d |r=R= −P r

λ
, (32)

the second equation (29) reads
d

r
+ k2g = −F s

λ
(33)

and the first equation (29) is

d
′

+ k2f = −F r

λ
. (34)

Hence, we have

g = − d

k2r
− F s

λk2
, f = − d

′

k2
− F r

λk2
. (35)

Now we introduce these functions in equation (31) and get

d
′′

+
2d

′

r
+ k2d− l(l + 1)

r2
d = −(F r)

′

λ
− 2F r

λr
+

F s

λr
l(l + 1) . (36)

For free vibrations this is the Bessel equation for spherical Bessel functions d = jl(kr); the bound-
ary condition (32) leads to the eigenfrequencies ωln = (c/R)βln, jl(βln) = 0. In a fluid we have only
pressure p, and the stress tensor is σij = −pδij (σij = 2µuij + λukkδij with µ = 0); therefore, for
a fluid p = −λuii = −λdivu; equations written above for d are in fact equations for the pressure
p. It is convenient to introduce the decomposition in Helmholtz potentials u = gradΦ + curlA,
divA = 0 and F = gradϕ + curlH, divH = 0; then, p = −λ∆Φ and the equation of motion
ρü = λgrad · divu+ F = −gradp+ F becomes ρΦ̈ = λ∆Φ+ ϕ.

Static self-gravitation. A gravitational force

FdV = GρdV
m

r2
=

4π

3
Gρ2rdV (37)

acts upon a volume element dV placed at distance r from the centre of a sphere, where G =
6.67 × 10−8cm3/g · s2 is the universal constant of gravitation, ρ is the density of the sphere
(assumed incompressible) and m = (4π/3)ρr3 is the mass of the sphere with radius r. If the sphere
is compressible, the gravitational potential ϕ is given by the Poisson equation ∆ϕ = 4πGρ and the
gravitational force per unit mas is F = −gradϕ; the condition of (hydrostatic) equilibrium (for
a non-rotationg sphere) reads gradp = ρF = −ρgradϕ, such that div [(gradp)/ρ] = −4πGρ; the
dependence of the pressure on the density is given by the equation of state; for a constant density
the pressure for a self-gravitating sphere of radius R at rest with free surface is p = (2π/3)Gρ2(R2−
r2) (it seems that the pressure in the inner Earth’s (solid) core is ≃ 300GPa = 3× 1012dyn/cm2).
Making use of equation (37), the equation of the elastic motion reads

ρü− µ∆u− (λ+ µ)grad · divu = F = −γr , (38)

where γ = (4π/3)Gρ2. Since Y00 = 1/
√
4π, we may write

F = −γr = −
√
4πγrY00er , (39)
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whence we can see that F has an expansion is series of spheroidal and toroidal functions with all
the coefficients zero, except the coefficient F r

00 = −
√
4πγr of the function R00; it follows that the

motion may include all the eigenmodes Slm and Tlm, as well as all the eigenmodes Rlm, the latter
with l 6= 0; for l = 0 , m = 0 the motion, described by f = f00, is driven by the gravitational force.
We note also that the force in equation (38) is static, which means that its Fourier transform is
proportional to δ(ω). For l = 0 the first equation (11) includes only the function f , i.e. fδ(ω);
this equation reads

f
′′

+ 2
r
f

′ − 2
r2
f =

√
4πγ

λ+2µ
r . (40)

It is easy to see that a particular solution of this equation is [
√
4πγ/10(2µ + λ)]r3, while the

homogeneous part of this equation has the solution C1r + C2/r
2, where C1,2 are constants of

integration; we must take C2 = 0 , because the solution is finite at the origin. We are left with
the solution

ur = Ar3 + C1r , A =
γ

10(2µ+ λ)
. (41)

This solution must satisfy the boundary conditions at the surface of the sphere; making use of
equations (15), we have the strain tensor urr = u

