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Abstract

The problem of vibrations generated in a homogeneous isotropic elastic half-space by spa-
tially concentrated forces, known in Seismology as (part of) the Lamb problem, is formulated
here in terms of Helmholtz potentials of the elastic displacement. The method is based on
time Fourier transforms, spatial Fourier transforms with respect to the coordinates parallel
to the surface (in-plane Fourier transforms) and generalized wave equations, which include
the surface values of the functions and their derivatives. This formulation provides a formal
general solution to the problem of forced elastic vibrations of the isotropic half-space. Ex-
plicit results are given for forces derived from a gradient, localized at an inner point in the
half-space, which correspond to a scalar seismic moment in the double-couple representation
of seismic sources. Similarly, explicit results are given for a surface force perpendicular to the
surface and localized at a point on the surface. Both harmonic time dependence and time
δ-pulses are considered. It is shown that a δ-like time dependence of the forces generates per-
turbations which are vanishing in time, which, consequently, cannot be viewed properly as
vibrations. The distinction between the generation and propagation of the seismic waves and
the vibrations problem with inclusion of the boundary conditions is emphasized, as well as
the role played by the eigenmodes of the isotropic elastic half-space. Similarly, the distinction
is highlighted between the transient regime of wave propagation prior to the establishment
of the elastic vibrations and the stationary waves regime.

Introduction. The generation and propagation of the seismic waves is a basic problem in Seis-
mology. It gives information about the processes occurring in an earthquake focus, about the
inner structure of the Earth and the effects the seismic waves have on the Earth’s surface. The
focal region of an "elementary" earthquake is localized beneath the Earth’s surface, such that,
for long distances, we may consider point seismic sources, i.e. sources represented by δ-functions,
or derivatives of the δ-functions. A similar representation holds for the time dependence of such
"elementary" seismic sources. As regards the effects of the seismic waves on the Earth’s surface,
it is convenient to approximate the Earth as a half-space bounded by a plane surface; by another
useful simplification the Earth is viewed as a homogeneous isotropic elastic solid. Within such
circumstances, the generation and propagation of the seismic waves, as well as the vibrations of
the isotropic elastic half-space are known as defining the so-called Lamb problem.[1, 2]

In the complex of physical phenomena involved in the Lamb problem (generation and propaga-
tion of seismic waves, vibrations generated by seismic sources, eignemodes) there exists a certain
difficulty, related to the requirement of satisfying the boundary conditions at the Earth’s surface,
usually considered a free surface. With boundary conditions the Lamb problem is not a wave
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propagation problem, but a vibrations problem. The problem of vibrations of an elastic sphere
was solved as early as 1882.[3]-[5] In contrast, the problem of vibrations of an elastic half-space is
not solved, probably because the interest was focused on wave propagation, although the formu-
lation of the problem is one of vibrations. We give here a formal solution of the vibrations of an
isotropic elastic half-space, as well as a few explicit results for some particular cases.

The difficulties related to Lamb problem are even more complicated by the interpretation of the
seismic records. The general structure of any seismic record exhibits a preliminary feeble tremor,
consisting of the primary P- and S-waves (which at large distances are separated), followed by a
main shock with a long tail.[6, 7] It is almost generally accepted that the main shock and its long
tail are due to the surface waves,[8, 9] although these waves are free waves, i.e. solution of the ho-
mogeneous elastic waves equation, whose amplitude is not determined. In addition, the solution is
often approximated by incident and reflected plane waves (which satisfy the boundary conditions),
although, similarly, these plane waves are free waves. A series of other similar approximations are
currently made in this context, related to various types of waves, like head (or "lateral") waves,
cylindrical or conical waves, leaking waves, inhomogeneous, damped waves, etc.[10]-[27]

