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Abstract

It is shown that the interaction of the primary seismic waves with Earth’s surface gives
rise to wave sources on the surface, which generate secondary seismic waves. Using a simple
model of interaction with the surface, we compute the secondary waves and show that they
produce a main shock followed by a long "tail" of seismic movement. Since the intersection
points of the primary seismic spherical waves with the surface move faster than the elastic
waves, the main shock arrives later than the primary wave (there is a time lag) and subsides
slowly, with a long "tail". All the components of the secondary seismic waves are of the same
order of magnitude.
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Introduction. It is well known that any seismic record on the surface of the Earth exhibits,
as leading features, a preliminary tremor of feeble movement, followed by a main shock which
subsides with a long "tail".[1, 2] It is widely accepted that the preliminary tremor consists of
dilatational (P ) and distortional (S) waves, while the main shock and its long tail are attributed
to the surface waves.[3, 4] In a homogeneous isotropic elastic body a point seismic source localized
in the earthquake focus generates, at long distances from the focus, two spherical waves of finite

extension, propagating with constant velocities cl =
√

(λ+ 2µ)/ρ (P wave) and, respectively,

ct =
√

µ/ρ, where λ and µ are the Lame elastic moduli and ρ is the density of the body. At the

point R on the radius drawn from the focus the P wave arrives at the time tP = R/cl, while the
S wave arrives at tS = R/ct. If the distance R is sufficiently large these two waves are separated
at the moment t by distance (cl − ct)t. The primary P and S waves interact with the Earth’s
surface and generate elastic forces in their points of contact with the surface.[5, 6] These forces
generate additional waves, which we call secondary waves, propagating in the whole Earth, and
on the surface, of course. If we view the interaction of the primary waves with the Earth’s surface
as producing an undefinite disturbance, we may treat the resulting secondary waves as normal
modes, satisfying definite boundary conditions, corresponding to a free surface. The damped
surface waves are among such modes. However, the effects of the interaction of the primary waves
with the surface occur much before the time needed to set the normal-mode regime; in general,
the normal-mode regime is established by multiple reflections on the Earth’s surface, which takes
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a long time. It is worth noting that the damped surface waves have, partially, the form of the
stationary waves, as far as their static dependence on the coordinate perpendicular to the surface
is disentangled from the time dependence. Such a damped regime is reached in a time of the order
of the time needed by the wave to propagate over its characteristic damping length. As normal
modes, we may assimilate the secondary waves with damped surface waves, among others; their
amplitudes are free parameters.[7]-[9] However, for the effects the secondary waves produce on the
Earth’s surface it seems more suitable to view them as waves generated by external forces acting
on the surface in the transient regime prior to the normal-mode regime. This is the standpoint
taken in the present paper. We show below that within this approach we are able to derive the
main shock and its long tail produced by earthquakes on the Earth’s surface. It is easy to see that
the secondary waves interact in their turn with the Earth’s surface and generate subsequent waves,
and so on, until the whole surface movement subsides to infinity. For the effects the earthquakes
produce, the Earth’s surface is both the recipient of seismic waves and the siege of wave sources.

Primary seismic waves. A common representation of the force density (per unit mass) generated
by a point faulting source (the so-called "double-couple" representation) is given by[10]

Fi(R, t) = mij(t)∂jδ(R−R0) , (1)

where Fi is the i-th component of the force, mij(t) is the tensor of the seismic moment Mij(t)
divided by density (mij = Mij/ρ) and R0 is the position vector of the source. For an "elementary"
earthquake we may take the time-dependence of the seismic moment as being the Dirac delta
function, mij(t) = mijTδ(t), where T is the duration of the earthquake. The spatial Dirac
function δ(R−R0) should be viewed as a function localized over a small distence l, of the order
l = cT , where c is a generic notation for the velocity of the seismic waves. The seismic moment
Mij has the dimension of an energy; if we denote by M its characteristic magnitude, it is natural
to assume that this energy is spent to destroy the elastic consistency of the material which is
ruptured in the focal volume V during the earthquake; therefore, the equality M/V ≃ ρc2 may
hold. For M = 1026dyn ·cm (corresponding to an earthquake magnitude Mw = 7), ρ = 5g/cm3 for
the average Earth’s density and c = 5km/s for a mean value of the velocity of the elastic waves we
get a volume V = 8× 1013cm3 of the focal region and a localization length l = V 1/3 ≃ 1km. This
spatial uncertainty leads to a time uncertainty of the order T = l/c = 0.2s (for a mean velocity
c = 5km/s).