′

r and uθθ = uϕϕ = ur/r; the force on the surface
is −σαr |R, where the stress tensor is given by σαβ = 2µuαβ + λuγγδαβ

; for a free surface we get
the boundary condition

(2µ+ λ)u
′

r + 2λ
ur

r
|r=R= 0 (42)

(σαr |R= 0), whence we determine the constant C1 = −[(6µ+5λ)/(2µ+3λ)]AR2 and, finally, the
radial displacement

ur = Ar

(

r2 − 6µ+ 5λ

2µ+ 3λ
R2

)

=
γ

10(2µ+ λ)
r

(

r2 − 6µ+ 5λ

2µ+ 3λ
R2

)

; (43)

we note that the radial displacement ur is negative, as expected. It is worth estimating the radial
displacement at the surface due to gravitation

ur |r=R= − γ

5(2µ+ 3λ)
R3 ; (44)

making use of ρ = 5g/cm3, λ, µ ≃ 1011dyn/cm2 (parameters for Earth), we get γ ≃ 10−6g/cm3s2and
ur |R≃ 10−18R3cm ≃ 108cm = 103km, for the Earth’s radius R ≃ 6× 108cm; this is a distance of
the order of the Earth radius. Moreover, the strain is of the order 1/6, which may cast doubts on
the validity of the linear elasticity used in this estimation. In addition, we note that the density
suffers an important change due to the static gravitational field. Indeed, the change in density is
δρ = −div(ρu) = −ρ0divu, where ρ0 is the uniform initial density; with u given by equation (43)
we get

δρ

ρ0
= A(3αR2 − 5r2) , α =

6µ+ 5λ

2µ+ 3λ
, (45)

which is of the order unity. The proper estimation of the static effect of the self-gravitational
field on the elastic sphere is to solve simultaneously the equation of elastic equilibrium (38) with
F = −ρgradϕ and the Poisson equation for the gravitational field ϕ, ∆ϕ = 4πGρ. With spherical
symmetry we have

F = − 4π

3r2
Gρ

∫

0<r
′
<r

dr
′

ρ
r

r
; (46)

the Poisson equation for the gravitational potential may be written as ∆(F/ρ) = −4πGgradρ,
such that the problem involves two equations and unknowns, u and ρ. Since this is a more
difficult problem it is preferable to consider the density ρ as an empirically known function of r
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(a parametrization in powers of r can be used for ρ and a variational approach can be applied to
the problem). Even so, the equations governing the influence of the gravitational field upon the
elasticity of a self-gravitating sphere are difficult.

Dynamic self-gravitation. Let us assume a spheric, non-rotating, homogeneous, elastic Earth at
equilibrium under the action of its own gravitational field; we consider small elastic deformations
of this equilibrium state; in first approximation, we have a small change denoted by K in the
gravitational potential as a consequence of the small changes in density −div(ρu), i.e., we have

∆K = −4πGdiv(ρu) , (47)

where ρ is a known function of r. The equation of elastic motion reads

ρü− µ∆u− (λ+ µ)grad · divu = −ρgradK . (48)

These two coupled (vectorial) equations are difficult to be treated by an analytical method, due
to the non-uniformity of the density. For a uniform density, taking the div in equation (48) and
using equation (47) we get for D = divu

ρD̈ − (λ+ 2µ)∆D = 4πGρ2D , (49)

an equation which indicates that the frequency ω changes by

∆(ω2) = −4πGρ ; (50)

for frequencies as low as ω = 10−4s−1 the variation given by equation (50) is large. Let us
use the Helmholtz decomposition u = gradΦ + curlA, divA = 0; then, from equation (47) we
have K = −4πGρΦ and from equation (48) we get ∆Φ + k2

1Φ = 0, ∆A + k2
2A = 0. These

are the same equations as those which hold in the absence of the gravitational field, except that
k2
1 is changed into k2