The seismic waves suffer multiple reflections on the Earth’s surface (or on the interfaces of the
internal Earth’s layers), such that the stationary regime of oscillations sets in a finite time interval.
The relevant magnitude of this amount of time is of the order R/c, where R is the radius of the
Earth and c is the wave velocity. For R = 6370km and a mean velocity c = 5km/s of the elastic
waves we get R/c ≃ 1274s; this time interval is much longer than the time taken by the seismic
waves to propagate from the source to the Earth’s surface. We can see that the effects of the
seismic waves on the Earth’s surface are produced in a time much shorter than the time needed
for attaining the stationary regime of vibrations. It follows that, as regards the effect of the
earthquakes, we are interested primarily in the transient regime of the seismic waves, where the
boundary conditions are practically radiation conditions. An "elementary" earthquake is produced
by sources localized both in space and time. In these circumstances, in a first approximation, the
solution consists of primary P - and S- spherical waves generated by temporal and spatial δ-pulses
from the seismic source (or derivatives of the δ function). For sources with a finite temporal or
spatial extension (or for multiple sources) a structure factor of the focal region is necessary. The
interaction of the primary waves with the surface generate additional wave sources placed on the
surface, which may be termed secondary waves; they are responsible for the main shock and the
long tail recorded in seismograms.

General solution. The equation of the elastic waves in an isotropic body reads[28]

ü− c22∆u− (c21 − c22)grad · divu = F , (1)

where u is the displacement, c1 =
√

(λ+ 2µ)/ρ, c2 =
√

µ/ρ are the wave velocities, λ, µ are the

Lame elastic moduli, ρ is the density and F is the force (per unit mass). We consider this equation
in the half-space occupying the region z < 0 and bounded by the plane surface z = 0; the force F

is placed inside the half-space.

As it is well known, in the absence of the force F (F = 0) the homogeneous equation (1) (the "free"
equation) extended to the whole space exhibits two types of ("free") waves: longitudinal waves,
propagating with velocity c1, and transverse waves, propagating with velocity c2.[29, 30, 31] In the
half-space the free equation (1) exhibits a combination of incident and reflected longitudinal and
transverse waves which satisfy the boundary conditions; insofar as the amplitude of the incident
wave is a free parameter and the waves satisfy the boundary conditions these combinations of
incident and reflected waves may be viewed as a special type of eigenmodes for the vibrations
problem; the specificity originates in the fact that the half-space is only partially finite. This
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feature is more obvious in the damped surface waves (Rayleigh waves),[8, 28] which propagate along
the surface and are damped along the direction perpendicular to the surface. They are solutions
of the homogeneous equation (1), satisfy the boundary conditions, have a free (undetermined)
amplitude and their dependence on the coordinate perpendicular to the surface is separated from
the dependence of the combined other two coordinates and time; this later feature is typical for
vibrations; the surface waves exhibit this feature only partially; they are eigenmodes of the elastic
vibrations of the isotropic half-space. A similar character may be attributed to other similar waves
which propagate at interfaces, like the well-known Love waves, or Stonely waves.[6, 10, 32, 33] In
addition, we shall show below that other special eigenmodes are present in the isotropic elastic
half-space, represented by plane waves which propagate along directions parallel with the surface
z = 0; we may call them lateral waves, though the term "lateral" used here has a different meaning
than the same term used in the current seismological literature (see, for instance, Ref. [27]). We
emphasize the distinction, as it is usual, between eigenmodes of vibrations ("free waves"), with
undetermined amplitudes, and forced vibrations, well-determined by known by forces.

We consider now the solutions determined by the force F in the inhomogeneous equation (1) for
the half-space with boundary conditions; these solutions are "forced" vibrations. The force P

on the surface (the pressure), with the components Pi is given by σiz |z=0= −Pi, where σij =
ρ [2c22uij + (c21 − 2c22)divuδij] is the stress tensor and uij is the strain tensor.[28] We use labels
i, j, k... = 1, 2, 3 for the coordinates x = x1, y = x2, z = x3, as well as labels α, β, γ... = 1, 2 for
the coordinates x = x1, y = x2. The boundary conditions read

∂αu3 + ∂3uα |z=0= − Pα

ρc22
, 2∂3u3 +

c21 − 2c22
c22

divu |z=0= − P3

ρc22
; (2)

we introduce the notations pi = Pi/ρc
2
2.

