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Abstract

It is shown that in some cases of physical interest the surface forces (boundary conditions)
may have a major effect on the waves propagation in fluids. This point is illustrated, first,
for waves propagating in a semi-infinite (half-space) fluid with a surface force normal to the
free surface (pressure), where the gravitational field is neglected. If a constant, localized
surface force is applied suddenly, it generates a cylindrical wave with a (quasi-) singular
wavefront and a long tail. The displacement field in the singular wave is parallel to the
surface and is directed outwards from the wave source for a surface force acting downwards.
A small but finite spatial spread of the surface force, or a small but finite duration of the
process of application of the force, eliminates the wavefront discontinuity but preserves its
high magnitude. Another illustration of the boundary conditions effect is provided by the
gravity waves propagating along the plane surface of a fluid in gravitational field. A constant,
localized surface force, suddenly applied downwards, generates a packet of gravity-waves on
the fluid surface, whose net effect is a motion directed outwards from the source of waves.
Both the singular wave and the gravity waves on fluid surface can carry along a casual observer
away from the wave source, to regions where the wave amplitude is smaller. Such a picture
evokes the alleged effect oil films spread over sea surface may have upon stilling surface waves
(storm breakers).

This paper is motivated by the alleged effect a thin oil film spread over the surface of water may
have upon calming down the waves propagating over the fluid surface (storm breakers). There are
rumors that such an effect would be real, being discovered by chance by ancient Greek sailors,[1]
scarcely documented on tempests on the sea, and demonstrated by Franklin in London in 1773.[2]
A convincing proof of its existence is lacking, though some disparate information is available;[3]
like, for instance, that the effect would occur only with (polar) vegetable or animal oil, or the
oil film should be thin and spread over a large area to windward of the ships.[4] The spreading
of (polar) oil films on water surface was extensively studied and the damping of capillary, short
and even moderately-long surface waves was attributed to the viscosity of the surface films.[5]-[10]
This could be part of the explanation of this strange effect; we describe here another relevant
aspect, which is caused by external forces applied to the surface.

The present approach is based on the assumption that the effect is related to the boundary
conditions imposed on the plane surface of an elastic medium propagating longitudinal waves.[10]
We choose here two instances of investigating the role of the boundary conditions upon wave
propagation in elastic media. The first case is that of waves propagating in a homogeneous fluid
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which occupies a half-space and is bounded by a plane surface, where the gravitational field
is neglected. It is shown that a pressure applied downwards instantaneously on the surface of
the fluid and localized just above the wave source generates a cylindrical wave, with a (quasi-)
singular wavefront, propagating away from the wave source on the fluid surface; it may carry along
an observer away from the wave source, to regions where the waves are diminished in amplitude;
this could be the meaning of "calming down" the waves. (The singularity of the wavefront is
smoothed out by a finite spatial spread, or a finite duration of the pressure application process).
The second illustrative case is a fluid in gravitational field bounded by a plane surface, which,
as it is well known, may propagate gravity waves. It is shown that a constant pressure suddenly
applied downwards to the surface just above the wave source produces a packet of gravity waves,
whose tangential components can carry the observer away from the wave source, with the same
effect in the absence of the gravitational field. Such major effects the boundary conditions may
have upon wave propagation arise from the excitation of specific eigenmodes, which are "lateral"
waves in the absence of the gravitational field (tangential to the surface) and damped surface
waves (gravity waves) for fluids in gravitational field. In addition, the net motion in the surface
waves is related to the transient regime generated by suddenly applied surface forces.