1 → k2
1 + 4πρG/c21. Moreover, we can see that only the spheroidal modes

are affected by gravitation (since divTlm = 0). It follows that the spheroidal frequencies (i.e.,
the branches ω(1,2)) are given by the same relations of the type ω = (c/R)β, where β denote
the zeroes the spherical Bessel functions in the limit of large R; for c = c1, this relation reads
ω2+4πρG = (c21/R

2)β2. Hence, we may see that we should have the inequality (c21/R
2)β2 > 4πρG,

or (λ + 2µ)β2 > 4πρ2GR2. The term in the right side of this inequality is, up to an immaterial
numerical factor, the pressure due to the gravitation at the origin; it is much larger than the elastic
pressure λ+ 2µ. The inequality is not satisfied for small values of β (as required by experimental
observations). It follows that the model of an elastic solid Earth is not valid for the interior of
the Earth. In those central regions the elasticity is not able to sustain the gravitational pressure.
Likely, an additional pressure exists there, which compensates the gravitational pressure. The
large dimensions of the mantle and liquid outer core complicates the matter, and such an Earth’s
model may exhibit very low frequencies (undertones);[19] If so, we may leave aside the effects of
the gravitation in estimating the elastic vibrations of the Earth. In this case, with c = 5km/s we
get a period T ≃ (2.2/β) hours; the smallest zero of j

′

2 (corresponding approximately to the mode

0S2) is β = 3.6;[5] we get T ≃ 37 minutes (for a velocity c = 3km/s the period is T = 61 minutes,
which agrees with the experimental observations).

Rotation effect. If a vector a rotates, its change is δa + δα × a, where δα is the infinitesimal
rotation angle; therefore, its velocity is ȧ+Ω×a, where Ω is the angular velocity; its acceleration
is ä+ Ω̇×a+2Ω× ȧ+Ω× (Ω × a). Let us apply this relation to the displaced position a = r+u
; we get the acceleration ü+Ω̇×(r + u)+2Ω× u̇+Ω× [Ω × (r + u)]; we can see that additional
forces appear in rotation: −2Ω × u̇ is the Coriolis acceleration and −Ω × [Ω × (r + u)] is the
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centrifugal acceleration. The Earth rotates with a constant angular velocity Ω = 2π/T , T = 24
hours, oriented along the z-axis. We write the equation of elastic motion as

ρü+ 2ρΩ× u̇ = F , (51)

where F includes the elastic force (i.e., Fi = ∂jσij) and other external forces and the centrifugal
force is omitted since Ω is much smaller than the eigenfrequencies of the Earth (an estimation of
the longest periods of the Earth’s eigenmodes gives an order of magnitude 2πR/cβ ≃ 37 minutes,
for the wave velocity c = 5km/s and β = 3.6 where R is the Earth’s radius).

In the absence of the Coriolis force in equation (51) we decompose the force F and the displacement
u in normal modes by using the spheroidal and toroidal functions. Let us focus on one normal
mode, for instance a toroidal mode u

(n)
lm = h

(n)
l Tlm, corresponding to the eigenfrequency ωln =

(c2/R)βln, where βln is, approximately, a zero of the function jl(k
(n)R); the eigenfunctions h

(n)
l

are given by the spherical Bessel functions jl(k
(n)r); it is preferrable to multiply these functions

by constants and fix these constants such as

∫

dr · r2h(n)
l (r)h

(n
′
)

l (r) = δnn′ ; (52)

we recall that the toroidal functions are orthogonal, i.e.

∫

doTlmT
∗
l
′
m

′ = δll′δmm
′ . (53)

Since Ω/ωln ≪ 1 we solve equation (51) by a perturbation-theory method. First, we drop the

labels l, m and n and use the notations u
(n)
lm = u0, ωlm = ω0; we seek the solution as a series in

powers of Ω/ω0

u = u0 +
Ω

ω0
u1 + ... , (54)

where u1, to be determined, is asumed orthogonal on u0,[20] with respect to the scalar product
defined as the integration over the whole space, i.e.