We use the Helmholtz decomposition for the displacement u and force F, by introducing

u = gradΦ+ curlA , divA = 0 ,

F = gradϕ+ curlH , divH = 0 ;
(3)

equation (1) is transformed in two standard wave equations

Φ̈− c21∆Φ = ϕ , Ä− c22∆A = H , (4)

where the potentials ϕ and H are given by ∆ϕ = divF, ∆H = −curlF; for the moment, we con-
sider these potentials as known quantities. Since the time is uniform and the in-plane coordinates
(x1, x2) are also uniform, it is convenient to use time and in-plane Fourier transforms of the form

u(r, z, t) =
1

2π

∫

dωe−iωt 1

(2π)2

∫

dku(k, z, ω)eikr , (5)

where r = (x1, x2) is the in-plane position vector. For simplicity, we use the same symbol for the
mutual Fourier transforms, without any risk of confusion; similarly, we drop the arguments, which
can easily be read from the context. Equations (4) become

Φ
′′

+ κ2
1Φ = −ϕ/c21 , A

′′

+ κ2
2A = −H/c22 , (6)

where

κ2
1,2 = ω2/c21,2 − k2 ; (7)
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the prime means the derivation with respect to z; we note that κ1,2 may be either real or imaginary,
with either sign.

In order to approach in a convenient manner the boundary conditions (2) we introduce the surface
values of the functions and their derivatives in equations, i.e. we write

Φ
′′

+ κ2
1Φ = −ϕ/c21 − Φ1δ(z)− Φ0δ

′

(z) ,

A
′′

+ κ2
2A = −H/c22 −A

1δ(z)−A
0δ

′

(z) ,
(8)

where Φ
0 = Φ |z=0, A

0 = A |z=0, Φ1 = dΦ/dz |z=0 and A
1 = dA/dz |z=0; integrating these

equations along a perpendicular of infinitesimal length across the surface z = 0, we check imme-
diately the terms Φ1δ(z), A1δ(z); multiplying the equations by z and repeating the procedure we
check the terms Φ0δ

′

(z), A0δ
′

(z). More formally, we can justify the presence of these singular
terms by using the generalized functions (distributions) Φθ(−z) and Aθ(−z), where θ(z) = 1 for
z > 0, θ(z) = 0 for z < 0 is the step function.[34] The parameters Φ1, A1 are not independent of
parameters Φ0, A0 (due to the boundary conditions at infinity).

Making use of the Green function G = eiκ|z|/2iκ of the one-dimensional Helmholtz equation
G

′′

+ κ2G = δ(z), we can write immediately the solutions of the equations (5):

Φ = − 1
2iκ1c21

∫ 0
−∞ dz

′

ϕ(z
′

)

[

e
iκ1

∣

∣

∣
z−z

′
∣

∣

∣ − e
iκ1

∣

∣

∣
z+z

′
∣

∣

∣

]

+ Φ0eiκ1|z| ,

A = − 1
2iκ2c22

∫ 0
−∞ dz

′

H(z
′

)

[

e
iκ2

∣

∣

∣
z−z

′
∣

∣

∣ − e
iκ2

∣

∣

∣
z+z

′
∣

∣

∣

]

+A
0eiκ2|z| ;

(9)

We note the occurrence of the "reflected" ("image") Green function e
iκ1,2

∣

∣

∣
z+z

′
∣

∣

∣

/2iκ1,2 in these
formulae. We can check the transversality condition divA = 0 in equations (9) (due to divH = 0),
which in Fourier transforms reads ikαAα + A

′

3 = 0; we assume ikαA
0
α + A1

3 = 0. It is also worth
noting in equations (9) that κ1,2 may have either sign. The derivatives on the surface of these
functions are given by

Φ1 = − 1
c2
1

∫ 0
−∞ dz

′

ϕ(z
′

)e
iκ1

∣

∣

∣
z
′
∣

∣

∣ − iκ1Φ
0 ,

A
1 = − 1

c2
2

∫ 0
−∞ dz

′

H(z
′

)e
iκ2

∣

∣

∣
z
′
∣

∣

∣ − iκ2A
0 .