Let us consider the motion of a local displacement field u in a homogeneous fluid; such a displace-
ment field generates density variations δn = −ndivu, where n is the constant (uniform) density
(particle concentration); we assume δn/n ≪ 1, which means a slow spatial variation of the field
u; the density change arises from a corresponding change in the local volume and the pressure,
such that the equation of motion for the field u is

ü− c2grad · divu = e , (1)

where c is the wave velocity and e is the external field (per unit mass); taking the div in equation
(1) we get the wave equation

∂2δn

∂t2
− c2∆δn = −ndive (2)

for density waves; in the limit of infinite wavelengths c is the sound velocity. We recognize in
equation (1) the equation of motion of the elastic deformation of a homogeneous, isotropic solid
with only one Lame coefficient (λ, with the notations from Elasticity, corresponding to dilatational
motion).[11] The boundary condition relevant for the motion described by equation (1) is

nc2∂fuf |F= −Pf , (3)

where f denotes the coordinate along the direction normal to the surface F bounding the volume
V of the fluid, uf is the component of the displacement normal to the surface F and Pf (directed
downwards along the normal to the surface F ) is the force per unit mass and unit area of the
cross-section of the surface (pressure per unit mass); ∂f stands for the derivative with respect
to the coordinate f perpendicular to the surface. For convenience we introduce the notation
pf = Pf/nc

2 and write the boundary condition as

∂fuf |F= −pf . (4)

The dynamics governed by equation (1) implies the derivation of the diplacement field u from
the gradient of a scalar potential Φ and, similarly, the derivation of the external field e from the
gradient of a potential ϕ; making use of u = gradΦ and e = gradϕ, equation (1) and boundary
condition (4) become

Φ̈− c2∆Φ = ϕ , ∂2fΦ |F= −pf . (5)
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We apply these equations to the motion of the density of a semi-infinite fluid which occupies
the half-space z < 0, bounded by a plane surface z = 0; f in the above equations denotes the
coordinate z, which is taken along the vertical direction. We use the time Fourier transform (with
frequency ω) and decomposition in Fourier plane waves with wavevector k parallel with the surface
z = 0; we use the same notation for functions and their Fourier transforms, whenever there not
exists a risk of confusion. Equations (5) become

d2Φ

dz2
+ κ2Φ = −ϕ/c2 , ∂2zΦ |z=0= −pz , (6)

where κ2 = ω2/c2−k2. In order to account conveniently for the boundary condition it is useful to
extend the equation (6) to the whole space and to limit ourselves to the restriction of the solution
to the lower half-space. To this end, we multiply the wave equation (6) by θ(−z), where θ(z) = 1
for z > 0 and θ(z) = 0 for z < 0 is the step function, and absorb the function θ(−z) in the
derivatives; limiting ourselves to the restriction of the solution to the lower half-space, equations
(6) can be written as

d2Φ

dz2
+ κ2Φ = −ϕ/c2 − Φ(1)δ(z)− Φ(0)δ

′

(z) , Φ(2) = −pz , (7)

where Φ(0) = Φz=0, Φ
(1) = dΦ

dz
|z=0 and Φ(2) = d2Φ

dz2
|z=0 . Making use of the Green function eiκ|z|/2iκ

for the equation (7), we get the solution

Φ = − 1

2iκc2

∫ 0

−∞
dz

′
(

eiκ|z−z
′ | − eiκ|z+z

′ |
)

ϕ(z
′

) + Φ(0)eiκ|z| (8)

and

Φ(1) = − 1

c2

∫ 0

−∞
dz

′

eiκ|z
′ |ϕ(z

′

)− iκΦ(0) , (9)

where ϕ(0) = ϕz=0; using equation (7), the boundary condition becomes

κ2Φ(0) = −ϕ(0)/c2 + pz . (10)

We can see the occurrence of the image Green function e
iκ

∣

∣

∣
z+z

′
∣

∣

∣

/2iκ in equation (8), as expected;
also, we can see that Φ(0) plays the role of an integration constant, which is determined by the
boundary condition. In addition, for free waves (ϕ = 0, pz = 0), we may see the eigenfrequencies
ω = ck, given by κ2 = 0 in equation (10); the corresponding eigenmodes are free "lateral" waves
of the form e−iωt−ikr, ω = ck, propagating along directions parallel with the surface z = 0, where
r is the in-plane position vector. For κ2 6= 0 we determine Φ(0) from equation (10) and, using
equation (8), get the full solution

