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Abstract

Some aspects of the motion of an electrically charged particle in high-intensity laser fields
are analyzed, which are relevant for the charge acceleration in ultra-intense laser radiation in
vacuum. It is shown that for many practical purposes a charged particle accelerated by a trav-
elling high-intensity electromagnetic wave can be treated as a quasi-classical (and relativistic)
particle. A "stopping" point is identified for charges propagating initially (launched) against
the laser beam, where the charge oscillates indefinitely and radiates. Particular aspects of a
relativistic quantum-mechanical charge accelerated by a high-intensity electromagnetic wave
are discussed, which indicate that a quantum-mechanical treatment is superfluous for very
strong fields in many respects. Also, it is shown that charges in a standing electromagnetic
wave should be treated non-relativistically, and quantum-mechanically, as in an optical lat-
tice. The increase in the particle-antiparticle energy gap in high electromagnetic fields is
highlighted, which indicates difficulties in achieving pair production assisted (induced) by
high-intensity laser radiation in vacuum.
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Introduction. The recent advances in the technique of focused pulses of optical laser beams offer
the opportunity of reaching very high intensities of electromagnetic fields.[1]-[8] New and inter-
esting phenomena can be made available for experimental study in the laboratory by using this
technique.[9, 10] Particle acceleration in high-intensity laser fields has been achieved up to ener-
gies of GeV ′s order;[11]-[13] vacuum polarization, vacuum breakdown, photon-photon scattering,
electron-positron pair creation or non-linear quantum electrodynamics effects are envisaged;[14]-
[18] multiple Compton scattering, generation of higher harmonics, atomic and even nuclear effects
are currently produced or looked for in gaseous or solid plasmas subject to high-intensity laser
fields.[19]-[22] In all these phenomena, the basic element is the electric charge acceleration in
electromagnetic fields, and, generally, the motion of an electric charge in strong electromagnetic
fields. We discuss in this Note some aspects of the motion of an electric charge in high-intensity
electromagnetic fields in vacuum, which, usually, are insufficiently emphasized, in spite of their
relevance.

Classical charge. The relativistic energy equation for a charge q with mass m subject to the
electromagnetic potentials Φ and A,

(
1

c
E − q

c
Φ)2 = m2c2 + (P− q

c
A)2 , (1)
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where E is the energy and P is the generalized momentum, leads to the Hamilton-Jacobi equation

gij
(

∂S

∂xi
+
q

c
Ai

)(

∂S

∂xj
+
q

c
Aj

)

= m2c2 , (2)

where the metrics is gij = (1,−1,−1,−1), through E → −∂S/∂t, P = ∂S/∂r, S being the
mechanical action. For a travelling (plane) wave the potentials Ai (Φ,−A) are functions of the
phase ξ = kix

i only; we seek a solution of the form S = −fixi + F (ξ), where f i is the momentum
of a free particle, fif

i = m2c2; it is the initial momentum, the interaction with the electromagnetic
wave being introduced adiabatically. Since kik

i = 0 and kiAi = 0 (transversality condition), with
zero scalar potential, we get

F
′

= − q

cγ
fiA

i +
q2

2γc2
AiA

i , (3)

where γ = kif
i. The solution is well known.[23] We assume that the plane wave propagates along

the x-direction, so that ξ = ct − x and ki = (1, 1, 0, 0); since γ = f 0 − f 1 and f i = (f 0, f 1,κ),
fif

i = (f 0)2 − (f 1)2 − κ2 = m2c2, we get

f 0 =
1

2
γ +

m2c2 + κ2

2γ
, f 1 = −1

2
γ +

m2c2 + κ2

2γ
(4)

and

S = −1

2
γ(ct+ x)− m2c2 + κ2

2γ
ξ + κr+

q

cγ

∫ ξ

dξ
′

κA− q2

2c2γ

∫ ξ

dξ
′

A2 , (5)

where κ is the transverse momentum and r = (y, z) is the transverse position vector. The
derivatives of S with respect to the momentum κ and the parameter γ are constants of motion;
they may be set equal to zero. The generalized momentum P = p+ q

c
A is given by the derivatives

of S with respect to the coordinates; similarly, the energy is the derivative of S with respect to
the time. We get

y = κy

γ
ξ − q

cγ

∫ ξ
dξ

′

Ay ,

z = κz

γ
ξ − q

cγ

∫ ξ
dξ

′

Az ,

x = 1
2

(

m2c2+κ2

γ2 − 1
)