The equation
ü− c2t∆u− (c2l − c2t )grad · divu = F (2)

of the elastic waves, where u is the displacement, can be solved with the tensorial force given by
equation (1). In the far-field region the solution is given by

ui ≃ Tmijxj

4πctR2 δ
′

(R − ctt) +
Tmjkxixjxk

4πR4

[

1
cl
δ
′

(R− clt)− 1
ct
δ
′

(R − ctt)
]

, (3)

where R is taken with respect to R0; we can see that there are two distinct, localized ("double-
shock", proportional to the function δ

′

) spherical waves. The waves propagating with velocity cl are
the primary P waves (compressional waves), while the waves propagating with velocity ct are the
primary S-waves (they include the shear contribution). The second term on the right in equation
(3) is longitudinal (∼ R), while the polarization of the first term depends on the moment tensor.
The magnitude of these waves is of the order u ≃ MT/ρcRl2, where c is a mean wave velocity
and l = cT is the linear dimension of the localization of the δ-function (linear dimension of the
earthquake’s focus). Making use of a seismic moment M = 1026dyn · cm (earthquake’s magnitude
7), density ρ = 5g/cm3, a mean velocity c = 5km/s, l = 1km, for an earthquake’s duration
T = 0.2s, we get at distance R = 100km a far-field wave u of the order 1m. The result given by
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equation (3) is very similar with the classical result derived by Stokes.[10, 11] The solution given by
equation (3) can be obtained straightforwardly by using the well-known Helmholtz decomposition
u = gradΦ+ curlA in potentials Φ and A (divA = 0) and F = gradφ+ curlH (divH = 0), the
latter being given by ∆φ = divF, ∆H = −curlF; then, the potentials Φ and A are given by the
wave equations

Φ̈− c2l∆Φ = φ , Ä− c2t∆A = H . (4)

Interaction with the surface. We consider a homogeneous isotropic elastic half-space extending
in the region z < 0 and bounded by the flat surface z = 0. The faulting source, which generates
the force F, is placed at R0 = (0, 0, z0), z0 < 0. The coordinates of the position vector R are
denoted by (x, y, z).

The wavefront of the spherical waves given by equation (3) intersects the surface z = 0 along

a circular line defined by R = (r2 + z20)
1/2

, where r = (x, y), r = (x2 + y2)
1/2

is the distance
from the origin (placed on the surface) to the intersection points (the epicentre). The radius R
moves with velocity c, R = ct, t > |z0| /c, and the in-plane radius r moves according to the law

r =
√

R2 − z20 =
√

c2t2 − z20 , where c stands for the velocities cl,t; its velocity v = dr/dt = cR/r =

c2t/r is infinite for r = 0 (R = ct = |z0|) and tends to c for large distances.

The finite duration T of the source makes the δ
′

-functions in equation (3) to be viewed as functions
with a finite spread l = ∆R = cT ≪ R; consequently, the intersection line of the waves with the
surface has a finite spread ∆r, which can be calculated from

R2 = r2 + z20 , (R + l)2 = (r +∆r)2 + z20 ; (5)

hence,

∆r ≃ 2Rl

r +
√
r2 + 2Rl

. (6)

we can see that for r → 0 the width ∆r ≃
√

2 |z0| l of the seismic spot on the surface is much

larger than the width of the spot for large distances ∆r ≃ l (2 |z0| ≫ l). For values of r not
too close to the origin (epicentre) we may use the approximation ∆r ≃ Rl/r. As long as the
spherical wave is fully included in the half-space its total energy is conserved, distributed over
the spherical shell of radius R and thickness l. If the wave intersects the surface of the half-
space, its energy decreases in the proportion of the spherical sector which subtends the solid angle
2π(1 + cos θ), where cos θ = |z0| /R. This amount of energy is transferred to the surface, which
generates secondary waves (according to Huygens principle).

In the seismic spot of width ∆r generated on the surface by the far-field primary P - and S-waves
given by equation (3) we may expect a reaction of the (free) surface, such as to compensate the
force exerted by the incoming spherical waves. This localized reaction force generates secondary
waves, distinct from the incoming, primary spherical waves. The secondary waves can be viewed
as waves scattered from the surface. Strictly speaking, if the reaction force is limited to the
zero-thickness surface (as, for instance, a surface force), it would not give rise to waves, since its
source has a zero integration measure. We assume that this reaction appears in a surface layer
of thickness ∆z (∆z ≪ |z0|), where it is produced by volume forces. The thickness ∆z of the
superficial layer activated by the incoming primary wave may depend on R (and r); for simplicity,
we take it as a constant.