(10)

We write now the boundary conditions given by equations (2) by using the Fourier transforms; to
this end we need the second derivative Φ(2) = d2Φ/dz2 |z=0 on the surface, which can be derived
immediately from equation (8): Φ(2) = −κ2

1Φ
0 −ϕ0/c21, where ϕ0 = ϕ |z=0 (a similar notation will

be used for H). The boundary conditions can now be written as

2κ1k1Φ
0 + 2k1k2A

0
1 + (κ2

2 + k2
2 − k2

1)A
0
2 = q1 ,

2κ1k2Φ
0 − (κ2

2 + k2
1 − k2

2)A
0
1 − 2k1k2A

0
2 = q2 ,

(k2 − κ2
2)Φ

0 − 2κ2k2A
0
1 + 2κ2k1A

0
2 = q3 ,

(11)

where
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q1 = −p1 −H0
2/c

2
2 +

2ik1
c2
1

∫ 0
−∞ dz

′

ϕ(z
′

)e
iκ1

∣

∣

∣

z
′
∣

∣

∣

,

q2 = −p2 +H0
1/c

2
2 +

2ik2
c2
1

∫ 0
−∞ dz

′

ϕ(z
′

)e
iκ1

∣

∣

∣

z
′
∣

∣

∣

,

q3 = −p3 + ϕ0/c22 +
2i
c2
2

∫ 0
−∞ dz

′
[

k1H2(z
′

)− k2H1(z
′

)
]

e
iκ2

∣

∣

∣
z
′
∣

∣

∣

;

(12)

in these equations k1,2 are te components of the vector k = (k1, k2). Equations (11) represent a
system of three equations with the unknowns Φ0,A0

1 and A0
2; A

0
3 is eliminated by the transversality

condition divA = 0 (ikαAα + A
′

3 = 0); from equations (10) it is given by

κ2A
0
3 = kαA

0
α +

i

c22

∫ 0

−∞
dz

′

H3(z
′

)e
iκ2

∣

∣

∣
z
′
∣

∣

∣

. (13)

The solutions of the system of equations (11) are

Φ0 = 1
∆
[−2κ2(κ

2
2 + k2)(k1q1 + k2q2) + (κ4

2 − k4)q3] ,

A0
1 =

1
∆
{−2k1k2(k

2 − κ2
2 + 2κ1κ2)q1 + [4κ1κ2k

2
1−

−(k2 − κ2
2)(κ

2
2 + k2

2 − k2
1)]q2 + 2κ1k2(κ

2
2 + k2)q3} ,

A0
2 =

1
∆
{[−4κ1κ2k

2
2 + (k2 − κ2

2)(κ
2
2 + k2

1 − k2
2]q1+

+2k1k2(k
2 − κ2

2 + 2κ1κ2)q2 − 2κ1k1(κ
2
2 + k2)q3} ,

(14)

where

∆ = −(κ2
2 + k2)

[

(κ2
2 − k2)2 + 4κ1κ2k

2
]

= −ω2

c22

[

(κ2
2 − k2)2 + 4κ1κ2k

2
]

. (15)

Having known the parameters Φ0 and A
0 the potentials Φ and A given by equations (9) and the

displacement u = gradΦ + curlA are completely determined; it remains to perform the reverse
time and spatial Fourier transforms.

General time dependence. Eigenmodes. The displacement u computed from the above
formulae includes terms of the general form

f(ω,k)F (ω2,k) ,
f(ω,k)F (ω2,k)

κ1,2
,
f(ω,k)F (ω2,k)

∆
,
f(ω,k)F (ω2,k)

κ2∆
, (16)

where the function f comes both from the volume force (via ϕ and H) and surface force and the
function F arises from the structure of the wave equations. The κ1 in the denominator arises from
the potential Φ, the κ2 arises from A0

3 and ∆ originates in the parameters Φ0, A0 (equations (14)).

A proper force which generates vibrations includes time harmonic oscillations which lead to a
general form

f = f1δ(ω − Ω) + f ∗
1 δ(ω + Ω) (17)

for the function f , where Ω is the frequency of the force. It is easy to see that, by multiplying
the functions in equation (16) by e−iωt and integrating over ω, in order to get the time reversed
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Fourier transform, we get a time dependence of the form ∼ cos Ωt, as expected; harmonic time
oscillations of the force generate harmonic vibrations.

