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Abstract

The motion of a non-relativistic point electric charge in an electromagnetic radiation
field is analyzed in a few particular cases of physical interest. It is shown that in usual
cases the effect of the interaction with the radiation field may amount to what is known
as the adiabatic hypothesis for a quasi-free particle. A point free charge q with mass m in
moderately high radiation fields with the amplitude of the vector potential A0 and frequency
ω is "accelerated" into a (mean) quasi-uniform motion along the direction of propagation of
the radiation and oscillates, mainly with the double frequency 2ω, such that it radiates quasi-
classically an electromagnetic field; this radiation looks as if it is produced by an effective
charge renormalized by the factor η2, where η = qA0/2mc2; it is a lateral radiation, in
the sense that its maximum is at the right angle with the direction of propagation of the
accelerating field. Also, the approximation employed allows an estimation of the amplitude
of ionization of a bound state under the action of a field of electromagnetic radiation. It is
also shown that within this quasi-classical approximation the quantum transitions among the
bound states of the charge subject to a classical field of electromagnetic radiation are absent.
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Introduction. The motion of point electric charges subject to high-intensity electromagnetic
fields is currently receiving a great deal of attention, especially in connection with the develop-
ment of high-power optic lasers.[1]-[4] Apart from charge acceleration, many other novel phe-
nomena are envisaged, like vacuum polarization, vacuum breakdown, photon-photon scattering,
electron-positron pair creation or non-linear quantum electrodynamics effects, as well as multiple
Compton scattering, generation of higher harmonics, atomic and even nuclear effects. A quantum
relativistic charge in a plane wave of classical electromagnetic radiation in vacuum is described
by the well-known Volkov wavefunction derived as early as 1930.[5, 6] The classical relativistic
Hamilton-Jacobi equation helps illuminating many interesting points of this problem.[7] The non-
relativistic quantum charge in a moderately intense electromagnetic field exhibits acceleration
along the direction of propagation of the radiation and oscillations, as well as its own radiation
and, for bound states, ionization.[8] Two particular features are related to these problems. One
refers to the possible non-linearities brought about by an intense field of classical radiation, as a
consequence of the photon high density and undetermined number of photons; this would be an
important departure point from the usual treatment of electron-photon interaction in quantum
electrodynamics. Another feature refers to the presence of many electrons in ionized gaseous plas-
mas (a usual experimental situation in laser physics), where the internal polarization field and
plasma oscillations are present.
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Let a non-relativistic particle with electric charge q and mass m be subject to a field of electro-
magnetic radiation with the vector potential A, divA = 0. The Schrodinger equation reads

i~
∂ψ

∂t
=

1

2m

(

P− q

c
A
)2

ψ + V ψ , (1)

where P = −i~∂/∂r is the canonical (generalized) momentum and V is an external, static poten-
tial; c is the speed of light in vacuum and ~ is Planck’s constant. If the particle is an electron
and spin is considered, then Pauli’s equation can be used instead of equation (1). The problem
discussed here is to see whether, and in what conditions, a solution of the form

ψ = Fφ (2)

is possible (exists), where φ satisfies the Schrodinger equation without electromagnetic field,

i~
∂φ

∂t
=

p2

2m
φ+ V φ , p = −i~∂/∂r , (3)

and the function F becomes unity (F = 1) for A = 0.

We note immediately that if the field would derive from a gauge transformation, i.e. if A =
gradχ, (i.e., it would be a gauge field), there would exist a scalar potential ϕ = −1

c
∂χ
∂t

, such that
1
c
∂ϕ
∂t

+ divA = 0; then A changes the momentum, P → P + q
c
∂χ/∂r (∂/∂r → ∂/∂r + iq

c~
∂χ/∂r),

an additional term qϕ = − q
c
∂χ
∂t

appears in the hamiltonian and ψ = e
iq

c~
χφ; the function F would

be F = e
iq

c~
χ in this case. However, a radiation field, for instance of the form Ax = Ay = 0,

Az = A = A0 cos
ω
c
(ct− x), ϕ = 0, where ω is the frequency of the radiation, is not a gauge field.