The volume force per unit mass is given by ∂jσij/ρ, where σij = ρ [2c2tuij + (c2l − 2c2t )ukkδij ] is the
stress tensor and uij is the strain tensor. The reaction force which compensates the elastic force
is

fi = −∂jσij/ρ = −∂j
[

2c2tuij + (c2l − 2c2t )ukkδij
]

. (7)
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We can calculate the strain tensor from the displacement given by equation (3); in order to
compute the secondary waves we use the decomposition in Helmholtz potentials. We denote
by u

′

the displacement in the secondary waves, and introduce the Helmholtz potentials Φ and A

(divA = 0) by u
′

= gradΦ+curlA; then, we decompose the force f according to f = gradφ+curlH
(divH = 0), where ∆φ = divf and ∆H = −curlf ; by the equation of the elastic waves, the
Helmholtz potentials satisfy the wave equations (4); by straightforward calculations we get φ =
−c2l uii and H = c2t curlu.

We can calculate the displacement in the secondary waves u
′

= gradΦ + curlA, by solving
equations (4) with φ = −c2l uii and H = c2t curlu restricted to the superficial layer of thickness ∆z,
the primary displacement u being given by equation (3). Apart from appreciable complications,
this procedure brings many superfluos features which obscure the relevant physical picture. This
is why we prefer to use a simplified model of the form

φ = φ0(r)δ(z)δ(r − vlt) , H = H0(r)δ(z)δ(r − vtt) , (8)

where divH0 = 0; equations (8) describe wave sources, distributed circularly on the surface, prop-
agating on the surface with constant velocities vl,t and limited to a superficial layer of zero thick-
ness; their magnitude decreases with increasing r, approximately as 1/r (for large r), according to
equations (3); the velocities vl,t in equation (8) correspond to the velocities vl,t = dr/dt = c2l,tt/r
calculated above, which are greater than cl,t, depend on r and tends to cl,t for large values of the
distance r. We make a further simplification and consider them as constant velocities slightly
greater than cl,t. Also, we consider the origin of the time at r = 0 (the epicentre).

Secondary waves. The solutions of equations (4) are given by

Φ = 1
4πc2

l

∫

∞

0 dt
′ ∫

V dR
′ φ0(r

′
)δ(z

′
)δ(r

′
−vlt

′
)

|R−R
′| δ

(

t− t
′ −

∣

∣

∣R−R
′
∣

∣

∣ /cl
)

,

A = 1
4πc2t

∫

∞

0 dt
′ ∫

V dR
′ H0(r

′
)δ(z

′
)δ(r

′
−vtt

′
)

|R−R
′| δ

(

t− t
′ −

∣

∣

∣R−R
′
∣

∣

∣ /ct
)

,

(9)

where V denotes the integration volume of the half-space. We focus first on the potential Φ, which
can be written as

Φ =
1

4πvc2

∫

V
dr

′ φ0(r
′

)

(r2 + r′2 − 2rr′ cosϕ+ z2)1/2
δ
[

t− r
′

/v −
(

r2 + r
′2 − 2rr

′

cosϕ+ z2
)1/2

/c
]

,

(10)
where ϕ is the angle between the vectors r and r

′

and we use c and v for cl and, respectively, vl,
for simplicity. In order to calculate the integral with respect to the angle ϕ in equation (10) we
introduce the function

F (cosϕ) = t− r
′

/v −
(

r2 + r
′2 − 2rr

′

cosϕ+ z2
)1/2

/c (11)

and look for its zeroes, F0 = F (cosϕ0) = 0; we note that, if there exists one root of this equation,
there exists another one at least, in view of the symmetry cosϕ = cos(2π − ϕ). Then, we expand
in a Taylor series the function F in the vicinity of its zero, according to

F = F0 + (cosϕ− cosϕ0)F
′

0 + ... = (cosϕ− cosϕ0)F
′

0 + ... , (12)

where F
′

0 is the derivative of the function F with respect to cosϕ for cosϕ = cosϕ0. It is easy to
see that the integral reduces to

Φ =
1

2πcvr

∫

∞

0
dr

′ φ0(r
′

)

sinϕ0
, (13)
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where ϕ0 is the root of the equation F (cosϕ0) = 0, lying between 0 and π.

The root cosϕ0 is given by

F (cosϕ0) = t− r
′

/v −
(

r2 + r
′2 − 2rr

′

cosϕ0 + z2
)1/2

/c = 0 , (14)

or
(

1− c2/v2
)

r
′2 − 2

(

r cosϕ0 − c2t/v
)

r
′ −

(

c2t2 − r2 − z2
)

= 0 (15)

for r
′

< vt. The important feature brought by the diference between the two velocities c and v
can be accounted for conveniently by assuming that the two velocities are close to one another;
we set v = c(1 + ε), 0 < ε ≪ 1. In this circumstance we may neglect the quadratic term ∼ r