Φ = − 1

2iκc2

∫ 0

−∞
dz

′
(

eiκ|z−z
′ | − eiκ|z+z

′ |
)

ϕ(z
′

)− ϕ(0)

c2κ2
eiκ|z| +

pz
κ2
eiκ|z| . (11)

We consider a body-force potential ϕ(r, z; t) = a3ϕ0(t)δ(r)δ(z− z0), localized at r = 0, z = z0 < 0
in a small volume with linear dimension a; we assume a periodic time dependence ϕ0(t) = ϕ0 cosΩt
with frequency Ω. Equation (11) gives the volume contribution to the potential

Φv(k, z;ω) = −πa
3ϕ0

2iκc2

(

eiκ|z−z0| − eiκ|z+z0|
)

[δ(ω − Ω) + δ(ω + Ω)] (12)
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(without the contribution of the surface pz-term; we note that ϕ(0) is zero). The inverse Fourier
transform of this function is

Φv(r, z; t) = − πa3ϕ0

2(2π)3ic2

∫

dωdke−iωt e
ikr

κ

(

eiκ|z−z0| − eiκ|z+z0|
)

[δ(ω − Ω) + δ(ω + Ω)] ; (13)

making use of the Sommerfeld integral[12]

i

2π

∫

dk
eikr

κ
eiκ|z| =

eiωR/c

R
, (14)

where R =
√
r2 + z2, we get

Φv(r, z; t) =
a3ϕ0

4πc2

[

cosΩ(t− R1/c)

R1

− cosΩ(t−R2/c)

R2

]

, (15)

where R1 =
√

r2 + (z − z0)2 and R2 =
√

r2 + (z + z0)2; these are (periodic) spherical vawes pro-

duced by a localized volume source. On the surface (z = 0) the tangential displacement is zero,
while the normal displacement is

uz = −a
3ϕ0Ωz0
2πc3R2

0

[

sin Ω(t− R0/c)−
c

R0Ω
cosΩ(t−R0/c)

]

, (16)

where R0 =
√

r2 + z20 . We view the waves given by equation (16) as "regular" waves propagating

over the surface of the solid; their amplitude decreases with increasing distance (as 1/R2
0 and

1/R3
0) and for any given position R0 the motion in the "regular" waves is an oscillating motion.

We describe below the effect of the surface forces upon these "regular" waves.

We denote by

Φb =
pz
κ2
eiκ|z| (17)

the contribution of the surface force pz to equation (11); the inverse Fourier transform of this
contribution is

Φb(r, z; t) =
1

(2π)3

∫

dωdkpz(k, ω)e
−iωt e

ikr

κ2
eiκ|z| . (18)

We consider a surface force given by pz = p0d
2θ(t)δ(r), i.e. a constant force with magnitude p0,

localized at the origin over a small region with linear dimension d (just above the source of the
"regular" waves), which is applied suddenly at the initial moment of time t = 0, lasting thereafter,
with the same magnitude p0, for a long time; its Fourier transform is ip0d

2/(ω+ iε), ε→ 0+. The
most convenient way of effecting the integrals in equation (18) is to perform first the integration
with respect to frequency; enclosing the integration path in the lower half-plane (in order to have
Φb = 0 for past times t < 0), we get

Φb(r, z; t) =
p0d

2

(2π)2

∫

dk
eikr

k2

(

cos ckt− e−k|z|
)

. (19)

The integral in equation (19) is singular, but the displacement ub = gradΦb is finite; using the
Sommerfeld integral[12]

1

2π

∫

dk
eikr

k2
e−k|z| =

1

R
, (20)

we get immediately the z-component of the displacement caused by the surface force

ubz(r, z) = −p0d
2

2πR
; (21)
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we can see that it is a static displacement. The tangential components of the displacement are
computed from equation (19) by using

ubr(r, z; t) =
p0d

2

(2π)2
r

r

∂

∂r

∫

dk
eikr

k2

(

cos ckt− e−k|z|
)