From a technical standpoint it is interesting the rather unphysical case where the time dependence
of the force is a δ-impulse and f does not depend on ω. In this case the denominator ∆ in equation
(16) brought a double pole ω = 0; this pole does not contribute to the Fourier transform, since
the functions F , F/κ2 are even functions of ω. It is convenient to change κ1,2 → iκ1,2 in equation
(16); then we can see that ∆ = 0 implies

(κ2
2 − k2)2 − 4κ1κ2k

2 = 0 (18)

which is the well-known dispersion relation of the damped surface waves (Rayleigh waves);[28] the
solution of this equation is ω0 = c2ξk, where ξ (0 < ξ < 1) is the solution of the Rayleigh equation

ξ6 − 8ξ4 + 8(3− 2c22/c
2
1)ξ

2 − 16(1− c22/c
2
1) = 0 . (19)

Indeed, the Rayleigh waves are eigenmodes of the isotropic elastic half-space, and their dispersion
relation is expected to occur in the denominator of the forced vibrations. As it is well known,28
the ratio c2/c1 varies from 1/

√
2 to 0, and the root ξ of the equation (19) varies approximately

from 0.87 to 0.95. We expand the determinant ∆ in powers of ω − ω0 and get

∆ = −4ω2
0

c32
∆0(ξ)k

3(ω − ω0) + ... , (20)

where

∆0(ξ) = ξ



ξ2 − 2 +
4 (1− 2c22ξ

2/c21 + c22/c
2
1)

√

(1− ξ2)(1− c22ξ
2/c21)



 ; (21)

we can see that terms with ∆ in the denominator in equation (16) have a pole ω = ω0. The reverse
time Fourier tranforms of such terms gives contributions of the form

g(k)e−ic2ξkt + c.c. , (22)

where g is a function of the wavevector k (we note that there exists another pole at ω = −ω0);
these contributions are harmonic oscillations of the form cos c2ξkt, sin c2ξkt.

The spatial dependence is more difficult to be computed, in general. On effecting integrals of the
form

u =
∫

dkf(k, κ)eikreiκ|z| , (23)

which appear in the reverse spatial Fourier transform, we should be aware of the presence of κ
in the integrand f(k, κ), which must obey the symmetry condition f ∗(−k,−κ) = f(k, κ) in order
the function u be real. It is more convenient to use the formula

u =
1

2

∫

dkeikr
[

f(k, κ)eiκ|z| + f ∗(−k, κ)e−iκ|z|
]

(24)

for such integrals, which does not imply the change of the sign of κ.

A typical spatial dependence is provided by the Sommerfeld-Weyl integral[35]

∫

dk
eikr

κ
eiκ|z| , (25)

which in this context leads to terms of the form
∫

dk
eikr

iαk
e−αk|z|e−ic2ξkt , (26)
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where α =
√

1− c22ξ
2/c21 for κ = κ1 and α =

√
1− ξ2 for κ = κ2. The analytic continuation of the

Sommerfeld-Weyl integral gives for equation (26)

1√
S
e−iχ/2 , S =

[

(r2 + α2z2 − c22ξ
2t2)

2
+ 4α2z2c22ξ

2t2
]1/2

,

tanχ = 2αc2ξ|z|t
r2+α2z2−c2

2
ξ2t2

.

(27)

We can see that in the limit of long times S → ∞ and χ → 0, i.e. forces with a pulse-like
time dependence do not contribute to vibrations, as expected. It is the transient regime, prior
to the establishment of the stationary vibrations regime, which is relevant for time δ-pulses of
perturbations, and it is this transient regime which is associated with the earthquakes.

The vanishing of the denominators κ1,2 in equation (16) means ω = c1,2k; in this case there does
not exist a z-dependence; the contribution of these terms corresponds to lateral waves, i.e. waves
which propagate along directions which are parallel with the surface z = 0; these waves are also
eigenmodes of the isotropic elastic half-space. In this context it is worth recalling the incident and
reflected plane waves, which are well-known eigenmodes of the isotropic elastic half-space. These
modes originate in special linear combinations of the matrix of the system of equations of the
boundary conditions, realized with reflection coefficients, which lead to a matrix with a vanishing
determinant. There does not exist a special dispersion relation in this case (actually, the relevant
dispersion relations ω2 = c21,2(κ

2
1,2 + k2) are already included in the boundary conditions). Such

linear combinations are possible by the special symmetry of the problem to reversing the signs of
the transverse components κ1,2 of the wavevectors.