We note also that the problem formulated above is the non-relativistic counterpart of the relativis-
tic charge in an electromagnetic wave, whose solution is the Volkov wavefunction;[5] therefore, it
may appear that a route to the solution of our problem here would be the non-relativistic limit of
the Volkov wavefunction. This is not so, because in the non-relativistic limit the contribution of
the anti-particles, which is included in the Volkov wavefunction, are lost. The situation is similar
with the zero mass limit of the ultrarelativistic case, which cannot be taken directly on the Volkov
wavefunction, because this wavefunction is not analytic in the particle mass.1

Inserting equation (2) into equation (1) and making use of equation (3) we get

i~
∂F

∂t
φ =

1

2m
(p2F )φ− q

mc
A(pF )φ+

q2

2mc2
A2Fφ+

1

m
(pφ)(pF )− q

mc
A(pφ)F , (4)

where p = −i~∂/∂r and we use divA = 0. We take Ax = Ay = 0, Az = A = A0 cos
ω
c
(ct− x) and

equation (4) becomes

i~cF
′

φ = − ~
2

2m
F

′′

φ+
q2

2mc2
A2Fφ− i~

m
(pxφ)F

′ − q

mc
A(pzφ)F , (5)

where F is a function of ξ = ct−x only. Introducing the (reduced) Compton wavelength λc = ~/mc
of the charge with mass m and the parameter η = qA0/2mc

2, equation (5) can also be written as

iF
′

φ = −1

2
λcF

′′

φ+
2η2

λc
Fφ cos2

ω

c
ξ − iλc

(px
~
φ
)

F
′ − 2η

(pz
~
φ
)

F cos
ω

c
ξ . (6)

1An ultrarelativistic massless charge does not couple with the electromagnetic field; the phase of the Volkov
function oscillates indefinitely in this case, and the interaction part of the Volkov wavefunction may be viewed as
being reduced to zero.
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The term λcF
′′

compared with F
′

shows the variation of F
′

over distances of the order λc; we
may neglect such variations, as they imply relativistic corrections; in addition, the uncertainty
principle implies a limitation to distances much larger than λc. For instance, for an electron
λc ≃ 3× 10−11cm, which is such a short distance that the non-relativistic approximation becomes
meaninglesss. Therefore we neglect the term λcF

′′

in equation (6). The term λc(pxφ/~)F
′

should
be compared with F

′

φ; it is of the order λc/λq, where λq is the characteristic wavelenghth in the
potental V ; for instance, for a bound state it is of the order of the characteristic wavelength of the
bound state; for scattering, it is of the order of the scattering wavelength (~2/mλ2q ≃ |V |; for a
Coulomb potential it is of the order of the Bohr radius, ~2/mλ2q ≃ q2/λq, λq ≃ ~

2/mq2); for a free
motion λc/λq = vx/c, where vx is the velocity along the x-direction. We can see that this term
also can be neglected in equation (6). Therefore, we can write approximately

iF
′

φ ≃ 2η2

λc
Fφ cos2

ω

c
ξ − 2η

(pz
~
φ
)

F cos
ω

c
ξ . (7)

The term η(pzφ/~)F may imply variations over large distances, such that it may bring relevant
contributions. In the weak coupling limit η ≪ 1 it brings the main contribution. However, for
usual fields of interest (i.e. for fields which are not extremely weak) the last term in equation (7)
may be neglected. Under these circumstances, the approximation which turns out to be relevant
for determining the function F is the approximation of a free charge, where F depends only on
the interaction and does not depend on the wavefunction φ.

In this context, we also note that the ansatz given by equation (2) may look too restrictive, since,
in general, we expect the function F to be a matrix. If we label the states φ by a suffix n, we
would expect, in general, that the wavefunction φn be taken by interaction into a superposition of
wavefunctions Fn′nφn′ . The assumption embedded into equation (2) amounts to what is known
as the quasi-adiabatic hypothesis. It implies that the interaction varies slowly in comparison with
the periods of transitions among the bound states of the charge (this may be not true for the
ionization process).

Free particle. For a free particle (V = 0) pzφ is a constant momentum multiplied by φ (φ ∼
e

i
~
pzz); we get from equation (7)

F = e
−i η

2

λc
ξ−i η

2λ
2λc

sin 2ω
c
ξ+i 2ηλ

λq
sin ω

c
ξ
, (8)

where λ = ω/c is the wavelength of the radiation field.