ξ − q
cγ2

∫ ξ
dξ

′

κA+ q2

2c2γ2

∫ ξ
dξ

′

A2

(6)

and
py = κy − q

c
Ay ,

pz = κz − q
c
Az ,

px = −1
2
γ + m2c2+κ2

2γ
− q

cγ
κA+ q2

2c2γ
A2 ;

(7)

the energy is given by
E = c(γ + px) ; . (8)

we note the linear dependence on the momentum. For a charge initially at rest at x = y = z = 0
at the initial moment of time t = 0 (κ = 0, f 1 = 0), and a vector potential A = Az = A0 cos(ωt−
kx) = A0 cos

ω
c
(ct− x) = A0 cos

ω
c
ξ (linear polarization) we get γ = mc (γ2 = m2c2) and

z = − qA0

mc2
λ sin(ωt− kx) , y = 0 ,

x =
q2A2

0
/4m2c4

1+q2A2

0
/4m2c4

[

ct+ λ
2
sin 2(ωt− kx)

]

,

px =
q2A2

0

2mc3
cos2(ωt− kx) , pz = − qA0

c
cos(ωt− kx) , py = 0

(9)
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and

E = mc2 +
q2A2

0

2mc2
cos2(ωt− kx) , (10)

where λ = c/ω is the radiation wavelength. For time-averaged quantities an effective mass can be
defined by

E2/c2 − p2x = m∗2c2 , m∗2 = m2

(

1 +
q2A2

0

2m2c4

)

, (11)

by analogy with the free particle.[24, 25]

We can see that, apart from oscillations, the charge exhibits a drift motion, governed by the ratio
of the field energy qA0 to the rest energy mc2. There exist also solutions with negative energy
E = c(−γ−px) and negative momentum px (corresponding to γ = −mc in the above calculations),
which move in opposite direction. The oscillations of the charge give rise to radiation[26]-[28]
(Compton effect); the Lorentz reaction force is extremely small;[29] in the limit of high fields,
where x is approximately ct, the phase is very small and the oscillations and the radiation are
fadding out.

We introduce the parameter

η =
qA0

2mc2
(12)

(or η = qE0/2mωc, where E0 = ωA0/c is the electric field, q > 0); from equation (9) the drift
velocity of the charge is given approximately by

v ≃ η2

1 + η2
c , (13)

and the coordinates x and z can be written as

x ≃ vt+ 1
2
vλ
c
sin 2(ω − kv)t = vt+ 1

2
vλ
c
sin 2ω(1− v

c
)t ,

z = −2ηλ sinω(1− v
c
)t ;

(14)

a current J = qv occurs, along the direction of propagation of the radiation. The charge gets
rapidly ultrarelativistic, as shown by equations (14).[30]

Usually, the parameter η is small (η ≪ 1). However, a laser intensity I = 1022w/cm2, focalized
in a pulse of dimension d, generates an electric field E0 =

√

4πI/c ≃ 1010statvolt/cm (E2
0d

3 =
4πId2τ = 4πId3/c, where τ = d/c is the duration of the pulse). This may be a very high
electric field; (for a linear dimension of the pulse d = 10µm, τ ≃ 30fs; the intensity 1022w/cm2

corresponds to ≃ 10Pw, i.e. a total energy per pulse ≃ 300w). The vector potential is A0 =
cE0/ω = 10−5E0 = 105statvolt for the optical frequency ω ≃ 3× 1015s−1 (ν = ω/2π, λ = 0.5µm);
the corresponding energy for an electron is qA0 = 4.8× 10−5erg ≃ 30MeV . This energy is much
higher than the rest energy of the electron mc2 = 0.5MeV , such that the ratio η = qA0/2mc

2 = 30
is much larger than unity. It follows that an electron can be accelerated, during the short duration
τ of the pulse, up to velocities close to the speed of light, along the direction of propagation of
the radiation field, and up to energies of the order 1GeV .