, (22)

the Bessel function J0(kr), an integration by parts and the analytic continuation of the Sommerfeld
integral; we get

ubr(r, z; t) =
p0d

2

2π
· r

r2

[

ct√
c2t2 − r2

θ(ct− r) +
z

R

]

, (23)

where we used the integrals13

∫ ∞

0
dxJ0(x) cosλx =

1√
1− λ2

θ(1− λ) ,
∫ ∞

0
dxJ0(x) sinλx =

1√
λ2 − 1

θ(λ− 1) . (24)

Leaving aside the static contributions, we can see that the surface force generates a cylindrical
wave

u
cyl
br (r, z; t) =

p0d
2

2π
· r

r2
ct√

c2t2 − r2
θ(ct− r) , (25)

with a discontinuous, singular wavefront, which propagates with the wave velocity c; it arises from
the excitation of the "lateral" eigenmodes with frequency ω = ck.

For p0 > 0 (surface force acting downwards) the displacement produced by the surface force is
positive; an observer placed on the surface z = 0 may be carried away from the origin (the source
of the "regular" waves) by this singular wave, to larger values of r, where the "regular" waves
produced by the body-force e diminish in amplitude; it is difficult to refrain from not associating
such a circumstance to the alleged effect the oil films spread over a water surface may have in
"calming down" the waves. If we take into account the small, but finite, extension d of the surface
force, or the small, but finite, interval of time T during which the force is applied (i.e., it increases
from zero to p0), the singular denominator in equation (25) can be replaced approximately by

[(c2t2 − r2)2 + d2c2t2]
1/4

or [(c2t2 − r2)2 + c2T 2r2]
1/4

in the neighbourhood of the wavefront; we
can see that the cylindrical wave is preserved, with a finite, smooth wavefront and a long tail (for
large times the displacement decreases in time as 1/t2). We note that a similar result is obtained
for a surface force spreading over the surface with velocity v ≪ c, given by pz = p0(r)θ(vt − r),
providing we take care of the decreasing of p0 with increasing radius r. It is also worth noting the
local velocity

v
cyl
br ≃ ∂ucyl

br

∂t
=
p0cd

2π
· r
r
δ(r − ct) (26)

in the cylindrical wave (where ct − r ≃ d). Typical numerical estimations give vcylbr ≪ vz ≪ c,
where vz = u̇z is the velocity in the "regular" waves produced by volume forces (equation (16)).
We emphasize the net motion of the cylindrical wave, as implied by equation (25), in comparison
with the local oscillating motion in the "regular" waves (equation (16)).

Let us consider the same problem for a fluid, confined to the half-space z < 0, with a free surface
at z = 0 in gravitational field. Usually, the internal stress ρc2divu in equation (1) is greater than
the gravitational pressure ρguz, where g is the gravitational acceleration, such that we may neglect
the effect of the gravitational field. Nonetheless, we include here a discussion of this effect. The
Euler equation for an ideal fluid is

∂v

∂t
+ (vgrad)v = −1

ρ
gradP + e+ g , (27)
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where v is the flow velocity, P is the pressure, ρ is the mass density, e and g are the external
field and, respectively, the gravitational field per unit mass.[14] For small velocities we neglect the
term quadratic in velocity and write v ≃ ∂u/∂t, where u is the displacement field. We consider a
small change P1 in pressure, determined by the displacement field, and write P = P0 + P1, where
P0 is the constant, uniform, equilibrium pressure; equation (27) becomes

ü = −1

ρ
gradP1 + e + g , (28)

where ρ can be considered here as the constant, uniform, equilibrium density. In the volume
of the fluid the change in pressure is given by P1 = (∂P/∂ρ)Sδρ = −ρ(∂P/∂ρ)Sdivu, where we
introduce the adiabatic coefficient of compressibility (S denotes the entropy); in the fluid volume
g is constant, such that it may produce only static deformations, which we neglect; equation (28)
becomes the wave equation (1)