For a free charge an interesting situation appears for moderately high fields; we may consider
that the non-relativistic limit is preserved up to η ≃ 1; for an electron η = 1 corresponds to
A0 = 103statvolt and an electric field E0 ≃ 108stavolt/cm for an optical frequency ω = 1015s−1 (for
comparison the atomic fields are of the order 106statvolt/cm); the intensity of the radiation in this
case is I = cE2

0/4π ≃ 1018w/cm2. The Compton wavelength for the electron is λc ≃ 3× 10−11cm;
we take the optical wavelength λ = 1µm = 10−4cm and the electron wavelength λq = 1Å = 10−8cm
(corresponding to an initial energy ≃ 3eV and an initial momentum ≃ 10−19g ·cm/s). Under these
circumstances we may neglect the last term in the phase of the function F in equation (8), and
write

F ≃ e−i η
2

λc
ξ−i η

2λ

2λc
sin 2ω

c
ξ . (9)

Making use of

eiz cosϕ =
∑

n

ineinϕJn(z) , (10)
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where Jn are the Bessel functions, we can write

F =
∑

n

e
i

(

2nω
c

− η2

λc

)

ξ
J−n(η

2λ/2λc) . (11)

We can see that a free charge acquires a superposition of plane waves in the presence of the
radiation field, with energies

En = −2n~ω + η2mc2 + E0 , (12)

momenta (along the direction of propagation of the radiation)

pn = −2n~k + η2mc+ px0 (13)

and very small weights Jn(η2λ/2λc) ≃ Jn(10
6) (for our numerical estimates); E0 is the initial energy,

px0 is the initial momentum along the direction of propagation of the radiation and k = ω/c is
the wavevector of the radiation.

It is worth noting that the charge has a distribution of momentum (momentum density) along
the direction of propagation of the radiation; it can be computed most conveniently from the
wavefunction given by equation (9); we get

p(r, t) =
1

V
η2mc(1 + cos

2ω

c
ξ) , (14)

where V is the volume and px0 is set equal to zero; the total momentum is
∫

p(r, t)dr =
∑

n

pnJ
2
n(η

2λ/2λc) = η2mc . (15)

We can see that the charge is "accelerated" along the direction of propagation of the radiation, in
the sense that it acquires a constant momentum η2mc and a variable momentum corresponding
to the oscillating term in equation (14) ; the momentum and energy of the particle depend on the
time. Similarly, there exists a distribution of velocity

v(r, t) =
1

V
η2c(1 + cos

2ω

c
ξ) . (16)

We note that both the energy and the momentum scales of the charge in the radiation field are the
relativistic quantities mc and, respectively, mc2, according to equations (12) and (14), although
we are in the non-relativistic limit. This is due to the fact that the electromagnetic radiation (even
in its classical limit) is essentially a relativistic entity; the non-relativistic limit is expressed by
the inequality η2 ≪ 1. It is also worth noting that the higher harmonics appearing in equations
(13) are not present in equation (14).

A charge which oscillates according to equation (14) radiates; however, for a charge distribution
extended to the whole space this radiation is not observable (the radiating charge distribution
absorbs its own radiation). In accordance with experimental situation we assume that the charge
in the radiation field is confined in fact to a small spatial region, of linear dimension d, d ≫ λ
(and λq). Inside this region we can view the charge as a wavepacket, localized at r0 and moving
with velocity v given by equaton (16); we neglect the motion along the other two directions. The
wavepacket assumption is not necessary, though even for moderate values of η the wavelength of
the wavefunction in equation (9) is of the order λc/η2, which is much smaller than our distances of
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interest. This amounts to a quasi-classical approximation. Therefore, we assume a current density
of the form

jx(r, t) = η2qc

[

1 + cos
2ω

c
(ct− x0)

]

δ(r− r0) , (17)

as given by equation (16). We get immediately the vector potential

Ax = η2q

[

1 + cos
2ω

c
(ct− |r− r0| − x0)

]

1

r
≃ η2q

[

1 + cos
2ω

c
(ct− r)

]

1

r
(18)

for r ≫ r0. From the gauge condition ∂Φ/c∂t + divA = 0 we get the leading contribution
Φ = (η2qx/r2) cos 2ω

c
(ct − r). We compute now the fields according to E = −∂A/c∂t − gradΦ,

H = curlA. We get

Ex = 2η2qω
c

sin 2ω
c
(ct− r)1

r
(1− x2/r2) ,

Ey = −2η2qω
c

sin 2ω
c
(ct− r)xy

r3
, Ez = −2η2qω

c
sin 2ω

c
(ct− r)xz

r3

(19)

and
Hx = 0 , Hy =

2η2qω
c

sin 2ω
c
(ct− r) z

r2
, Hz = −2η2qω

c
sin 2ω

c
(ct− r) y

r2
. (20)

The Poyinting vector S = (c/4π)E×H leads to the radiated differential intensity

dI = Sdf = Hy =
η4q2ω2

πc
sin2 2ω

c
(ct− r)(1− x2/r2)do , (21)

where do is the element of the solid angle and df = r2do is the element of area. We can see that
the maximum radiated field is at the angle θ = π/2, where cos θ = x/r ; it is a "lateral" radiation.
It is worth noting that this is a classical radiation with frequency 2ω, and an effective charge
reduced by the factor η2. If we consider the rather unphysical case of very weak fields, such that
η2 ≪ 1, the function F given by equation (8) reduces to