′2 in
equation (15) and replace t by the "advanced" time t

′

= t(1− ε) (i.e., t
′

l,t = t(1− εl,t)); we get

cosϕ0 ≃
2ct

′

r
′ − B

2rr′ , B = c2t
′2 − r2 − z2 (16)

for r
′

< vt = ct
′

(1 + 2ε). It is easy to see that this equation has no solution for ct
′

< r (B < 0);
for ct

′

> r and z close to zero (near the surface) it has two solutions

r
′

1 =
B

2(ct′ + r)
, r

′

2 =
B

2(ct′ − r)
, (17)

corresponding to cosϕ0 = −1 (ϕ0 = π) and, respectively, cosϕ0 = 1 (ϕ0 = 0). In the integral
given by equation (13) we pass from the variable r

′

to the variable ϕ0; the potential φ0(r
′

) can be

approximated by a decreasing function of R = (r2 + z20)
1/2

(φ0 ≃ 1/R) and it may be taken out
of the integral sign; we get

Φ ≃ Bφ0

4πc2

∫ π

0
dϕ0

1

(r cosϕ0 − ct′)2
, (18)

or

Φ ≃ Bφ0

4πc2r2
∂

∂x

∫ π/2

0
dϕ0

(

1

cosϕ0 − x
− 1

cosϕ0 + x

)

, x = ct
′

/r > 1. (19)

the integrals in equation (19) can be effected immediately; we get the potential

Φ ≃ φ0

4c2l

(c2l t
′2
l − r2 − z2)clt

′

l
(

c2l t
′2
l − r2

)3/2
(20)

(for z close to z = 0), where the velocity cl is restored. Similarly, we get from equations (9) the
vector potential

A ≃ H0

4c2t

(c2t t
′2
t − r2 − z2)ctt

′

t
(

c2t t
′2
t − r2

)3/2
. (21)

The qualitative singular behaviour of these waves resembles the algebraic singularity of the waves
in two dimensions produced by localized sources.[12]

Discussion and conclusion. Making use of u = gradΦ+curlAwe can compute the displacement
u. First, we note that the displacement is singular at cl,tt

′

= r; this indicates the existence of
two main shocks, occcurring after the arrival of the primary waves. Indeed, the primary waves
arrive at the observation point r at the time tp = r/vl,t = (r/cl,t)(1 − εl,t), while the main
shocks occur at tm = t

′

l,t/(1 − εl,t) ≃ (r/cl,t)(1 + εl,t); we can see that there exists a time delay
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Figure 1: Primary wave (PW ), moving with velocity v on the Earth’s surface, secondary wave
(SW ), moving with velocity c < v, the main shock (MS) and the long tail (LT ); the separation
between the two wavefronts is ∆r = 2(v − c)t and the time delay is ∆t = (2r/c)(v/c− 1), where
r is the distance on the surface from the epicentre.

∆t ≃ tm − tp ≃ 2(r/clt)εlt between the primary waves and the wavefronts of the secondary waves
(the main shocks). The singularity in equations (20) and (21) originates in using constant velocities
vl,t; actually, an undeterminacy of the form ∆v ≃ cε exists in these velocities, which entails an
undeterminacy t

′

ε in the time t
′

, such that the smallest value of the denominator in equations (20)
and (21) is of the order c2t

′2ε. In the vicinity of the two main shocks the leading contributions to
the components of the surface displacement (z = 0, in polar cylindrical coordinates) are given by

ur ≃ φ0t
′

l

4cl
· r

(c2l t
′2
l
−r2)

3/2 ,

uϕ ≃ −H0zt
′

t

4ct
· r

(c2t t
′2
t −r2)

3/2 ,

uz ≃ H0ϕt
′

t

4ct
· r

(c2t t
′2
t −r2)

3/2 ;

(22)

we can see that there exists a horizontal component of the displacement perpendicular to the
propagation direction (uϕ) and both the r-component and the ϕ, z-components, which make right
angles with the propagation direction, are of the same order of magnitude.[1] For long times
(cl,tt

′

l,t≫ r) the displacement (from equations (20) and (21)) goes like

ur ≃ φ0r

4c4
l
t
′2
l

, uϕ ≃ − H0zr

4c4t t
′2
t

, uz ≃ H0ϕ

4c2t r
, (23)

which show that the displacement exhibits a long tail, especially the z-component; it subsides as a
consequence of the time-dependence induced in the potential H0 by the integration variable r

′

, a
circumstance which is neglected in the calculations presented here. Primary and secondary waves,
the main shock and the long tail are shown in Fig.1.

In conclusion, we may say that the interaction of the primary P - and S-seismic waves with the
Earth’s surface gives rise to sources of secondary waves. Since the intersection points of the
primary waves with the surface move faster on the Earth’s surface than the elastic waves, the
secondary waves arrive at the observation point with a time lag. At the observation point the
secondary waves produce main shocks, followed by long tails, in accordance with the recorded
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seismic observations. The main shocks and the tails of the seismic secondary waves are calculated
in this paper, by using a simple model of interaction of the primary waves with the Earth’s surface.
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