If the radiation is propagated in gaseous plasmas,[31] then a radiation pulse is a wavepacket; when
focalized, it is a three-dimensional wavepacket which distributes the electrons over its surface, such
as to compensate the radiation field. Under such circumstances, the charges are accelerated by
the transport motion of the wavepacket (pulse; pulsed polariton).[32] The mechanism of charge
acceleration presented here is distinct from, and complementary to the mechanism of charge
acceleration in plasmas.
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"Stopping" point. Let us assume that initially the charge moves with momentum f 1 = −αmc,
α > 0, in direction opposite to the laser beam. Then, from equations (6)-(8), we get

x = 1+2η2−β2

1+2η2+β2 ct+
η2

1+2η2+β2λ sin
2ω
c
ξ , z = −2η

β
λ sin ω

c
ξ ,

px = mc
2β

(

1− β2 + 4η2 cos2 ω
c
ξ
)

, E = mc2

2β

(

1 + β2 + 4η2 cos2 ω
c
ξ
)

,

(15)

where β = α+
√
1 + α2. We can see that there exists a value β2 = 1 + 2η2 for which

x = η2

2(1+2η2)
λ sin 2ω

c
ξ , px = mc√

1+2η2
η2 cos 2ω

c
ξ ,

E = mc2√
1+2η2

(

1 + η2 + 2η2 cos2 ω
c
ξ
)

,

(16)

where the drift motion ceases and the charge oscillates indefinitely, and radiates (mainly with
frequencies ω and 2ω).

Quantum charge. As it is well known[33, 34] the wawefunction of a relativistic quantum charge
in an electromagnetic plane wave is

ψ =

[

1 +
q

2c

(γk)(γA)

(pk)

]

e
i
~
Su , (17)

where

S = −px−
∫ ξ

dξ
′

[

q

c(pk)
(pA)− q2

2(pk)c2
A2

]

(18)

is the mechanical action, p is the charge momentum four-vector, k is the field four-wavevector, γ
denotes the Dirac matrices and u is a constant bispinor; the notation (pk) stands for the scalar
product of the two four vectors p and k (Volkov wavefunction; compare with the classical action
given by equation (5), where p is repalecd by f). The electromagnetic wave depends only on the
phase ξ = (kx). We assume that the interaction is introduced adiabatically; then u is the solution
of the free Dirac equation (γp−mc)u = 0, i.e. it is the plane wave constant bispinor. Therefore,
the wavefunction can be written as

ψpσ =
1√
2εV

[

1 +
q

2c

(γk)(γA)

(pk)

]

e
i
~
Supσ , (19)

where σ = ±1 is the spin label, V is the volume, ε = (m2c4 + p2c2)
1/2

and upσ is normalized such
as upσupσ′ = 2mc2δσσ′ , u−pσu−pσ′ = −2mc2δσσ′ .[35] We give here these constant bispinors

upσ =

(

(ε+mc2)1/2wσ

(ε−mc2)1/2(nσ)wσ

)

, u−p−σ =

(

(ε−mc2)1/2(nσ)w
′

σ

(ε+mc2)1/2w
′

σ

)

, (20)

where n = p/p, w
′

σ = −σyw−σ and wσ can be taken as the eigenvectors of the matrixσz ; σ

denotes the spin matrices. We note that u∗pσupσ′ = upσγ
0upσ′ = 2εδσσ′ . The wavefunctions ψpσ are

orthonormal;[36] also, the completeness of these wavefunctions can be proved (see, for instance,
Refs. [37]-[39]). The phase S given by equation (18) is the classical mechanical action; it contains
the drift motion of the charge along the propagation of the wave, while the pre-exponential factor
in the wavefunction given by equation (17) includes the oscillations of the charge in the radiation
field. The current ji = cψγiψ (with the probability density ρ = ψγ0ψ = ψ∗ψ = j0/c) and the
momentum qi = ψ∗

pσ(p
i − q

c
Ai)ψpσ can be computed straightforwardly, and an effective mass m∗

can be derived, identical wth the effective mass in the classical case.[40]
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Let us consider an electromagnetic wave propagating along the x-direction, ki = (1, 1, 0, 0),
ξ = kix

i = ct − x, with the electromagnetic potentials Ai = (0, 0, 0, A), A = A0 cos
ω
c
ξ (linear

polarization) and a charge moving initially along the y-direction, pi = (mc, 0, py, 0), with a small
py; then, the pre-exponential factor of the wavefunction in equation (17) is

1 +
q

2c

(γk)(γA)

(pk)
= 1−

qA0 cos
ω
c
ξ

2mc2

(

−iσy σz
σz −iσy

)

(21)

(we note that the matrix (γ0 − γ1)γ3 entering the pre-exponential factor is twofold degenerate);
the mechanical action given by equation (18) becomes

S = −
(

mc2 +
q2A2

0

4mc2

)

t+ pyy +
q2A2

0

4mc3
x− q2A2

0

8mc2ω
sin

2ω

c
ξ . (22)

The charge acquires an average drift momentum

Px ≃ q2A2
0

4mc3
= mcη2 , (23)

an energy

E ≃ mc2 +
q2A2

0

4mc2
= mc2(1 + η2) (24)

and a phase velocity

vx ≃ E
Px

=
1 + e2A2

0/4m
2c4

e2A2
0/4m

2c4
c =

1 + η2

η2
c , (25)

which is higher than the speed of light in vacuum c; the group velocity may attain values as large
as c.