F = e
i 2ηλ

λq
sin ω

c
ξ
; (22)

the charge radiates frequency ω, and it is renormalized by a factor ∼ (λc/λq)η . However, the last
term i2ηλ

λq
sin ω

c
ξ in the phase of the function F in equation (8) becomes important in comparison

with the second term for very low fields (η2λ/λc ≪ ηλ/λq, E0 ≃ 104statvolt/cm); we may neglect
it in our subsequent discussion.

Ionization. The theory described here offers the opportunity of formulating a simple model of
ionization under the action of an electromagnetic wave. We assume a bound state e−

i
~
Ebtφb of a

charge, where the Eb-energy factor is shown explicitly, as, for instance, a periferic electron in a
heavy atom. Under the action of the electromagnetic radiation this state becomes Fe−

i
~
Ebtφb; it

contains many states, among which a free particle state, which may be viewed as the ionization
state; it may be taken as being of the form φi =

1√
V
e−

i
~
Eit+iQr, where Ei is the energy and ~Q is

the momentum of the free charge. Then, the amplitude of ionization is given by

a =

∫

drφ∗
iFe

− i
~
Ebtφb =

e
i
~
(Ei−Eb)t
√
V

∑

n

∫

dre−iQrφbe
i

(

2nω
c

− η2

λc

)

ξ
J−n(η

2λ/2λc) , (23)

where we use the function F given by equation (11) for moderately strong fields. We can insert
in equation (23) the Fourier expansion of the function φb

φb =
1√
V

∑

q

c(q)eiqr , c(q) =
1√
V

∫

drφbe
−iqr , (24)
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which leads to

a = e
i
~
(Ei−Eb)t

∑

n

c(Qx + 2nω/c− η2/λc,Qt)e
i

(

2nω
c

− η2

λc

)

ct
J−n(η

2λ/2λc) , (25)

where Qt is the transverse momentum of the free particle in the (y, z)-plane.

First, we can check that for a very localized wavefunction φb, for which all the coefficients c(q)
may be taken equal to unity, the ionization amplitude |a|2 = 1, since

1 =
∣

∣eiz cosϕ
∣

∣

2
=

∑

nn′

in−n
′

ei(n−n
′
)ϕJn(z)Jn′ (z) ; (26)

this indicates that such a very localized wavefunction (corresponding to a point particle) is not a
bound state. For a reasonably bound state the coefficients c(q) decrease with increasing q, such
that we may assume that the main contribution to the summation in equation (25) comes from
Qt = 0 and Qx + 2n0ω/c− η2/λc ≃ 0, where n0 is the integral part of (c/2ω)(η2/λc −Qx); under
these circumstances we may take c(0) ≃ 1 and the amplitude a becomes

a ≃ e
i
~
(Ei−Eb)te−iQxctJ−n0

(η2λ/2λc) ≃
√

4λc
η2λ

e
i
~
(Ei−Eb)te−iQxct cos

[

η2λ/2λc − (n0 + 1/2)
π

2

]

(27)

for η2λ/2λc ≫ 1. In this context, we can note that the asymptotic formula

eiz cosϕ ≃
√

2π

z

∑

n

[

eizδ(ϕ− π/4 + 2πn) + e−izδ(ϕ+ 3π/4 + 2πn)
]

, z ≫ 1 (28)

(Poisson formula) is not much more helpful in estimating the ionization amplitude.

It is worthwhile noting that the ionization process analyzed here in a classical electromagnetic
wave is different from the ionization which proceeds by absorbing one, or more, radiation quanta
(photoelectric effect), and, as well as, it is different from the ionization in static electric or magnetic
fields, in quasi-static electric fields, or in the quasi-classical tunneling approximation.[9]-[12] In
addition, we note that the result presented here refers especially to a periferic electron in a heavy
atom.