ü− c2grad · divu = e , (29)

where c =
√

(∂P/∂ρ)s is the sound velocity; using u = gradΦ and e = gradϕ, equation (28)

becomes the wave equation (5) with the solution given by equation (8). At this point it is useful
to introduce the velocity potential ψ, which gives the velocity field v = gradψ; it is related by the
displacement potential Φ by ψ = Φ̇. Making use of equation (15) we can see that the tangential
velocities produced by the volume force on the surface z = 0 are zero, while the component vz for
z = 0 is

vz = −a
3ϕ0Ω

2z0
2πc3R2

0

[

cosΩ(t− R0/c) +
c

R0Ω
sinΩ(t−R0/c)

]

; (30)

as expected, vz is the time derivative of the displacement component uz given by equation (16);
we consider vz given by equation (30) as the "regular" velocity waves, caused by volume forces
and propagating over the fluid surface.

The boundary conditions for a fluid in gravitational field are different from the boundary conditions
given by equations (6); the difference arises from the mobility of the fluid surface z = 0. Taking
the limit z → 0 in equation (28) we see that P1 is the additional pressure imposed on the surface
(with minus sign), the external field e disappears and the vertical component of the gravitational
field can be written as −g∂uz/∂z |z=0; we consider a uniform additional pressure −P1, such that
the tangential components of equation (28) are vanishing; we are left with the boundary condition

Φ̈ |z=0=
1

ρ
P1 − g

∂Φ

∂z
|z=0 . (31)

Making use of the Fourier transforms, this boundary condition can be written as

ω2Φ(0) − gΦ(1) = −1

ρ
P1 , (32)

or, using equation (9),

(ω2 + iκg)Φ(0) = − g

c2

∫ 0

−∞
dz

′

eiκ|z
′ |ϕ(z

′

)− 1

ρ
P1 . (33)

We can see from equation (33) that there exist approximate eigenmodes with eigenfrequency given
by ω2

g = gk, as long as g ≪ c2k (i.e., wavelengths λ ≪ c2/g); these are the well-known gravity,
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damped waves of the form e−iωgt+ikr−k|z| (surface waves); their wavelengths can be very long, since
c2/g ≃ 105m for c = 103m/s. In equation (33) we may set κ ≃ ik and get

Φ(0) = − g

c2(ω2 − ω2
g)

∫ 0

−∞
dz

′

e−k|z′ |ϕ(z
′

)− 1

ρ(ω2 − ω2
g)
P1 . (34)

From equation (8) we get a gravity-induced volume potential

Φg
v = − g

c2(ω2 − ω2
g)

∫ 0

−∞
dz

′

e−k|z+z
′ |ϕ(z

′

) (35)

and a surface contribution

Φb = − 1

ρ(ω2 − ω2
g)
P1e

−k|z| . (36)

The inverse Fourier trasform of the gravity-induced volume contribution is given by

Φg
v(r, z; t) =

ga3ϕ0

(2π)2c2

∫

dk
eikr

gk − Ω2
e−k|z+z0| cosΩt , (37)

where the integral is taken as the principal value; in contrast with the volume force, which gen-
erates propagating waves (equation (30)), the gravity-induced volume force generates stationary
oscillations (vibrations). For rΩ2/g ≫ 1 the gravity-induced stationary waves do not represent an
appreciable contribution.

For the contribution to the surface term given by equation (36) we use a surface force P1 =
P 0
1 d

2θ(t)δ(r) (placed just above the source of the "regular" waves), whose Fourier transform is
iP 0

1 d
2/(ω + iε), ε→ 0+; we get

ψb(k, z;ω) =
iω

ρ(ω2 − ω2
g)
P1e

−k|z| = − P 0
1 d

2

ρ(ω2 − ω2
g)
e−k|z| ; (38)

the reverse time Fourier transform of this potential is

ψb(k, z; t) = −P
0
1 d

2

2πρ
e−k|z|

∫

dω
1

ω2 − ω2
g

e−iωt , (39)

where the integral in equation (36) can be readily computed; it yields

ψb(k, z; t) =
P 0
1 d

2

ρωg

e−k|z| sinωgt . (40)