We can see that for high-intensity fields,[41] η = qA0/2mc
2 ≫ 1, the charge becomes ultrarela-

tivistic; leaving aside the pre-exponential factor given by equation (21), the wavefunction can be
written as

ψpσ ≃ 1√
2V

(

wσ

σywσ

)

e
i
~
S , ψ−p−σ ≃ − 1√

2V

(

w−σ

σyw−σ

)

e−
i
~
S , (26)

where

S ≃ − q2A2
0

4mc2
t+

q2A2
0

4mc3
x = − q2A2

0

4mc3
(ct− x) = −mc2η2(ct− x) ; (27)

(the two bispinors are not independent, which corresponds to the ultrarelativistic case). The
extremely fast oscillations produced by the large phase S indicate that we may view the charge
as being in the quasi-classical limit; in fact, for many practical purposes we may disregard the
wavefunction, since it is vanishing as a consequence of very fast oscillations, and view the charge
as a classical particle; a similar result can be obtained by taking the limit m→ 0, either formally
in the Volkov wavefunction given by equation (17), or in the initial Dirac equation (Weyl equation,
with only one spinor).[34] We can check that the current is ψpσγ

iψpσ = 1
V
(1, 1, 0, 0), corresponding

to a plane wave which describes an ultrarelativistic particle. The spinor ψ−p−σ corresponds to
negative energy (and momentum). The negative-energy electrons in the Dirac Fermi sea get lower
and lower (negative) energy (as if they would have a negative mass); such that the gap between the
negative-energy states and positive-energy states is increased by radiation. Similar considerations
are valid for pair creation in laser fields in the presence of a Coulomb potential (Bethe-Heitler
process[42, 43]). It is also worth noting that the accelerated charge "feels" not anymore the
radiation for very strong fields; in the rest frame of an ultrarelativistic particle the electromagnetic
fields are vanishing. From equation (27) we get the charge wavelength λ ≃ ~/η2mc; we can see
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that for large η the wavelength is much shorter than the Compton wavelength; it follows that for
many practical purposes we may use the classical approximation for the accelerated charge.[44]-
[46] Within this approximation small interference effects or rapidly varying spin dynamics are
lost; in the limit of high-intensity fields these effects are small, so they can be disregarded. An
ultrarelativistic particle is practically a "radiation" field; as such, it does not radiate, and does
not "feel" the accelerating electromagnetic field.

Standing electromagnetic wave. Let us consider a classical relativistic charge in a standing
electromagnetic wave with the vector potential

A = Az =
1

2
A0[cos(ωt− kx) + cos(ωt+ kx)] = A0 cosωt cos kx (28)

(linear polarization); the frequency of the wave is in the optical range, ν = ω/2π ≃ 1015s−1, and
the wavelength is λ = 2π/k = c/ν ≃ 3 × 10−5cm = 0.3µm. The time spent by the charge in the
field may be much longer than the wave period 1/ν = 10−15s; consequently, we may average the
Hamilton-Jacobi equation

1

c2
(∂S/∂t)2 = (gradS − q

c
A)2 +m2c2 (29)

with respect to the time; equation (29) becomes

1

c2
(∂S/∂t)2 = (∂S/∂x)2 + (∂S/∂y)2 + (∂S/∂z)2 +

q2A2
0

2c2
cos2 kx+m2c2 ; (30)

(a similar result holds for a circularly polarized wave). The solution of this equation is the
mechanical action

S = ± qA0√
2ω

cos kx+ pyy + pzz − Et , (31)

where py,z are constant transverse momenta and E is the energy, given by

E2 = m2c4 +
1

2
q2A2

0 + (p2y + p2z)c
2 . (32)

We note that the energy acquires the form of the energy of a free particle, at rest along the
longitudinal x-direction (wave direction), with a renormalized mass. This indicates that the
assumption of a relativistic classical charge in a standing electromagnetic wave is not warranted.
In particular, we can see that the coordinate x is not determined.