A gradient force. Harmonic oscillations. The seismic sources are currently associated with
the so-called double-couple representation of the forces, given by

Fi = mij(t)∂jδ(r)δ(z − z0) , (28)

where mij(t) is the seismic moment and the source is placed at r = 0, z = z0, z0 < 0 (see, for
instance, Ref. [27], 2nd edition, p. 60, Exercise 3.6). We consider a particular case where the
tensor of the seismic moment reduces to a scalar m(t); it is easy to see that such an expression
for the force may mimick an explosion source (for a time dependence proportional to δ(t)). We
consider also a free surface, i.e. we set pi = 0. In this case it is easy to see that the force derives
from a potential, F = gradϕ, where the Fourier transform of the potential ϕ is ϕ = mδ(z − z0);
the potential H is zero and

qα =
2ikαm

c21
eiκ1|z0| , q3 = 0 ; (29)

similarly, the boundary parameters A0
3 and A0

α are not zero. Making use of equations (9) and (14)
we get immediately Φ and Φ0, A0

α; it is convenient to limit ourselves to the surface displacement
only, given by

u0
α = −2mκ2kα

c2
1
∆

eiκ1|z0| ,

u0
3 = v03 + w0

3 , v03 = −m
c2
1

eiκ1|z0| ,

w0
3 = −2mk2(κ2

2
−k2−2κ1κ2)

c2
1
∆

eiκ1|z0| ,

(30)

where

∆ = (κ2
2 − k2)2 + 4κ1κ2k

2 . (31)
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If the source is a harmonic oscillation with frequency Ω, of the form m = m0 cosΩt (as for an
isotropic pulsed source concentrated at an inner point in the half-space), the surface displacement
has the same time dependence u0(k, t) ∼ m0 cos Ωt, where ω in equations (30) is replaced by
Ω. The Fourier transforms of the term v03 can be computed by means of the Sommerfeld-Weyl
integral[35]

i

2π

∫

dk
eikr

κ
eiκ|z| =

eiωR/c

R
, (32)

where κ =
√

ω2/c2 − k2 and R =
√
r2 + z2; we get

v03(r, t) = −m0

πc21

∂

∂ |z0|
sinΩR0/c1

R0
cos Ωt , (33)

where R0 =
√

r2 + z20 ; we recognize in equation (33) a spherical-wave vibration.

In order to estimate the spatial dependence of u0
α and w0

3 we note that we are often interested in
distances much longer than the wavelengths c1,2/Ω, such that we may assume k < kc ≪ Ω/c1,2 in
equations (30), where kc is a cutoff wavevector. Within this approximation we get

u0
α(r, t) ≃ − 4m0c

3
2

(2π)2c21Ω
3
∂α

∫

dkeikr sin
Ω

c1
|z0| cosΩt ; (34)

the integration over a finite range of k in equation (34) leads to a function localized over a range
of the order (∆r)2 ≃ 1/k2

c (if we extend the integration to infinity we get the function δ(r)).

Within the same short-wavelengths approximation the term w0
3 in equations (30) is

w0
3(r, t) ≃ −m0c

2
2(c1 − 2c2)

4πc31Ω
2

k4
c cos

Ω

c1
|z0| cos Ωt . (35)

We can see that for large distances the main contribution to the displacement is

v03(r, t) ≃ −m0Ω

πc31

|z0|
R2

0

cos
ΩR0

c1
cos Ωt , (36)

arising from equation (33).

A gradient force. δ-pulse time dependence. If the time dependence of the seismic moment
is of the form m(t) = m0δ(t), the reverse Fourier transform of the term v03 given by equations (30)
can be calculated by using the integral in equation (32); it leads to

v03(r, t) =
m0

2πc21

∂

∂ |z0|
δ(t− R0/c1)

R0

, (37)

which is the derivative of a propagating spherical wave; since the support of this function is zero,
its contribution to the boundary conditions is zero.