Finally, it remains to compute the spatial reverse Fourier transform

ψb(r, z; t) =
P 0
1 d

2

(2π)2ρ
√
g

∫

dk
eikr√
k
e−k|z| sin

√

gkt . (41)

This integral can also be written as

ψb(r, z; t) =
P 0
1 d

2

(2π)2ρ
√
g
Im

∫

dk
ei(
√

gkt−kr)

√
k

e−k|z| ; (42)

it gives the surface contribution to velocity

vbz =
P 0
1 d

2

(2π)2ρ
√
g
Im

∫

dk
√
kei(

√
gkt−kr)e−k|z| ,

vbr =
P 0
1 d

2

(2π)2ρ
√
g
r

r
∂
∂r
Im

∫

dk ei(
√

gkt−kr)√
k

e−k|z| ;

(43)
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it is worth noting that these velocities are propagating (and dispersive) waves.

The integrals in equations (42) and (43) are superpositions of waves propagating along the surface
and damped down the depth; near the surface z = 0 we may neglect the damping exponential in
equations (42) and (43). At a given position r the relevant contribution to the wave superposition
comes from waves with wavevectors k close to some wavevector k0, specific to each integral; its
magnitude is related to the distance r by k0r = α, where the initial phase α is an undetermined
parameter. Indeed, the long wavelengths have not an appreciable contribution to the motion,
while the short wavelengths are expected to give interference effects. We introduce the notation
k = k0 + q and integrate over q in equations (42) and (43). At the same time, we expand
the frequency ωg =

√
gk in powers of the components of q and introduce the group velocity

vg = ∂ωg/∂k |k0=
1
2

√

g/k0(k0/k0). We assume that the second order derivatives in the expansion
of ωg are sufficiently small, such that their contribution may be neglected; the integration over q

is extended to the whole space. This wave-packet approximation is valid as long as the inequality
2(dωg/dk)/(d

2ωg/dk
2) |k0≫ k0 holds (it amounts to 4 ≫ 1!). The validity extends over a distance

∆r ≃ 1/∆k, where ∆k is given by ∆k ≃ 2(dωg/dk)/(d
2ωg/dk

2) |k0= 4k0, i.e. ∆r ≃ r/4α (this is
the width of the wave-packet). Similarly, the validity of the wave-packet approximation extends

over time intervals of the order ∆t ≃ ∆r/vg =
√

r/4αg (this is the "life-time" of the wave-packet).

It is easy to see that the integral in equation (42) becomes

∫

dk ei(
√

gkt−kr)
√
k

≃ 1√
k0
ei(
√

gk0t−k0r)
∫

dqeiq(vgt−r) =

= (2π)2√
k0
ei(
√

gk0t−k0r)δ(r− vgt) =
(2π)2√

k0
eiαδ(r− vgt) ,

(44)

which is a circular wave on the surface, propagating with the velocity vg = 1
2

√

g/k0 ≃
√

gr/4α,

directed along the radius r. Inserting equation (44) into equations (42) and (43) we get

ψb(r, z = 0; t) ≃ P 0
1 d

2

ρ
√
g

sinα√
α

√
rδ(r− vgt) (45)

and the leading contributions to the surface velocities (for z = 0)

vbz ≃ P 0
1 d

2

ρ
√
g

√
α sinα · 1√

r
δ(r− vgt) ,

vbr ≃ P 0
1 d

2

2ρ
√
g
sinα√

α
r

r3/2
δ(r− vgt) .