∫

dru1u0 = 0 . (55)

A similar series is valid for the frequency

ω = ω0 +
Ω

ω0
ω1 + ... . (56)

Introducing these series in equation (51), with time Fourier transforms, we get

−ρω2
0u0 = F ,

−ρω0Ωu1 − 2ρΩω1u0 − 2iρω0Ω× u0 = 0 ;
(57)

the first equation (57) defines the function u0; in the second equation (57) we take the scalar
product with u0 and use the orthogonality of u0 with u1; we get

ω1 = − iω0

l(l + 1)

∫

drez(u0 × u∗
0) , (58)
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where we put Ω = Ωez , ez being the unit vector along the z-axis. Here we use e
z
= cos θer−sin θeθ,

u0 = h
(n)
l Tlm and Tlm from equations (3); we get immediately

ω1 = ω0
m

l(l + 1)
, (59)

where m denotes all integers from −l to l. It follows that the frequencies ωln, which are degenerate
with respect to m, are splitted into 2l + 1 branches

ωln → ωln + Ω
m

l(l + 1)
; (60)

using ω1 thus determined, we can get u1 from the second equation (57). Higher-order contributions
can be obtained in a similar manner. An m-band occurs for each ωln, of width 2Ω/(l + 1), with
the separation frequency Ω/l(l + 1). For a typical eigenperiod 60 minutes the ratio Ω/ω0 is
approximately 1/20 ≪ 1.

Centrifugal force. The equation of the elastic motion for a body in rotation with a (constant)
angular velocity Ω reads

ρü+ 2ρΩ× u̇+ ρΩ× [Ω × (r + u)] = µ∆u+ (λ+ µ)grad · divu+ F , (61)

where F is an external force. We note that the centrifugal term ρΩ× (Ω × r) is static, so we can
write it as

Fc = ρΩ(Ωr)− ρΩ2r = µ∆u+ (λ+ µ)grad · divu , (62)

where we denoted by Fc the centrifugal force and dropped any other external force (F = 0); we
may neglect u in the centrifugal force, since it is very small in comparison with r. The angular
velocity is oriented along the z-axis, Ω = Ωez . Making use of ez = cos θer − sin θeθ and the
spherical harmonics

Y00 =
1√
4π

, Y20 =

√

5

16π
(1− 3 cos2 θ) , (63)

it is easy to see that we can write Fc as a series expansion

Fc = −ρΩ2r (αR00 + 2βR20 − βS20) (64)

in spheroidal functions, where α = 2
√
4π/3 and β =

√

16π/5. We seek a similar expansion for the
displacement u,

u = f1R00 + f2R20 + gS20 ; (65)

equations (11) lead to

f
′′

1 + 2
r
f

′ − 2
r2
f1 = − ρΩ2α

λ+2µ
r ,

f
′′

2 + 2
r
f

′

2 − 2(λ+5µ)
λ+2µ

1
r2
f2 +

6(λ+3µ)
λ+2µ

1
r2
g − 6(λ+µ)

λ+2µ
1
r
g

′

= −2ρΩ2β
λ+2µ

r ,

g
′′

+ 2
r
g

′ − 6(λ+2µ)
µ

1
r2
g + 2(λ+2µ)

µ
1
r2
f2 +

λ+µ
µ

1
r
f

′

2 = −ρΩ2β
µ

r .

(66)

We seek solutions of these equations of the form f1,2, g = Arn; the solution of the homogeneous
equations (regular in the origin) corresponds to n = 1; we get

f1 = − ρΩ2α

10(λ+ 2µ)
r3 + C1r (67)
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and

f2 = C2r , g =
ρΩ2β

6λ
r3 + C3r , (68)

where C1,2,3 are constants of integration. These constants are determined from the boundary
conditions given by equations (16) for a free surface. Finally, we get the displacement

u = −ρΩ2

3λ

[

λ
5(λ+2µ)

r
(

r2 − 5λ+2µ
3λ+2µ

R2
)

− R2r(1− 3 cos2 θ)
]

er+

+ρΩ2

3λ
r
[

r2 − 2(3λ+µ)
3λ

R2
]

sin θ cos θeθ .