Indeed, contradictions can appear from such an assumption. For instance, the longitudinal mo-
mentum is

Px = px =
∂S

∂x
= ± qA0√

2c
sin kx , (33)

whence, making use of px = mvx/(1− v2x/c
2)1/2, we get a "velocity"

dx

dt
= vx = c

qA0√
2mc2

sin kx
√

1 +
q2A2

0

2m2c4
sin 2kx

(34)

and a "force"
dpx
dt

= vx
dpx
dx

=
1

2
c
d

dx

√

m2c2 + p2x = mc2k
2η2 sin kx cos kx
√

1 + 2η2 sin2 kx
, (35)
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which looks like a ponderomotive force. However, the motion under the action of such a force
is meaningless. In particular, both the "velocity" and the "force" given by equations (34) and,
respectively, (35), vanish at kx = nπ, where n is any integer.

The situation is different for a non-relativistic charge; in this case the energy reads

E =
1

2m
(P− q

c
A)2 =

p2x
2m

+
p2y
2m

+
p2z
2m

− q

mc
pzA +

q2

2mc2
A2 , (36)

or, taking the temporal average,

E =
p2x
2m

+
p2y
2m

+
p2z
2m

+
e2A2

0

4mc2
cos2 kx ; (37)

we can see that the charge moves in a periodic potential

U(x) =
q2A2

0

4mc2
cos2 kx ; (38)

the standing wave acts as an optical lattice for the charge. It follows that the quantum-mechanical
motion of a charge in a standing electromagnetic wave generates energy bands, as it is well
known;[47] and, in addition, a charge may suffer diffraction on a standing wave (Kapitza-Dirac
effect[48]). The classical motion is confined within the potential wells centered at kx = (2n+1)π/2,
according to the potential energy included in the expression of the hamiltonian given by equation
(37), subject to a ponderomotive force mc2kη2 sin 2kx.

Finally, it is worthwhile commenting upon the Compton effect in a classical electromagnetic wave.
It is instructive at this moment to have an estimation of the (mean) photon density in a laser pulse
with moderate intensity I = 1018w/cm2; this intensity corresponds to an electric field of the order
E0 ≃

√

4πI/c = 108statvolt/cm (and a similar magnetic field). The energy density is of the order
w ≃ I/c = 1014erg/cm3, with a density of photons n ≃ 1025cm−3 with energy, say, ~ω = 1eV ; the
photon flow (flux) is cn ≃ 1035/cm2 ·s. Currently, electrons may be injected in an electromagnetic
waves to give an electric current of, at most, the order ≃ 100mA, which corrresponds to ≃ 1017

electrons per second (we may admit that such an electric current can be produced experimentally
over a cross-sectional area 1cm2); it follows that we may have an electron flow ≃ 1017/cm2 · s. We
may see that electron flow is much weaker than the photon flow. Therefore, we may conclude that
the disruption of an electromagnetic wave by electron beams is unlikely and the Compton effect
is not likely to disturb appreciably either the electromagnetic wave or the electron dynamics. We
may view the Compton scattering in an electromagnetic wave as a statistical-mechanical effect,
where the mean free path of the electron is of the order of the mean separation distance between
the photons (≃ 10−8cm), the Compton cross-section σ is of the order of the square of the classical
electromagnetic radius of the electron (re = e2/mc2 ≃ 2.8×10−13cm), for the radiation wavelength
≃ 3× 10−5cm (~ω = 1eV ).

Concluding remarks. The acceleration of a classical relativistic charge by a travelling wave of
high-intensity (focused) optical laser radiation in vacuum is analyzed, with the aim of emphasizing
some peculiar aspects. Such a charge acquires quickly a fast drift motion and becomes ultrarela-
tivistic, moving with energies in the GeV ’s range; under these circumstances it ceases to radiate
and "feels" not anymore the carrying wave. Also, it is shown that a relativistic quantum charge
in high-intensity laser radiation (Volkov state) becomes rapidly "localized", such that a (quasi-)
classical treatment is more adequate for many practical purposes. Similarly, it is shown that a
charge in a standing electromagnetic wave behaves quantum-mechanically and non-relativistically.
This situation leads to energy bands and charge diffraction on a standing electromagnetic wave
(Kapitza-Dirac effect), as it is well known in an optical lattice.
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