For u0
3 and w0

3 in equations (30) the poles associated with the surface waves are active. With
κ1,2 → iκ1,2 the denominator ∆ in equations (30) has poles at ω = ±ω0, where ω0 = c2ξk is the
frequency of the Rayleigh surface waves. The expansion in powers of ω ± ω0 gives

(κ2
2 − k2)2 − 4κ1κ2k

2 = ±4
∆0(ξ)

c2
k3(ω ∓ ω0) + ... , (38)
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where ∆0(ξ) is given by equation (21); taking the reverse time Fourier transforms in equations
(30) we get

uα(k, t) =
m0c2

√
1−ξ2

c2
1
∆0(ξ)

kα
k2
e−αk|z0| sin c2ξkt ,

w0
3(k, t) =

m0c2

(

2−ξ2−2α
√

1−ξ2
)

c2
1
∆0(ξ)

1
k
e−αk|z0| sin c2ξkt ,

(39)

where α =
√

1− c22ξ
2/c21. The reverse spatial Fourier transform of w0

3(k, t) in equations (39)

implies integrals given in equation (26); we get w0
3(r, t) ∼ 1√

S
sinχ/2, where S and χ are given in

equations (27) with z replaced by z0; in the limit of large t the function w0
3(r, t) vanishes.

The reverse spatial Fourier transform of u0
α(k, t) given in equations (39) can be effected by using

the identities

Jα =
1

2π

∫

dk
eikr

k2
kαe

−k|z| = −i∂αJ , J =
1

2π

∫

dk
eikr

k2
e−k|z| (40)

and
∂J

∂ |z| = − 1

2π

∫

dk
eikr

k
e−k|z| = − 1

R
, (41)

where R =
√
r2 + z2; we get

J = − ln (|z| +R) , Jα =
ixα

R(|z|+R)
; (42)

making use of R =
√

r2 + (α |z0| ∓ ic2ξt) 2 and replacing |z| by
√

α2z20 + c22ξ
2t2 in equation (42) we

can see that u0
α(r, t) → 0 for t → ∞, as expected. It is worth noting that in this formulation of the

problem the surface displacement given by u0
α(r, t) and w0

3(r, t) is different from zero immediately
after the initial moment t = 0, when the δ(t)-perturbation occurrs at the point r = 0, z = z0,
z0 < 0 (as expected for a vibrations approach); this is not so for the spherical wave v03(r, t); hence,
we can see that applying the vibrations approach to δ-like point forces concentrated both in time
and space is not an adequate formulation of the problem.

Force on the surface. Let us assume that the volume force is zero (F = 0, ϕ = 0, H = 0) and
only the component p3 = p(t)δ(r) of a surface force localized at r = 0 on the surface z = 0 is
non-vanishing. Making use of equations (9), (12) and (14) we get immediately the components of
the displacement

uα(k, ω) =
ikαp

∆

[

(κ2
2 − k2)eiκ1|z| + 2κ1κ2e

iκ2|z|
]

,

u3(k, ω) = − iκ1p

∆

[

(κ2
2 − k2)eiκ1|z| − k2eiκ2|z|

]

.

(43)

For a harmonic force p(t) = p0 cos Ωt, within the short wavelength approximation described above
we get

uα(r, z, t) =
c2
2
(c1++2c2)

(2π)2c1Ω2 p0∂α
∫

dkeikr
(

cos Ω
c1
z + cos Ω

c2
z
)

cos Ωt ,

u3(r, z, t) =
c2
2
p0

2π2c1Ω

[

∫

dkeikr sin Ω
c1
|z| − 2c2

2

Ω2

∫

dkk2eikr sin Ω
c2
|z|

]

cosΩt ,

(44)