(46)

The initial phase α remains undetermined; since, from equations (43), vbz and vbr are positive
for r → 0 and P 0

1 > 0, we may infer that sinα > 0 for these integrals. Equations (46) give the
distribution of velocities on the fluid surface, according to the wave-packet picture. We can see
that these velocities "move" on the surface with the group velocity vg, their magnitude decreasing
with increasing distance from the origin. They describe a wave packet moving with velocity vg

from the origin (where the source of the "regular" waves is placed) to infinity. In this motion

the distance r increases as r = vgt =
√

gr/4αt, i.e. r = gt2/4α, which indicates an accelerated

motion. For P 0
1 > 0 we can see that a casual observer placed on the fluid surface is carried away

from the source of the "regular" waves by the wave-packet of the gravity waves generated by the
surface force, to surface regions where the amplitude of the "regular" waves is smaller. As in the
case of the absence of the gravity discussed above, this circumstance resembles the effect the oil
layers spread over the fluid surface may have on "stilling the waters".
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The wave-packet picture described above is supported by an estimation of the integrals in equations
(43), which, basically, we own to Refs. [15, 16]). Equations (43) can be written as

vbz =
P 0
1 d

2

2πρ
√
g

∫

dkk3/2J0(kr)e
−k|z| sin

√
gkt ,

vbr =
P 0
1 d

2

2πρ
√
g

r

r2

∫

dkk3/2 d
dk
J0(kr)e

−k|z| sin
√
gkt ;

(47)

we introduce the new variable x =
√
gkt and get integrals of the form

∫ ∞

0
dx · xnJ0(rx2/gt2)e−

|z|

gt2
x2

cosx , (48)

where n = 1, 2, 3.... These integrals are controlled by the parameter r/gt2; we can give results in
two limiting cases:

vbz =
24P 0

1 d
2

πρg3t5

(

1− 420r2

g2t4
+ ...

)

, vbr =
360P 0

1 d
2

πρg4t7

(

1− 630r2

g2t4
+ ...

)

r , r/gt2 ≪ 1 , (49)

and

vbz ≃ − 3P 0
1 d

2

4
√
2πρ

· t
r3
cos gt2

4r
, vbr ≃ − 3P 0

1 d
2

4
√
2πρ

· tr
r4
sin gt2

4r
, r/gt2 ≫ 1 (50)

for z = 0. We can see that these waves oscillate slowly for large distances (r ≫ gt2) and have a
wavefront around r of the order gt2, which moves according to the acelerated-motion law r = gt2;
for P 0

1 > 0 the waves behind the wavefront are positive. The velocity waves given by equations
(49) and (50) for r ≃ gt2 correspond to the wave-packets derived above. This result supports the
conclusion that a surface force generates packets of gravity waves that can carry an observer away
from the origin (source of the "regular" wave).

In conclusions, we have investigated here the role played by some boundary conditions of phys-
ical interest upon the waves propagating in a semi-infinite (half-space) fluid. It is shown that,
neglecting the gravity, a pressure applied instantaneously downwards the plane surface of a fluid
in a small region localized above the source of the "regular" waves, and lasting an indefinite time,
produces a cylindrical wave with a singular wavefront which propagates away from the wave source
(the wavefront singularity is smoothed out by a finite spatial spread or a finite duration of the
process of applying the pressure). Similarly, a constant pressure applied suddenly downwards on
the plane surface of a fluid in gravitational field in a small region localized above the source of the
"regular" waves and lasting an indefinite time may generate wave-packets of gravity waves which
move away from the wave source. In both case a casual observer on the surface can be moved
away from the source of the "regular" waves, toward regions where the wave amplitude is smaller.
This could be the meaning of the notion of "calming down" the surface waves by oil layers spread
over the fluids surface. This paper was motivated by the alleged effect such oil films may have
upon the surface waves. The major effects illustrated here for the boundary conditions upon the
wave propagation in semi-infinite fluids arise from the excitation of specific eigenmodes: "lateral"
waves when the gravity is neglected (tangential to the surface) and damped surface waves (gravity
waves) in the gravitational field. Basically, the effect described here can be viewed as the transfer
of the applied pressure to directions tangential to the surface. In gravitational field this transfer
is mediated by the gravitational acceleration. Also, it is worth noting an important difference
between the "regular" waves and the waves generated by the surface forces investigated here. In
the "regular" waves the local motion at any given position is an oscillating motion (equations
(16), (30)), while the transient regime generated by surface forces suddenly applied produces a
net motion directed outwards from the application point (equations (25), (46)).
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