(69)

It is worth estimating the equatorial displacement (θ = π/2) for the Earth radius R = 6370km;
with ρ = 5g/cm3 and λ, µ = 1011dyn/cm2 we get u = ur ≃ 10km.

The temperature of an earthquake. Let us multiply by u̇ the equation of the elastic motion,

ρü+ µcurl · curlu− (λ+ 2µ)grad · divu = F ; (70)

integrating by parts, we get the law of energy conservation

∂E
∂t

= −divS+ w , (71)

where

E =
1

2
ρu̇2 +

1

2
µ(curlu)2 +

1

2
(λ+ 2µ)(divu)2 (72)

is the energy density,
Si = µ(u̇j∂jui − u̇j∂iuj)− (λ+ 2µ)u̇i∂juj (73)

are the components of the energy flux density and w = u̇F is the density of mechanical work done
by the external force per unit time. It is worth noting that the energy density given by equation
(72) differs from the energy density derived from the other form of the equation of motion, e.g.,

ρü− µ∆u− (λ+ 2µ)grad · divu = F , (74)

by the divergence of a vector; it follows that the energy density and the energy flux density are
not unique (well defined).

Making use of equations (6), (7) and (10) we can write symbolically

curlu = h
r
l(l + 1)R+ 1

r
d
dr
(rh)S+

[

f
r
− 1

r
d
dr
(rg)

]

T ,

divu = 1
r2

d
dr
(r2f)− g

r
l(l + 1) .

(75)

We compute the total energy E by introducing these expressions for curlu and divu in equation
(72), integrating over the solid angle and integrating by parts over the radius r; for large values of
R the boundary conditions given by equations (16) for free vibrations ensure the vanishing of the
"surface terms" in the r-integration by parts; in addition, for large values of R we may neglect
the f -term in curlu and the g-term in divu; making use of the equations of motion (11), we get
finally

E ≃ 2l + 1

8π

∫

dr
[

ρω2f 2 + l(l + 1)ρω2g2 + l(l + 1)ρω2h2
]

, (76)

where the summation over l is omitted (the factor 2l+1 arises from the summation over m). The
functions ωf , ωg and ωh in equation (76) are superpositions of their own normal modes (labelled
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by n); for large values of R all these eigenmodes may be taken as the spherical Bessel functions and
the eigenfrequencies are given by the zeroes of the derivatives of the spherical Bessel functions;
we note that these eigenmodes are orthogonal with respect to the r-integration; the f -part in
equation (76) is related to the velocity c1 (the combination of λ+2µ of the elastic moduli), while
the g- and h-parts are related to the velocity c2(modulus µ).

Let us write the energy given by equation (76) for the normal modes as

E ≃ 1

8π

∑

lmn

∫

dr
[

ρω
(r)2
ln f 2

ln + ρω
(s)2
ln g2ln + ρω

(t)2
ln h2

ln

]

, (77)

where the summation over m is restored and the coefficients l(l + 1) are included in gln and hln.
We may use approximately the asymptotic expressions for the functions fln, gln, hln of the form
fln = aln cos[kr − (l + 1)π/2]/kr (spherical Bessel functions), with amplitudes aln; and, similarly,
for gln and hln with amplitudes bln and, respectively, cln. Effecting the integral, we get

E ≃ 1

4
R
∑

lmn

[

ρc21a
2
ln + ρc22b

2
ln + ρc22c

2
ln

]

, (78)

where R is the radius of the sphere and c1,2 are the wave velocities. This is a simple expression,
of the form

E =
∑

s

ρRc2a2s , (79)

where s is a generic notation for the normal modes.