Absence of quantum transitions. Let e−
i
~
Entφn be a bound state of the charge; it is taken

by interaction into Fe−
i
~
Entφn; a state e−

i
~
E
n
′ tφn

′ is found in the state with interaction with a
probabiliy amplitude

ann′ =

∫

drφ∗
n
′Fφne

−iω
nn

′ t =
∑

s

Js(η
2λ/2λc)

∫

drφ∗
n
′φne

i

(

2sω
c

+ η2

λc

)

x
ei(ωnn

′−2sω−η2mc2/~)t , (29)

where ωnn′ = (En′ −En)/~. With the notation

Cnn′ (s) =

∫

drφ∗
n′φne

i

(

2sω
c

+ η2

λc

)

x
(30)

we can write
ann′ =

∑

s

Cnn′ (s)Js(η
2λ/2λc)e

i(ω
nn

′−2sω−η2mc2/~)t . (31)
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Since η2/λc is very large in equation (30) we may neglect the s-term in the phase in this equation,
such that Cnn

′ does not depend practically on s; in this case, the summation over s in equation
(31) gives zero. Therefore, we conclude that there is no quantum transition among the bound
states of a charge in a classical field of electromagnetic radiation, as expected. The ansatz given
by equation (2) implies that the interaction is much slower than any transition among the bound
states, but not necessarily so for the ionization process, especially with high energy of the ejected
charge.

Also, it is worth noting that the presence of photons with energy n~ω in the dressed wavefunction
of the charge indicates merely the presence of virtual states, while the multiple Compton effect
with absorption of n photons is cancelled out by the multiple Compton effect with emission of
n photons. This process is distinct from the external Compton effect in the presence of the
electromagnetic radiation.[13]

Concluding remarks. It is worth noting another form of the solution of equation (7), written
as

Ḟ =
i

~
V F , (32)

where we use the time derivative; V stands for the interaction generated by A. The solution can
also be written as

F = 1 +
1

~

∫ t

dt
′

iV +
1

~2

∫ t

dt
′

iV

∫ t
′

dt
′′

iV + ... (33)

with the initial condition F = 1 for t → −∞. If we extend the integration with respect to
the intermediate times to t and introduce the factor n! we recover immediately the exponential
form. The form of the solution given by equation (33) is useful for the case when F and V
are matrices (operators); then V includes also factors of the form eiωnn

′ t, and we can recognize
easily in equation (33) the perturbation theory with intermediate states. As long as we require
φ → Fφ as in equation (2) we lose all transitions which are slower than the rate of switching on
the interaction; indeed, such slow eiωnn

′ t-terms may be neglected in equation (33), which amounts
to a quasi-classical character of the interaction V ; we recover in this case the exponential form
of solution which we used in the main text and which led to the absence of quantum transitions;
this may not be necessarily the case for the ionization process, especially when the energy of the
ejected particle is high. This circumstane may be termed a quasi-classical approximation; it may
be seen formally by integrating by parts in equation (33) where terms like

1

~

∫

dtV eiωnn
′ t =

V

~ωnn′

eiωnn
′ t −

∫

dt
1

i~ωnn′

∂V

∂t
eiωnn

′ t (34)

appear; they allow a direct comparison between ~ωnn′ and the rate ∂V/∂t (the first term in
equation is the change in the wavefunction due to a constant interaction).

A special attention deserves the electrons in ionized gaseous plasmas subject to an electromagnetic
radiation field. In normal conditions a gaseous plasma has a density of electrons n ≃ 1019cm−3;
the electrons oscillate under the action of an external electric field Eex and their own internal
electric field Ein, according to the classical law

mü+mω2
0u = qEex + qEin , (35)

where ω0 is a characteristic frequency for bound electrons and u is their displacement from
equilibrium positions; for free electrons ω0 = 0. The charge imbalance is δn = −ndivu; since
the potential ϕ is given by ∆ϕ = −4πqδn = 4πn2qdivu, we have the internal electric field
Ein = −gradϕ = −4πn2qu and the equation of motion

ü+ ω2
pu = qEex , (36)
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where ωp =
√

4πnq2/m is the plasma frequency. The displacement u is much smaller than the
mean separation distance between the electrons, and, since the plasma moves as a macroscopic
body (as a whole), its dynamics is entirely classical. The external radiation field superposes
its oscillations with wavelength λ ≃ 10−4cm over this small, uniform displacement, according to
equation (36). Consequently, they behave as free electrons subject to electromagnetic radiation. In
a plane wave they are "accelerated", oscillate and radiate; in a focused beam they are distributed
over the surface of a spherical polariton.[14]

In conclusions, it is shown in this paper that the interaction with a plane-wave field of classical
electromagnetic radiation can be introduced in the dynamics of a point electric charge through an
exponential factor within a quasi-classical and adiabatic approximation. This procedure allows the
description of the "acceleration" and radiation of a free charge, as well as the ionization process
for bound states of the charge. Since the swithching on of the interaction is slower than the
quantum-mechanical transitions, the latter cannot be described within this approximation.
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