where the integration is performed over a finite range 0 < k < kc ≪ Ω/c1,2. For a time impulse
p(t) = p0δ(t) the contribution to the reverse time Fourier transform comes from the poles of ∆;
in this case we reach the same conclusion as above, viz. in the limit t → ∞ the displacement is
vanishing.
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Static limit. It is worth noting that we are not allowed to take the static limit ω → 0 in the
formulation given here for the vibrations problem, as expected. Indeed, both volume and surface
static forces determine a deformation of the surface z = 0, such that the boundary conditions
should be imposed on the deformed surface; it follows that the boundary conditions imposed here
on the surface z = 0 become inadequate in this case. This can also be seen from the boundary-
conditions system of equations (11), whose solutions given by equations (14) become meaningless
in the static limit, since they include terms like δ(ω)/ω2, or ω2δ(ω)/ω2, arising from ∆ ∼ ω2,
κ2
2 + k2 = ω2/c22 and time Fourier transforms of static forces, which are proportional to δ(ω).

The static limit exhibits a special problem. We can start, in the present formulation, with equa-
tions (8) for potentials and equations (11) for the boundary conditions in the static limit, i.e.

for ω = 0. Then we see immediately that the boundary-conditions system of equations (11) is
incompatible (its determinant is vanishing). This is due to the condition divA = 0 which is too
restrictive in this case. This particularity of the static limit is related to the fact that the con-
tributions associated with ∆ and grad · div in the equation of static equilibrum are entangled in
the static limit. If we give up this condition, then the boundary-conditions system of equations
(11) is compatible, and we may set A0

3 = 0, for instance (or any other convenient relationship
between the four unknowns Φ0 and A

0). Such special features of the static limit can be seen in
the well-known Grodskii-Neuber-Papkovitch approach.[36]-[38] (see also Ref. [39]).

Concluding remarks. The problem of elastic vibrations of anisotropic half-space, known usually
as part of the Lamb problem in Seismology, is formulated here in terms of the Helmholtz potentials
of the elastic displacement. The formulation is based on time Fourier tranforms, spatial Fourier
transforms with respect to the coordinates parallel to the surface of the half-space and wave
equations for generalized functions (distributions), which include the surface values of the functions
and their derivatives. This formulation allows a formal general solution for the vibrations of the
isotropic half-space. Explicit results are given for forced vibrations generated in the half-space by
forces derived from a gradient and concentrated at an inner point in the half-space; these forces
correspond to a scalar seismic moment in the double-couple representation of the seismic sources.
Similarly, explicit resuls are given for forces concentrated at a point on the surface of the half-space.
Both harmonic oscillations and δ-like time pulses are considered for these forces. It is shown that
time pulses of the δ-type generate perturbations which are vanishing in time; consequently, such
perturbations cannot be properly regarded as vibrations, as expected. For harmonic oscillations
the vibrations of the half-space are driven by forces, while for a δ-like time dependence of the
forces the results are governed by surface (Rayleigh) and lateral eigenmodes. The combinations
of incident and reflected waves do not contribute, in virtue of their special eigenmode character.
It is emphasized that the vibrations formulation of the problem is meaningful only for long times,
such that the waves have sufficient time to reach the surface, establish the stationary vibrations
regime by multiple reflections and the surface get a chance to be active in this process.

It is well known that forces concentrated both in time and space (like δ-functions, or derivatives
of δ-functions) generate elastic spherical waves; the boundary conditions are irrelevant for such
propagating waves, due to their vanishing support. Their interaction with the surface generates
additional wave sources, which produce secondary waves; the secondary waves should obey the
boundary conditions, as they last long on the surface, but their contribution, although lasting
for long times, is small over extended spatial regions. It is this transient regime of propagating
waves which is relevant in the "elementary" earthquakes, i.e. earthquakes which are produced by
forces concentrated both in space and time. The original spherical waves are the primary waves
associated with the "preliminary feeble tremor";[6, 7] the secondary waves generate the main shock
and the long tail, documented by the seismic records. The surface waves, or the lateral waves,
as eigenmodes, have no direct bearing on the vibrations, other than contributing through their
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dispersion relations to the perturbations produced by time δ-pulses; while the other eigenmodes
- the combination of incident and reflected waves - have no influence on vibrations. As regards
the propagating regime, all the eigenmodes of the isotropic elastic half-space have no relevance,
as they are undetermined waves.
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