Let us assume that energy E is given to the vibrating sphere; we ask how it is distributed among
the normal modes. It is reasonable to assume that, after many reflections from the surface, the
distribution of energy reaches an equilibrium state, in the sense that it does not depend anymore
on the time. This state is characterized by a probability density w, which is multiplicative for
different spheres; lnw is additive and function

S = −w lnw (80)

should have a maximum value in the equilibrium state, corresponding to a maximal "disorder";
this represents our idea of equilibrium. Obviously, the function S given by eqauation (80) is the
entropy. Its maximum value for constant energy is reached for the extremum of the function
S − βwE, where β is a Lagrange multiplier; we get the Boltzmann distribution

w = const · e−βE , (81)

or, for one mode,

w =
√

βρRc2/πe−βρRc2a2 . (82)

The mean energy per mode is

e =
1

2

√

ρRc2T (83)

and the mean value of the square amplitude is

a2 =
1

2

√

T

ρRc2
, (84)

where we introduced the temperature T = 1/β. The total mean energy is E = Ne = N
√
ρRc2T/2

, where N is the total number of modes; this equality gives the parameter temperature.
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Making use of the asymptotic expressions of the spherical Bessel functions (for the radial functions)
we get the normal modes given by klnR = (2n+ l+1)π/2; hence, we see that the normal modes are
equidistant; the corresponding wavelengths are λln = 4R/(2n+ l+1). We may take, tentatively, a
cutoff of short wavelengths of the order 1cm (corresponding to a frequency ≃ 500kHz, for velocity
5km/s); it is reasonable to admit that below this distance the homogeneous elastic qualities of
the Earth do no hold anymore. For this cutoff, we get a maximum number 2n+ l+1 of the order
Nc = 109 and a number of modes of the order N = N3

c = 1027. For an energy E = 1026dyn · cm
(corresponding to an earthquake of magnitude Mw = 7) we get, from equation (83), a temperature
T = 10−22erg (i.e.,≃ 10−5K, since 1.38×1017K = 1erg = 1dyn·cm); the quantity ρRc2 in equation
(83) is ρRc2 ≃ 1020g/s2 (for ρ = 5g/cm3, R ≃ 6× 108cm and c = 5km/s). The estimation of the
temperature is very sensitive to the number of eigenmodes N ; for instance, for a cutoff wavelength
10cm we get a temperature T ≃ 10K. Part of the energy released in an earthquake is spent
in mechanical work associated with the motion of the rocks, soil and the damage produced at
the Earth’s surface; the remaining is dissipated as heat, after a long while; we may see that a
big earthquake (Mw = 7) may raise the Earth’s temperature by as much as cca 10−5K − 10K
(the inner Earth’s temperature is ≃ 6000K). We note that the cutoff wavelength, which affects
essentially the numerical estimation of the temperature, corresponds to the mean inter-atomic
distance in the Debye estimation of the statistical equilibrium of the elastic vibrations (phonons)
in a crsytal.

Concluding remarks. Apart from self-gravitation and rotation, the inhomogeneities may bring
an important effect upon the vibrations of the solid sphere. For instance, from equation (1), a
(uniform) change δρ in density cause a change δω/ω = −δρ/2ρ in frequency. The effect of similar
changes in the elastic moduli λ and µ can be estimated by using the changes in the wave velocities
c in the relation ωln ≃ (c/R)βln.[21]

An approximate procedure is given in this paper for estimating the spectrum of eigenfrequencies
(and eigenfunctions) of the vibrations of a solid sphere, with application to the Earth’s vibrations,
as those produced by an earthquake. The procedure is sufficiently convenient to be applicable
to other, more complex situations involving the vibrations of a solid sphere, as, for instance, the
corrections brought about by self-gravitation, rotation and inhomogeneities. The distribution of
the energy among the vibrations eigenmodes is also estimated here and the concept of the temper-
ature of an earthquake is tentatively introduced, as another means of characterizing earthquakes
and estimating the earthquake’s effects.
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